首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In the Varanus exanthematicus, the pancreatic complex comprises the true pancreas as well as an intrasplenic islet comparable to a Brockmann's body. Somatostatin content and concentration were estimated by radioimmunoassay in acetic acid extracts of both organs. Relatively large amounts of somatostatin (SLI) are present in the pancreas (2.17 +/- 0.07 micrograms) without any difference in distribution between the cranial (CP) and mediocaudal (MCP) regions. The intrasplenic islet contains as much SLI material as the whole pancreas (3.38 +/- 0.85 microgram); thus, this primitive organ presents a very high hormonal concentration (109.34 +/- 40.30 ng/mg wt). Serial dilutions of the extracts gave parallel immunoassay displacement curves and gel-filtration revealed two immunoreactive peaks: the most important one was found in the synthetic tetradecapeptide fraction, the other one near the void volume fraction. These results show an immunological similarity between the SLI substance of the pancreatic complex and the synthetic somatostatin; however, a molecular heterogeneity must not be excluded. The results are discussed from a phylogenetic point of view.  相似文献   

2.
Cholecystokinin (CCK) has been shown to be a powerful stimulus for somatostatin release from isolated canine fundic D-cells in short-term culture. The influence of the CCK analogue caerulein on the secretory activity of the D-cell in the intact stomach in vitro and the effect of elevated plasma levels of endogenous CCK on gastric somatostatin stores in vivo were investigated in the rat. Basal somatostatin secretion from the isolated, vascularly perfused rat stomach preparation was not affected by various doses of caerulein. Slight stimulation of somatostatin-like immunoreactivity (SLI) release by epinephrine was significantly inhibited by caerulein, whereas caerulein did not alter half-maximal stimulation of SLI secretion by isoproterenol. Rats with chronically elevated plasma CCK levels induced by experimental exocrine pancreatic insufficiency did not show any change in tissue concentrations of SLI or in D-cell number, both in the antrum and corpus. These data suggest that CCK--in contrast to dogs--is not an important modulator of gastric somatostatin in the rat.  相似文献   

3.
Substances with Somatostatin-Like Immunoreactivity (SLI) were extracted using 2 N acetic acid, from the three pancreatic lobes and the intestine of the duck. The concentration of SLI was found to be very high in the pancreas (4.2 micrograms/g wet weight), the splenic lobe containing 80% of pancreatic SLI compared with 10% for the dorsal and 10% for the ventral lobes. SLI was equally distributed between duodenum, jejunum and ileum and between their mucosal and muscular layers. Chromatography of pancreatic extracts, using a Sephadex G-25 column, showed mainly the tetradecapeptide form (somatostatin-14, S-14) with a small amount of big somatostatin. Chromatography of intestinal extracts revealed three peaks with SLI: big somatostatin, somatostatin-28 (S-28) and S-14. The substance represented by the predominant peak was co-eluted with that of synthetic S-28. In normal ducks, portal plasma SLI corresponded to big somatostatin S-28 and S-14. After total pancreatectomy the S-14 form disappeared from portal plasma, whereas, when the intestinal blood vessels were ligatured, the S-28 form disappeared. We therefore hypothesize that in portal blood, S-14 has a mainly pancreatic origin, and S-28 a mainly intestinal origin.  相似文献   

4.
The presence and actions of NPY in the canine endocrine pancreas   总被引:1,自引:0,他引:1  
Immunofluorescent staining for neuropeptide Y (NPY) in canine pancreatic tissue was performed together with an evaluation of the effects of synthetic NPY on the release of insulin (IRI), glucagon (IRG) and somatostatin (SLI) from the duodenal lobe of the canine pancreas in situ. NPY-like immunoreactivity was localized in perivascular nerve fibers throughout the acinar tissue. NPY-immunoreactive fibers were also demonstrated in the islets, usually surrounding blood vessels but also occasionally in fibers associated with endocrine cells, primarily at the periphery of islets. In addition, the ganglia dispersed in the pancreatic parenchyma were densely innervated by NPY-immunoreactive fibers, and these ganglia regularly contained cell bodies staining for NPY. Direct infusion of NPY into the pancreatic artery (p.a.) produced a dose-dependent decrease of pancreatic SLI output and of pancreatic venous blood flow. Low-dose p.a. infusion of NPY (50 pmol/min) had no effect on basal IRI or IRG output or on the islet response to glucose (5-g bolus, i.v.). High-dose p.a. infusion of NPY (500 pmol/min) transiently stimulated IRI output and modestly increased IRG output. However, the comparatively sparse innervation of canine islets with NPY-like immunoreactive fibers and the relatively minor effects of large doses of synthetic NPY on pancreatic hormone release lead us to conclude that this peptide is not an important neuromodulator of islet function in the dog.  相似文献   

5.
R Schick  V Schusdziarra 《Peptides》1985,6(5):861-864
Somatostatin release in dogs is modulated by exogenous and endogenous opioids. Since postprandial somatostatin secretion is in part due to the stimulatory effect of postprandially activated gastrointestinal hormones as well as endogenous opioids, it was of interest to determine the interaction between motilin, a known stimulus of somatostatin release, and endogenous opioids with regard to activation of D-cell function. In a group of eight conscious dogs the infusion of synthetic porcine motilin at doses of 0.05, 0.25 and 0.5 micrograms/kg X hr elicited a significant increase of peripheral vein plasma somatostatin-like immunoreactivity (SLI), confirming previously reported data. The additional infusion of the opiate receptor antagonist naloxone attenuated this SLI response, suggesting that endogenous opioids participate in motilin-induced SLI release. Since previous studies have shown that the interaction between endogenous opioids and postprandial somatostatin secretion is modified by elevated plasma glucose levels, the experiments were repeated during an IV glucose (0.2 g/min) background infusion increasing circulating glucose levels by 20-30 mg/dl. During IV glucose, the SLI response to motilin was almost abolished. In this group the addition of naloxone restored the SLI response, indicating that the inhibitory effect of elevated glucose on D-cell function is, at least in part, mediated by endogenous opioids. These data suggest that motilin has to be considered as one regulatory factor which participates in the previously observed interaction between glucose and endogenous opioids during postprandial SLI release.  相似文献   

6.
Somatostatin-like immunoreactivity (SLI) was purified from frog brain and retina, and the structure of the brain peptide was determined. Frog brain (101 g) and retinal (45 g) tissues were extracted with 3% acetic acid, yielding 9.6 and 0.44 nmol of SLI, respectively. SLI was further purified by chromatography on a somatostatin immunoaffinity column followed by sequential application to reverse-phase C-18 HPLC columns. The brain and retinal peptides, purified roughly 100,000-fold with net yields of 7.5 and 2.3%, respectively, appeared identical in the final steps of purification. The amino acid sequence of brain SLI, as determined by a gas-phase automated Edman degradation technique, was as follows: Ala-Gly-(Cys)-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-(Cys). Our data indicate that despite structural variations in somatostatins of other lower vertebrates, the amino acid sequence of frog brain and, by deduction, retinal SLI is identical to that of somatostatin tetradecapeptide. These findings support the physiological relevance of studies directed at elucidating the neurotransmitter function of somatostatin using the well-established models of frog brain and retina.  相似文献   

7.
Previous studies have suggested that somatostatin inhibits pancreatic secretion at a central vagal site, and the dorsal vagal complex (DVC) is involved in central feedback inhibition of the exocrine pancreas. The aim of this study was to investigate the effect of exogenous somatostatin in the DVC on pancreatic secretion and the somatostatin receptor subtype(s) responsible for the effect. The effects of somatostatin microinjected into the DVC on pancreatic secretion stimulated by cholecystokinin octapeptide (CCK-8) or 2-deoxy-d-glucose (2-DG) were examined in anesthetized rats. To investigate the somatostatin inhibitory action site, a somatostatin receptor antagonist [SRA; cyclo(7-aminoheptanoyl-Phe-d-Trp-Lys-Thr)] was microinjected into the DVC before intravenous infusion of somatostatin and CCK-8/2-DG. The effects of injection of a somatostatin receptor-2 agonist (seglitide) and combined injection of somatostatin and a somatostatin receptor-2 antagonist (CYN 154806) in the DVC on the pancreatic secretion were also investigated. Somatostatin injected into the DVC significantly inhibited pancreatic secretion evoked by CCK-8 or 2-DG in a dose-dependent manner. SRA injected into the DVC completely reversed the inhibitory effect of intravenous administration of somatostatin. Seglitide injected into the DVC also inhibited CCK-8/2-DG-induced pancreatic protein secretion. However, combined injection of somatostatin and CYN 154806 did not affect the CCK-8/2-DG-induced pancreatic secretion. Somatostatin in the DVC inhibits pancreatic secretion via somatostatin receptor-2, and the DVC is the action site of somatostatin for its inhibitory effect.  相似文献   

8.
These studies were performed to assess the effects of various exocrine pancreatic stimuli on somatostatin-like immunoreactivity (SLI) secretion in pure rat pancreatic juice. Ingestion of a meal and subcutaneous injections of caerulein (CA), secretin (SE), and their combination (CA + SE) were compared. Basal fasting SLI output over 5 1/2 h averaged 13.7 ng/30 min; the response to feeding resulted in decreased SLI outputs from 9.7 to 1.7 ng/30 min, a reduction of 81%. SLI secretion following CA, SE, and CA + SE was similar to that obtained following feeding but the reductions of 29, 32, and 39% were less marked and of shorter duration. A return to basal SLI levels was observed only 2 1/2 h following CA administration. Increases in pancreatic volume and protein outputs following CA, SE, and CA + SE were comparable to the feeding response although less pronounced. These data indicate that SLI secretion in pure pancreatic juice can be modulated by two peptides and feeding and that its release is reduced when compared with increases in pancreatic volume and protein secretion. The observation that the peptide's response in terms of SLI output as well as protein and volume were in the same range, although less sustained than the response to a meal, indicates that all stimuli used induced a physiological response of the pancreas.  相似文献   

9.
The action of enzymes extracted from rat hypothalamus on the previously characterized high molecular weight forms of hypothalamic somatostatin-like immunoreactivity (4 K SLI and 25 K SLI) has been investigated in vitro in order to further define the role of these molecules as possible precursors for tetradecapeptide somatostatin (SRIF). Studies of the degradation of endogenous SLI and of synthetic SRIF by hypothalamic enzymes showed that the time course of breakdown of endogenous SLI is markedly slower than that of synthetic SRIF due to the relative stability of 25 K SLI as well as the generation of at least two new immunoreactive molecules. Incubation of purified 25 K SLI with SLI-free hypothalamic extract showed after 10 to 30 min newly formed immunoreactive material of an intermediate size between 25 K SLI and 4 K SLI and after 60 min the emergence of material coeluting with SRIF. These data show that the hypothalamus contains the enzymes necessary for degrading endogenous SLI and for processing the 25 K SLI molecule to SRIF providing further evidence that 25 K SLI might be a biosynthetic precursor for SRIF.  相似文献   

10.
In the present study the effect of indomethacin-induced prostaglandin deficiency was examined on the release of bombesin-like immunoreactivity (BLI), a putative peptidergic neurotransmitter, from the isolated perfused rat stomach. In addition, gastrin and somatostatin (SLI) secretion was determined. Pretreatment of rats with indomethacin (2 mg/kg X h) resulted in a 3-fold increase of basal BLI secretion. In response to acetylcholine (2 X 10(-6) M) BLI rose from 2,000 to 4,000 pg/min, whereas in controls BLI increased from 400 to 1,400 pg/min. While absolute values for BLI secretion were higher in indomethacin-treated stomachs the relative increase above baseline was lower (100 vs. 250%). In control rats the increase in BLI secretion in response to acetylcholine was abolished when the acidity in the gastric lumen was increased from pH 7 to pH 2. After indomethacin, however, the stimulatory effect of acetylcholine during luminal pH 7 and pH 2 was identical. The decrease of SLI by acetylcholine at luminal pH 7 was abolished in indomethacin-treated stomachs in response to 10(-6) M acetylcholine, and 2 X 10(-6) M had even a stimulatory effect on SLI secretion. Indomethacin pretreatment reduced gastrin secretion at luminal pH 7. These data demonstrate that endogenous prostaglandins exert an inhibitory tone on basal and stimulated BLI and stimulated SLI secretion in the rat stomach. It is suggested that endogenous prostaglandins also inhibit the release of a peptidergic neurotransmitter, similar to their effect on the classical neurotransmitters acetylcholine and norepinephrine.  相似文献   

11.
The purpose of this study was to estimate the effects of cholecystokinin (CCK), somatostatin (SS) pancreatic polypeptide (PP) and their interaction with each other, given them in single doses, on pancreatic secretion and pancreatic growth after long-term treatment in rats. The acute secretory effects of the above mentioned peptides were studied on conscious rats supplied with pancreatic, gastric and jugular vein cannulae. The pancreatic growth was characterized by measurements of pancreatic weight, desoxyribonucleic acid (DNA), protein, trypsin and amylase content after 5 days treatment. Amylase output was increased by caerulein alone, and given it in combination with somatostatin (SS), while its value decreased by SS alone. After 5 days treatment, the pancreatic weight, trypsin and amylase activity (hypertrophy) was increased by caerulein, and these values were not altered by S alone. In combinative administration of caerulein with somatostatin, the stimulatory effect by caerulein was decreased. PP given alone or in combination with caerulein decreased both the basal and stimulated amylase output. PP given for 5 days decreased pancreatic trypsin and amylase contents and counteracted the stimulatory effect by caerulein to these enzymes' contents. It has been concluded that: 1. caerulein stimulates both pancreatic enzyme secretion and pancreatic growth; 2. somatostatin inhibits the pancreatic secretion and caerulein induced pancreatic growth, but it does not affect the spontaneous growth of pancreas; 3. pancreatic polypeptide inhibits the pancreatic secretion and decreases pancreatic trypsin and amylase contents.  相似文献   

12.
When adult male rats were fasted for 24 or 72 h there was no change in the pancreatic content of insulin or glucagon, but the somatostatin content increased at 72 h. This contrasts with earlier reports of reduced pancreatic somatostatin after fasting. After a 48-hour fast there was an increase in the concentration of duodenal somatostatin, and a tendency toward reduced concentrations in stomach, jejunum, and ileum. When duodenal mucosa and muscle extracts were chromatographed the relative amounts of putative somatostatin-28 and somatostatin-14 were unchanged. Insulin secretion from the perfused pancreata of 72-hour-fasted rats was markedly reduced, but glucagon and somatostatin secretion was indistinguishable from that of fed controls. These results indicate that in spite of the marked alterations of nutrient metabolism and insulin secretion which occur during fasting, the pancreatic content of insulin, glucagon and somatostatin and the gut concentration of somatostatin are well maintained.  相似文献   

13.
Gastric inhibitory polypeptide (GIP) strongly stimulates insulin secretion in the presence of glucose and also stimulates somatostatin release from gastric mucosa. It was reported recently that both stimulatory activities can be dissociated by removing the C-terminal 12 amino acid residues. Since insulin and somatostatin are involved in regulation of exocrine pancreatic and gastric secretion in rats, we compared the inhibitory effects of pGIP and the pGIP(1-30)NH2 fragment on pancreatic amylase and gastric acid secretion. pGIP(1-30)NH2 displayed full activity on inhibition of bombesin (BN)-stimulated amylase release relative to GIP itself, but was about 10-fold less potent in inhibiting gastric acid secretion. These results suggest that the receptors involved in these two events have quite different ligand binding requirements and that more specific analogues of GIP can be designed which should be of value in elucidating the physiological roles of this hormone.  相似文献   

14.
The molecular forms of somatostatin contained in the rat striatum were separated by size-exclusion HPLC. Three major peaks of somatostatin-like immunoreactivity (SLI) were resolved. Two peaks cochromatographed with synthetic somatostatin-14 (SS-14) and somatostatin-28 (SS-28), respectively. One peak exhibited a higher molecular weight (about 10,000) and may contain a proform of somatostatin. Local injection of the neurotoxin kainic acid (1 microgram) into the left striatum resulted in a persistent decrease (65-85%) of all three forms of somatostatin. In the contralateral--not injected--striatum a decrease of SLI was also observed which was maximal (45%) after 2 days and was largely abolished after 7 days. This decrease of SLI in the contralateral striatum, however, was due mainly to a decrease of SS-14 and SS-28 but not of the putative proform. Our data suggest that kainic acid causes a destruction of somatostatin-containing perikarya in the injected striatum, whereas in the contralateral striatum increased release with subsequent inactivation of SS-14 and SS-28 takes place. The putative somatostatin proform may serve as neurochemical marker for somatostatin-containing perikarya in the striatum.  相似文献   

15.
Only one secretin receptor has been cloned and its properties characterized in native and transfected cells. To test the hypothesis that stimulatory and inhibitory effects of secretin are mediated by different secretin receptor subtypes, pancreatic and gastric secretory responses to secretin and secretin-Gly were determined in rats. Pancreatic fluid secretion was increased equipotently by secretin and secretin-Gly, but secretin was markedly more potent for inhibition of basal and gastrin-induced acid secretion. In Chinese hamster ovary cells stably transfected with the rat secretin receptor, secretin and secretin-Gly equipotently displaced (125)I-labeled secretin (IC(50) values 5.3 +/- 0.5 and 6.4 +/- 0.6 nM, respectively). Secretin, but not secretin-Gly, caused release of somatostatin from rat gastric mucosal D cells. Thus the equipotent actions of secretin and secretin-Gly on pancreatic secretion appear to result from equal binding and activation of the pancreatic secretin receptor. Conversely, secretin more potently inhibited gastric acid secretion in vivo, and only secretin released somatostatin from D cells in vitro. These results support the existence of a secretin receptor subtype mediating inhibition of gastric acid secretion that is distinct from the previously characterized pancreatic secretin receptor.  相似文献   

16.
We have isolated, from canine pancreatic juice, two 14-kDa proteins with secretin-releasing activity that had N-terminal sequence homology with canine pancreatic phospholipase A2 (PLA2). In this study we have obtained evidence that secretin-releasing activity is an intrinsic property of pancreatic PLA2. Porcine pancreatic PLA2 from Sigma or Boehringer Mannheim was fractionated into several peaks by reverse phase high performance liquid chromatography. They were tested for stimulation of secretin release from murine neuroendocrine intestinal tumor cell line STC-1 and secretin cells enriched mucosal cell preparations isolated from rat upper small intestine. Each enzyme preparation was found to contain several components of secretin-releasing activity. Each bioactive fraction was purified to homogeneity by rechromatography and then subjected to mass spectral analysis and assays of PLA2 and secretin-releasing activities. It was found that the fraction with highest enzymatic activity also had the highest secretin-releasing activity and the same Mr as porcine pancreatic PLA2. Moreover, it also had the same N-terminal amino acid sequence (up to 30 residues determined) as that of porcine pancreatic PLA2, suggesting that it was identical to the enzyme. Purified porcine pancreatic PLA2 also stimulated secretin release concentration-dependently from both STC-1 cells and a mucosal cell preparation enriched in secretin-containing endocrine cells isolated from rat duodenum. Abolishment of the enzymatic activity by pretreatment with bromophenacyl bromide did not affect its secretin-releasing activity. The stimulatory effect of purified pancreatic PLA2 on secretin secretion from STC-1 cells was inhibited by an L-type Ca2+ channel blocker, by down-regulation of protein kinase C or by pretreatment of the cell with pertussis toxin. It is concluded that porcine pancreatic PLA2 possesses an intrinsic secretin-releasing activity that was independent of its enzymatic activity. This action is pertussis toxin-sensitive and is in part dependent on Ca2+ influx through the L-type channel and activation of protein kinase C.  相似文献   

17.
Significant amounts of somatostatin-like immunoreactivity (SLI) were detected in the extract of a human catecholamine-secreting adrenal medullary tumour. After salt fractionation and reconstitution the major portion of SLI was purified by gel filtration and two HPLC steps; in all three systems it eluted in the position of somatostatin-14. The purified somatostatin-like peptide inhibited, in a dose-related manner, growth hormone release from stimulated perfused rat anterior pituitary cells in vitro. Amino acid analysis showed the purified peptide to have an identical composition to somatostatin found in other species.  相似文献   

18.
The purpose of these studies was to measure circulating gastrin and somatostatin concentrations during sham feeding in humans and to evaluate the effect of two doses of intravenous atropine on circulating concentrations of these peptides. Gastric acid and bicarbonate secretion and pulse rate were also measured. Sham feeding increased plasma gastrin concentrations by approximately 15 pg/ml but had no effect on plasma somatostatin-like immunoreactivity (SLI). A small dose of atropine (5 micrograms/kg) augmented plasma gastrin concentrations during sham feeding significantly (P less than 0.01), but did not affect plasma SLI. Atropine also significantly inhibited gastric acid secretion and gastric bicarbonate secretion (by 62% and 52%, respectively), but pulse rate was not affected. A larger dose of atropine (15 micrograms/kg intravenously) suppressed plasma gastrin concentrations significantly compared to the smaller 5 micrograms/kg atropine dose (P less than 0.02), so that plasma gastrin concentrations when 15 micrograms/kg atropine was given were not significantly different from those during the control study. 15 micrograms/kg atropine reduced gastric acid and bicarbonate secretion by 81% and 66%, respectively, and also increased pulse rate by 15 min-1. These studies indicate that small doses of atropine enhance vagally mediated gastrin release in humans, probably by blocking a cholinergic inhibitory pathway for gastrin release. Although the nature of this cholinergic inhibitory mechanism is unclear, we found no evidence to incriminate somatostatin. Our finding that the larger dose of atropine reduced serum gastrin concentrations compared with the smaller dose suggests that certain vagal-cholinergic pathways may facilitate gastrin release.  相似文献   

19.
The present study was designed to determine the role of carbohydrates during naloxone-induced opiate receptor blockade upon the postprandial rise of plasma somatostatin (SLI), insulin and pancreatic polypeptide (PP) levels in response to protein and fat test meals in conscious dogs. Test meals consisting of 50 g liver extract + 50 g sucrose or 50 g corn oil + 50 g sucrose dissolved in 300 ml water were instilled intragastrically, respectively. Additionally, liver extract and fat meals were given with a concomitant intravenous infusion of glucose. To all test meals either naloxone (4 mg) or saline was added. The addition of sucrose to liver extract or the infusion of i.v. glucose during the liver meal abolished the inhibitory effect of naloxone on the rise of postprandial somatostatin levels which has been described recently. The addition of carbohydrate either orally or intravenously to the fat meal resulted in an even stimulatory effect of naloxone upon the rise of postprandial somatostatin levels. Insulin levels were not changed during liver extract + sucrose or i.v. glucose, respectively. When sucrose or i.v. glucose was administered together with the fat meal the addition of naloxone augmented postprandial insulin secretion. Pancreatic polypeptide (PP) release was augmented during the combination of sucrose or i.v. glucose with the fat and liver meal when naloxone was present in the meals. The present data demonstrate that the addition of carbohydrates either orally or intravenously to fat and protein meals modulates the effect of endogenous opiates in the regulation of postprandial somatostatin, insulin and pancreatic polypeptide release in dogs in a way that carbohydrates induce inhibitory mechanisms that are mediated via endogenous opiate receptors.  相似文献   

20.
《Regulatory peptides》1987,17(5):269-276
The 27-amino acid peptide gastrin releasing peptide (GRP-(1–27)) was infused at 4 dose levels (0.01, 0.1, 1.0, and 10 nM) into the arterial line of the isolated perfused porcine pancreas. Infusions were performed at 3 different perfusate glucose levels (3.5, 5.0, and 8.0 mM) and at two levels of amino acids (5 and 15 mM). GRP-(1–27) stimulated insulin and pancreatic polypeptide secretion and inhibited somatostatin secretion in a dose-dependent manner. Glucagon secretion was unaffected by infusion of GRP under all circumstances. The effect of GRP-(1–27) on insulin secretion was enhanced with increasing perfusate glucose levels, whereas the effects upon somatostatin and pancreatic polypeptide secretion were independent of perfusate glucose levels. The responses to GRP were unaffected by elevation of the concentration of amino acids in the perfusate. The effects of GRP were unaffected by atropine at 10−6 M. The localization of GRP within the porcine pancreas, its release during electrical stimulation of the vagus nerve, and its potent effects upon pancreatic endocrine secretion make it conceiveable that the peptide participates in parasympathetic regulation of pancreatic endocrine secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号