首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Objective Apoptotic processes may be implicated in the molecular pathomechanisms of ventricular remodeling after myocardial infarction (MI). The modulation of apoptosis by pro- and anti-apoptotic pathways in the myocardium remote from the infarction, including its link to protein kinase C (PKC), was focus of the present study. Methods Rats were subjected to MI by LAD ligation in situ. Some animals were pretreated with the PKC inhibitor chelerythrine. After 1 h up to 28 days, pro- and anti-apoptotic signals (caspase-3, Bcl-2/Bax ratio, Akt, Bad), and marker of apoptosis execution (DNA laddering, TUNEL) were quantified in the myocardium remote from the infarction. Results Activation of caspase-3, a pro-apoptotic shift of the Bcl-2/Bax ratio, and DNA fragmentation were observed as early as 3 h after infarction and persisted up to 28 days. Akt- and Bad-phosphorylation was unchanged. Chelerythrine markedly reduced DNA fragmentation. Caspase-3 activation was unchanged. Surprisingly, Bad and Akt phosphorylation were highly increased (180% and 750% of control). Conclusion Chelerythrine influences the balance of pro- and anti-apoptotic pathways in the remote myocardium after infarction, with an inhibition of proapoptotic and an activation of anti-apoptotic signals.  相似文献   

3.
Chelerythrine chloride is an antiplatelet agent isolated from Zanthoxylum simulans. Aggregation and ATP release of washed rabbit platelets caused by ADP, arachidonic acid, PAF, collagen, ionophore A23187 and thrombin were inhibited by chelerythrine chloride. Less inhibition was observed in platelet-rich plasma. The thromboxane B2 formation of washed platelets caused by arachidonic acid, collagen, ionophore A23187 and thrombin was decreased by chelerythrine chloride. Phosphoinositides breakdown caused by collagen and PAF was completely inhibited by chelerythrine chloride, while that of thrombin was only partially suppressed. Chelerythrine chloride inhibited the intracellular calcium increase caused by arachidonic acid, PAF, collagen and thrombin in quin-2/AM-loaded platelets. The cyclic AMP level of washed platelets did not elevated by chelerythrine chloride. The antiplatelet effect of chelerythrine chloride was not dependent on the incubation time and the aggregability of platelets inhibited by chelerythrine chloride was easily recovered after sedimenting the platelets by centrifugation and then the platelet pellets were resuspended. Chelerythrine chloride did not cause any platelet lysis, since lactate dehydrogenase activity was not found in the supernatant. These data indicate that the inhibitory effect of chelerythrine chloride on rabbit platelet aggregation and release reaction is due to the inhibition on thromboxane formation and phosphoinositides breakdown.  相似文献   

4.
Docosahexaenoic acid (22:6n-3, DHA) is highly enriched in neuronal membranes and is considered to be essential for proper brain function. We have previously demonstrated in Neuro 2A cells that DHA as a membrane component protects cells from apoptotic death induced by serum deprivation (Kim et al. 2000). In the present study we demonstrate that staurosporine (ST) induces apoptosis in Neuro 2A cells and DHA enrichment prior to the ST treatment significantly inhibits the apoptotic cell death, as evidenced by the reduction of caspase-3 activity, cleavage of pro-caspase-3 to active caspase-3, DNA strand-breaking and laddering. Enrichment of cells with other fatty acids such as oleic and arachidonic acids did not exert such an effect, indicating that the antiapoptotic effect was specific to DHA enrichment. Among the several protein kinase inhibitors, only phosphatidylinositol 3-kinase (PI3-K) inhibitors, wortmanin, and LY-294002 abolished the protective effect of DHA in ST-induced apoptosis. Concurrently, ST-treatment significantly decreased the phosphorylation status of Akt at Ser-473 and Thr-308 as well as Akt activity, and this reduction was partially prevented by DHA enrichment. The extent of the antiapoptotic effect of DHA correlated with a time-dependent increase in the phosphatidylserine (PS) content upon DHA enrichment. When cells were enriched with DHA in serine-free medium, the PS increase diminished and the DHA effect on caspase-3 activation as well as Akt phosphorylation in ST-induced apoptosis was no longer apparent, suggesting that DHA's role in accumulating membrane PS is an important component for the observed protection. In summary, DHA enrichment uniquely protects ST-induced apoptosis in a PS- and PI3-K-dependent manner. From these data, we suggest that the antiapoptotic effect of DHA is mediated at least in part through the PI3-K/Akt pathway, facilitated by DHA-induced PS accumulation.  相似文献   

5.
Apoptosis in transgenic mice expressing the P301L mutated form of human tau   总被引:3,自引:0,他引:3  
The rTg4510 mouse is a tauopathy model, characterized by massive neurodegeneration in Alzheimer's disease (AD)-relevant cortical and limbic structures, deficits in spatial reference memory, and progression of neurofibrillary tangles (NFT). In this study, we examined the role of apoptosis in neuronal loss and associated tau pathology. The results showed that DNA fragmentation and caspase-3 activation are common in the hippocampus and frontal cortex of young rTg4510 mice. These changes were associated with cleavage of tau into smaller intermediate fragments, which persist with age. Interestingly, active caspase-3 was often co-localized with cleaved tau. In vitro, fibrillar Abeta(1-42) resulted in nuclear fragmentation, caspase activation, and caspase-3-induced cleavage of tau. Notably, incubation with the antiapoptotic molecule tauroursodeoxycholic acid abrogated apoptosis-mediated cleavage of tau in rat cortical neurons. In conclusion, caspase-3-cleaved intermediate tau species occurred early in rTg54510 brains and preceded cell loss in Abeta-exposed cultured neurons. These results suggest a potential role of apoptosis in neurodegeneration.  相似文献   

6.
We have previously shown that hypoxia results in increased activity of caspase-9, caspase-3 and fragmentation of nuclear DNA in the cerebral cortex of newborn piglets. The present study tested the hypothesis that mechanism of DNA fragmentation during hypoxia in the cerebral cortex of newborn piglets is mediated by caspase-9-dependent caspase-3 activation. Newborn piglets were randomly assigned to normoxic, hypoxic, and hypoxic pretreated with a highly selective caspase-9 inhibitor, Z-LEHD-FMK groups. The data showed that cerebral tissue hypoxia results in increased expression of caspase-activated DNase (CAD) protein in the nucleus and fragmentation of nuclear DNA. A pretreatment with Z-LEHD-FMK attenuated the expression of CAD protein in the nucleus and the fragmentation of nuclear DNA. Based on these results, we conclude that the mechanism by which the nuclear DNA was fragmented is mediated by caspase-9-dependent caspase-3 activation and the consequence of caspase-activated DNase activation in the cerebral cortex of newborn piglets.  相似文献   

7.
The bioactivity of ACTH released from isolated rat anterior pituitary glands into the incubation medium was determined. After the pituitaries were removed, ACTH activity in the medium decreased exponentially during further incubation at 37degreesC. The loss of ACTH activity was temperature- and pH-dependent and inhibited both by protease inhibitor (trasylol) and by preheating. Crude tissue extracts from median eminence, cerebral cortex and liver similarly inhibited the loss of ACTH activity. These results indicate that ACTH released into the medium may be destroyed by proteolytic enzyme(s) from the rat anterior pituitary. ACTH activity in the incubation medium was increased promptly by acidification of the medium to pH 1.5-2.5 with HC1, and reduced to the initial level by NaOH reneutralization of the medium (pH 6.8-7.8). These phenomena were not observed after the incubation medium had been heated at 100degreesC for 5 min.  相似文献   

8.
A method has been developed for investigation of the effect of adrenocorticotrophic hormone (ACTH) on the state of activation of a cyclic AMP-dependent protein kinase within cells of the adrenal cortex. Enzyme activity was measured in terms of the quantity of (32)P transferred from [gamma-(32)P]ATP to histone under conditions in which bound cyclic AMP did not dissociate from the regulatory subunit of the protein kinase ACTH (1x10(-2)i.u./ml) caused a rapid and complete activation of the cyclic AMP-dependent protein kinase activity within 2min of hormone addition to the isolated cells. In response to a range of ACTH concentrations a sigmoid log dose-response curve for protein kinase activation was obtained, with half-maximal stimulation attained at about 1x10(-3)i.u./ml. However, some low doses of ACTH that elicited a marked (but submaximal) steroidogenic response failed to cause a clear stimulation of protein kinase activity in isolated adrenal cells. Theophylline (2mm) potentiated the effect of ACTH on protein kinase activity. The results implicate an important role for protein kinase in ACTH action on the adrenocortical cell.  相似文献   

9.
The aim of this study was to ascertain the effects of training and ACTH administration on the steroidogenic in vitro response in the adrenal cortex of the rat when the tissue was incubated with ACTH. ACTH in vivo treatment resulted in a highly significant increase in the steroidogenic response (P less than 0.001) whereas training as such caused only a slight but insignificant increase in the steroidogenic responsiveness (P greater than 0.05). Training furthermore strongly suppressed the ACTH in vivo induced response (P less than 0.001). ACTH as such revealed the smallest effect on adrenal mass but the biggest effect on the steroidogenic response. It would seem that long term exercise resulted in an overall increase in the mass and size of the adrenal glands by either increasing the size of existing cells or by increasing the number of cells or both. The latter exercise-induced proliferation of adrenal tissue may involve an adaptive mechanism whereby larger total quantities of adrenal tissue of lowered steroidogenic efficiencies (on a mass basis) are produced in order to meet the stress resulting from the training program.  相似文献   

10.
DNA fragmentation, mRNA and protein levels of Bcl-XL, Bax and caspase-3 were determined to characterize interrelations between expression of these apoptotic markers in the neonatal brain regions. High DNA fragmentation intensity in the cortex was in consonance with the lowest Bcl-XL/Bax expression ratio, the highest procaspase-3 and active caspase-3 levels. Low and intermediate DNA fragmentation levels in the cerebellum and hippocampus respectively were also in a good agreement with apoptotic proteins expression in these structures. In the cortex, hippocampus and cerebellum DNA fragmentation intensity was proportional to the active caspase-3 level. In contrast to these structures, in the brainstem, the lowest level of this protease was accompanied by the highest intensity of DNA fragmentation among the brain regions studied. The data suggest that cell death normally occurring during early postnatal life could be realized in the developing brainstem via caspase-3-independent pathways in animals that express this protease.  相似文献   

11.
ACTH1-24 stimulated the parenchymal cells in cultures of rat adrenal cortex in serum-free synthetic HiWoBa 2000 medium to replicate DNA, enter mitosis and divide. But ACTH's principal mediator, cyclic AMP, was not a complete mitogen: the adenylate cyclase-stimulating cholera toxin and dibutyryl cyclic AMP stimulated parenchymal cells to replicate DNA but not to enter mitosis. Thus, there must have been an additional mediator of the response to ACTH1-24 that enabled the parenchymal cells to enter mitosis. This additional mediator might have been protein kinase C because a protein kinase C activator and cyclic AMP elevator, TPA, stimulated the adrenocortical parenchymal cells to replicate DNA, enter mitosis and divide.  相似文献   

12.
Calcium ionophore, A23187, is known to be a comitogen, but it activates a suicide process characterized by DNA fragmentation at linker regions in mouse immature thymocytes. It did not induce DNA fragmentation in T lymphocytes prepared from lymph node and spleen cells. Induction of DNA fragmentation by A23187 depends on protein phosphorylation and synthesis of mRNA and protein, because an inhibitor of protein kinase, 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine dihydrochloride (H-7), actinomycin D, and cycloheximide, respectively, inhibits the DNA fragmentation and cell death. Studies adding the inhibitors at various times show that protein phosphorylation and mRNA synthesis occur within a few hours after incubation with A23187 followed by the protein synthesis responsible for inducing DNA fragmentation. Phorbol esters, 12-O-tetradecanoyl 13-acetate (TPA) and phorbol 12,13-dibutyrate (PBD), which are capable of activating protein kinase C, also induced similar DNA fragmentation in immature thymocytes, followed by cell death. PBD committed the suicide process after 6 h of incubation, because the DNA fragmentation above the control level was not induced when PDB was removed from the medium before 6 h of incubation. A23187 or a phorbol ester alone induced DNA fragmentation followed by cell death, whereas the addition of TPA at low concentration inhibited the DNA fragmentation induced by A23187 accompanied with an increase in DNA synthesis. The result suggests that TPA switched a suicide process induced by A23187 to an opposite process: stimulation of DNA synthesis. Physiologic factors and mechanisms which regulate cell proliferation and death in the thymus are not known at present, but the signals by protein kinases and calcium ions may regulate both cell proliferation and death, independently, synergistically or antagonistically.  相似文献   

13.
A method is described for preparing monolayer cultures of zona glomerulosa cells isolated from the rat adrenal cortex. Aldosterone and corticosterone were secreted by the cultures when maintained with medium containing 11 mM K+. ACTH, while stimulating aldosterone biosynthesis at first, did not maintain its long-term secretion, yet caused corticosterone production to rise to a steadily maintained level. The significance of this effect is discussed.  相似文献   

14.
The actions of 1-(o-chlorophenyl)-1-(p-chlorophenyl)-2,2-dichloroethane (o,p'-DDD), potassium and lithium ions upon apoptotic processes in conventionally normal and tumour tissues of human adrenal cortex were studied. There was no effect of K+ on the apoptosis in tumour tissue. o,p'-DDD--the specific drug for conservative therapy of adrenocortical cancer--enhanced the apoptotic DNA fragmentation in all tested tissues. The conclusion was made that apoptosis may be involved in curative effect of o,p'-DDD in adrenal cortex. Lithium ions, which are used in clinic as antidepressant, inhibited the apoptosis in conventionally normal tissue and in most tumours. On the other hand, lithium enhanced the DNA fragmentation in the postoperative tissue of patients with Cushing disease. The possible mechanisms mediating lithium effects on the adrenal cortex are discussed.  相似文献   

15.
The actions of ACTH on the adrenal cortex are known to be 2-fold. In addition to increased steroidogenesis, ACTH also causes marked vasodilation, reflected by an increased rate of blood flow through the gland. Our studies, using the in situ isolated perfused rat adrenal preparation, have shown that zona fasciculata function and corticosterone secretion are closely related to vascular events, with an increase in perfusion medium flow rate causing an increase in corticosterone secretion, in the absence of any known stimulant. These observations give rise to two important questions: how does ACTH stimulate blood flow; and how does increased blood (or perfusion medium) flow stimulate steroidogenesis? Addressing the first question, we have recently identified mast cells in the adrenal capsule, and shown that Compound 48/80, a mast cell degranulator, mimics the actions of ACTH on adrenal blood flow and corticosterone secretion. We have also demonstrated an inhibition of the adrenal vascular response to ACTH in the presence of disodium cromoglycate, which prevents mast cell degranulation. We conclude, therefore, that ACTH stimulates adrenal blood flow by its actions on mast cells in the adrenal capsule. Addressing the second question, we looked at the role of endothelin in the rat adrenal cortex. Endothelin 1, 2 and 3 caused significant stimulation of steroid secretion by collagenase dispersed cells from both the zona glomerulosa and the zona fasciculata. A sensitive response was seen, with significant stimulation at an endothelin concentration of 10(-13) mol/l or lower. Endothelin secretion by the in situ isolated perfused rat adrenal gland was measured using the Amersham assay kit. Administration of ACTH (300 fmol) caused an increase in the rate of immunoreactive endothelin secretion, from an average of 28.7 +/- 2.6 to 52.6 +/- 6 fmol/10 min (P less than 0.01, n = 5). An increase in immunoreactive endothelin secretion was also seen in response to histamine, an adrenal vasodilator, which stimulates corticosterone secretion in the intact gland, but has no effect on collagenase-dispersed cells. From these data we conclude that endothelin may mediate the effects of vasodilation on corticosterone secretion, and this mechanism may explain some of the differences in response characteristics between the intact gland and dispersed cells.  相似文献   

16.
The role of the cyclic AMP-protein kinase system in mediating the steroidogenic effect of ACTH, prostaglandin E1 and dibutyryl cyclic AMP, induced similar stimulations of protein kinase activity, cyclic AMP was studied using human adrenal cells isolated from normal and adrenocortical secreting tumors. At high concentrations of ACTH, complete activation of protein kinase of normal adrenal cells was observed within 3 min, at the time when cyclic AMP production was slightly increased and there was still no stimulation of steroidogenesis. At supramaximal concentrations, ACTH, PGE1 and dibutyryl cyclic AMP and cortisol productions in adrenal cells isolated from normal and from one adrenocortical tumor. In one tumor in which the adenylate cyclase activity was insensitive to ACTH, the hormone was unable to stimulate protein kinase or steroidogenesis, but the cells responded to both PGE1 and dibutyryl cyclic AMP. In another tumor in which the adenylate cyclase was insensitive to PGE1, this compound also did not increase protein kinase activity or steroidogenesis, but both parameters were stimulated by ACTH and dibutyryl cyclic AMP. After incubation of normal adrenal cells with increasing concentrations of ACTH (0.01-100 nM) marked differences were found between cyclic AMP formation and cortisol production. However at the lowest concentrations of ACTH exerting an effect on steroid production a close linked correlation was found between protein kinase activation and cortisol production, but half-maximal and maximal cortisol production occurs at lower concentration of ACTH than was necessary to induce the same stimulation of protein kinase. Similar findings were found after incubating the adrenal cells with dibutyryl cyclic AMP (0.01-10 mM). The results implicate an important role of the cyclic AMP-protein kinase system during activation of adrenal cell steroidogenesis by low concentrations of steroidogenic compounds.  相似文献   

17.
Caspase-3 mediated neuronal death after traumatic brain injury in rats   总被引:34,自引:0,他引:34  
During programmed cell death, activation of caspase-3 leads to proteolysis of DNA repair proteins, cytoskeletal proteins, and the inhibitor of caspase-activated deoxyribonuclease, culminating in morphologic changes and DNA damage defining apoptosis. The participation of caspase-3 activation in the evolution of neuronal death after traumatic brain injury in rats was examined. Cleavage of pro-caspase-3 in cytosolic cellular fractions and an increase in caspase-3-like enzyme activity were seen in injured brain versus control. Cleavage of the caspase-3 substrates DNA-dependent protein kinase and inhibitor of caspase-activated deoxyribonuclease and co-localization of cytosolic caspase-3 in neurons with evidence of DNA fragmentation were also identified. Intracerebral administration of the caspase-3 inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (480 ng) after trauma reduced caspase-3-like activity and DNA fragmentation in injured brain versus vehicle at 24 h. Treatment with N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone for 72 h (480 ng/day) reduced contusion size and ipsilateral dorsal hippocampal tissue loss at 3 weeks but had no effect on functional outcome versus vehicle. These data demonstrate that caspase-3 activation contributes to brain tissue loss and downstream biochemical events that execute programmed cell death after traumatic brain injury. Caspase inhibition may prove efficacious in the treatment of certain types of brain injury where programmed cell death occurs.  相似文献   

18.
Flunarizine is a Ca2+ channel blocker that can be either cytoprotective or cytotoxic, depending on the cell type that is being examined. We show here that flunarizine was cytotoxic for Jurkat T-leukemia cells, as well as for other hematological maligancies, but not for breast or colon carcinoma cells. Treatment of Jurkat cells with flunarizine resulted in caspase-3 activation, poly (ADP-ribose) polymerase cleavage, and laddering of DNA fragments, all of which are hallmarks of apoptosis. Flunarizine-induced DNA fragmentation was inhibited by the caspase-3 inhibitor z-DEVD-fmk, the caspase-8/caspase-10 inhibitor z-IETD-fmk, and the caspase-10 inhibitor z-AEVD-fmk, but was not reduced in caspase-8-deficient Jurkat cells, indicating the involvement of caspase-10 upstream of caspase-3 activation. Interestingly, FADD recruitment to a death receptor was not involved since flunarizine caused DNA fragmentation in FADD-deficient Jurkat cells. Flunarizine treatment of Jurkat cells also resulted in reactive oxygen species production, dissipation of mitochondrial transmembrane potential, release of cytochrome c from mitochondria, and caspase-9 activation, although none of these events were necessary for apoptosis induction. Collectively, these findings indicate that flunarizine triggers apoptosis in Jurkat cells via FADD-independent activation of caspase-10. Flunarizine warrants further investigation as a potential anti-cancer agent for the treatment of hematological malignancies.  相似文献   

19.
The purpose of the present investigation was to study the mode of action of a crude aqueous pineal extract (CAPE) on corticosterone (B) production from ACTH-mediated isolated adrenal cortex cells. Corticosterone production from a heterogenous adrenal cortex cell population, isolated from 8 male Sprague-Dawley rats, was measured fluorimetrically. CAPE (25 microliters) was tested in this system using ACTH (0--5,000 pg/ml) and dibutyryl-c-AMP (0--100 nM/ml) as stimuli for a period of 1 h. In a separate experiment, CAPE (25 microliters) was administered to ACTH (50 pg/ml) stimulated adrenal cortex cells for 15, 30, 60, and 120 min incubation periods. CAPE significantly decreased B produced by adrenal cortex cells at all doses of ACTH administered. CAPE also decreased the B produced by adrenal cortex cells when dibutyryl-c-AMP was used as a stimulus. The inhibitory effect of CAPE was manifest at some point in time between 30 and 60 min. It was significant at 60 min and highly significant at 120 min. It is evident from these data that CAPE and ACTH are not competing for the same receptor site.  相似文献   

20.
Diverse stimuli initiate the activation of apoptotic signaling pathways that often causes nuclear DNA fragmentation. Here, we report a new antiapoptotic protein, a caspase-activated DNase (CAD) inhibitor that interacts with ASK1 (CIIA). CIIA, by binding to apoptosis signal-regulating kinase 1 (ASK1), inhibits oligomerization-induced ASK1 activation. CIIA also associates with CAD and inhibits the nuclease activity of CAD without affecting caspase-3-mediated ICAD cleavage. Overexpressed CIIA reduces H2O2- and tumor necrosis factor-alpha-induced apoptosis. CIIA antisense oligonucleotides, which abolish expression of endogenous CIIA in murine L929 cells, block the inhibitory effect of CIIA on ASK1 activation, deoxyribonucleic acid fragmentation, and apoptosis. These findings suggest that CIIA is an endogenous antagonist of both ASK1- and CAD-mediated signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号