首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 531 毫秒
1.
用银鲫克隆D,克隆A和鲤鱼的精子分别与银鲫克隆F的卵子受精产生了三种繁殖组合FD,FA和FL;再用转铁蛋白和同工酶标记对这三种组合的遗传模式进行比较研究。结果发现,FL组合的子代具有其母本完全相同的体形和电泳图谱,表现出雌核生殖银鲫的克隆品性。而在FD组合中则出现了体形的分化和酶谱的多态性;在一些个体的蛋白座位上同时检测到了父本和母本各自特有的谱带,证明FD生殖过程中有性重组的发生。同时,在所研究的蛋白的不同座位上存在着极端的连锁不平衡现象,可以推断在FD的重组过程中多个基因座位组成的连锁群(甚至是染色体组)可能作为一个整体参与基因的传递。此外,不同的蛋白座位上都未观察到重组的纯合表型,暗示在不同的基因连锁群之间还可能存在一种平衡致死的机制。FA组合的F1代具有类似母本克隆F的体形和蛋白表型,FA组合俱本近交产生的F2代却同时出现了克隆F和克隆A的体形和表型。即父本和母本的染色体组都能够通过有性生殖传递给FA子代,然而可能由于父母本基因的不相容性而使F1代父本的基因表达受到抑制。相对于雌核生殖的克隆遗传 ,本研究的揭示出来的有性生殖特性及伴随的有性质组能够使银鲫在一定程度上卸去积累的遗传负荷并从其它种群获取新的基因型,以维持其遗传多样性。多种可选择的生殖方式可能对于银鲫在自然条件下的生态适应有着重要意义,对于银鲫的遗传选育和养殖管理也有一定的参考价值。  相似文献   

2.
The existence of genetic variation in offspring size in plants and animals is puzzling because offspring size is often strongly associated with fitness and expected to be under stabilizing selection. An explanation for variation in seed size is conflict between parents and between parents and offspring. However, for this hypothesis to be true, it must be shown that the offspring genotype can affect its own size. The existence of paternal effects would support this hypothesis, but these have rarely been shown. Using a diallel cross among four natural accessions of Arabidopsis thaliana we show that maternal, paternal and positional effects jointly influence seed size, number and the frequency of seed abortion. We found that seed abortion (%) depends on the combination of maternal and paternal genotypes, suggesting the existence of mate choice or epistatic incompatibility among accessions of A. thaliana. In addition, since paternal genotype explains approximately 10 per cent of the variation in seed size, we propose that A. thaliana''s offspring must influence the amount of resources allocated to themselves. Identification of paternal effects in Arabidopsis should facilitate dissection of the genetic mechanisms involved in paternal effects.  相似文献   

3.
Although females are expected to maximize their reproductive success with only one or a few matings, the females of many species mate with multiple partners. Experimental studies have found evidence for an increase in egg or embryo viability when females mate polyandrously. These studies have been interpreted in the context of genetic-benefit models that propose that multiple mating increases offspring viability because it allows females to select male genotypes that influence viability directly or because it allows females to avoid genetic incompatibility. However, no studies have examined directly the precise mechanisms by which parents influence embryo viability. Using a morphological marker that enabled us to determine paternity and survival of embryos sired by individual male crickets in both sperm-competitive and -noncompetitive situations, we show that males inducing high embryo viability enhance the viability of embryos sired by inferior males. These results indicate that paternal effects and interacting phenotypes determine embryo viability. They show that a male's reproductive success is modified by the interaction between indirect genetic effects of sperm competitors. Importantly, our findings show that the benefits accruing to offspring of multiply mated females need not be transmitted genetically.  相似文献   

4.
Maternal effects are widely documented in animals and plants, but not in fungi or other eukaryotes. A principal cause of maternal effects is asymmetrical parental investment in a zygote, creating greater maternal vs. paternal influence on offspring phenotypes. Asymmetrical investments are not limited to animals and plants, but are also prevalent in fungi and groups including apicomplexans, dinoflagellates and red algae. Evidence suggesting maternal effects among fungi is sparse and anecdotal. In an experiment designed to test for maternal effects across sexual reproduction in the model fungus Neurospora crassa, we measured offspring phenotypes from crosses of all possible pairs of 22 individuals. Crosses encompassed reciprocals of 11 mating‐type ‘A’ and 11 mating‐type ‘a’ wild strains. After controlling for the genetic and geographic distances between strains in any individual cross, we found strong evidence for maternal control of perithecia (sporocarp) production, as well as maternal effects on spore numbers and spore germination. However, both parents exert equal influence on the percentage of spores that are pigmented and size of pigmented spores. We propose a model linking the stage‐specific presence or absence of maternal effects to cellular developmental processes: effects appear to be mediated primarily through the maternal cytoplasm, and, after spore cell walls form, maternal influence on spore development is limited. Maternal effects in fungi, thus far largely ignored, are likely to shape species' evolution and ecologies. Moreover, the association of anisogamy and maternal effects in a fungus suggests maternal effects may also influence the biology of other anisogamous eukaryotes.  相似文献   

5.
To predict the possible evolutionary response of a plant species to a new environment, it is necessary to separate genetic from environmental sources of phenotypic variation. In a case study of the invader Solidago altissima, the influences of several kinds of parental effects and of direct inheritance and environment on offspring phenotype were separated. Fifteen genotypes were crossed in three 5 × 5 diallels excluding selfs. Clonal replicates of the parental genotypes were grown in two environments such that each diallel could be made with maternal/paternal plants from sand/sand, sand/soil, soil/sand, and soil/soil. In a first experiment (1989) offspring were raised in the experimental garden and in a second experiment (1990) in the glasshouse. Parent plants growing in sand invested less biomass in inflorescences but produced larger seeds than parent plants growing in soil. In the garden experiment, phenotypic variation among offspring was greatly influenced by environmental heterogeneity. Direct genetic variation (within diallels) was found only for leaf characters and total leaf mass. Germination probability and early seedling mass were significantly affected by phenotypic differences among maternal plants because of genotype ( genetic maternal effects ) and soil environment ( general environmental maternal effects ). Seeds from maternal plants in sand germinated better and produced bigger seedlings than seeds from maternal plants in soil. They also grew taller with time, probably because competition accentuated the initial differences. Height growth and stem mass at harvest (an integrated account of individual growth history) of offspring varied significantly among crosses within parental combinations ( specific environmental maternal effects ). In the glasshouse experiment, the influence of environmental heterogeneity and competition could be kept low. Except for early characters, the influence of direct genetic variation was large but again leaf characters (= basic module morphology) seemed to be under stricter genetic control than did size characters. Genetic maternal effects, general environmental maternal effects, and specific environmental maternal effects dominated in early characters. The maternal effects were exerted both via seed mass and directly on characters of young offspring. Persistent effects of the general paternal environment ( general environmental paternal effects ) were found for leaf length and stem and leaf mass at harvest. They were opposite in direction to the general environmental maternal effects, that is the same genotypes produced “better mothers” in sand but “better fathers” in soil. The general environmental paternal effects must have been due to differences in pollen quality, resulting from pollen selection within the male parent or leading to pre- or postzygotic selection within the female parent. The ranking of crosses according to mean offspring phenotypes was different in the two experiments, suggesting strong interaction of the observed effects with the environment. The correlation structure among characters changed less between experiments than did the pattern of variation of single characters, but under the competitive conditions in the garden plant height seemed to be more directly related to fitness than in the glasshouse. Reduced competition could also explain why maternal effects were less persistent in the glasshouse than in the garden experiment. Evolution via selection of maternal effects would be possible in the study population because these effects are in part due to genetic differences among parents.  相似文献   

6.
The possibility that sexual selection operates in angiosperms to effect evolutionary change in polygenic traits affecting male reproductive success requires that there is additive genetic variance for these traits. I applied a half-sib breeding design to individuals of the annual, hermaphroditic angiosperm, wild radish (Raphanus raphanistrum: Brassicaceae), to estimate paternal genetic effects on, or, when possible, the narrow-sense heritability of several quantitative traits influencing male reproductive success. In spite of significant differences among pollen donors with respect to in vitro pollen tube growth rates, I detected no significant additive genetic variance in male performance with respect to the proportion of ovules fertilized, early ovule growth, the number of seeds per fruit, or mean individual seed weight per fruit. In all cases, differences among maternal plants in these traits far exceeded differences among pollen donors. Abortion rates of pollinated flowers and fertilized ovules also differed more among individuals as maternal plants than as pollen donors, suggesting strong maternal control over these processes. Significant maternal phenotypic effects in the absence of paternal genetic or phenotypic effects on reproductive traits may be due to maternal environmental effects, to non-nuclear or non-additive maternal genetic effects, or to additive genetic variance in maternal control over offspring development, independent of offspring genotype. While I could not distinguish among these alternatives, it is clear that, in wild radish, the opportunity for natural or sexual selection to effect change in seed weight or seed number per fruit appears to be greater through differences in female performance than through differences in male performance.  相似文献   

7.
Understanding how the genetic characteristics of parents influence reproductive output is central to predicting the dynamics of small, endangered populations. We conducted a breeding experiment to look at the paternal genetic effects on offspring sex, fertility and growth in the peafowl (Pavo cristatus). Microsatellite loci were developed to allow maternity assignment and thus to allow us to separate maternal from paternal effects. We found 19 polymorphic loci in our inbred, captive population, six of which were only slightly polymorphic (HE range: 0.04–0.70). The remaining 13 loci were polymorphic enough to determine maternity by exclusion in approximately 85% of offspring.  相似文献   

8.
Zhou L  Gui JF 《Genetica》2002,115(2):223-232
Polyploid gibel carp, Carassius auratus gibelio, is an excellent model system for evolutionary genetics owing to its specific genetic background and reproductive modes. Comparative karyotype studies were performed in three cultured clones, one artificially manipulated group, and one mated group between two clones. Both the clones A and P had 156 chromosomes in their karyotypes, with 36 metacentric, 54 submetacentric, 36 subtelocentric, 24 acrocentric, and six small chromosomes. The karyotype of clone D contained 162 chromosomes, with 42 metacentric, 54 submetacentric, 36 subtelocentric, 24 acrocentric, and six small chromosomes. All the three clones had six small chromosomes in common. Group G, being originated from the clone D by artificial manipulation, showed supernumerary microchromosomes or chromosomal fragments, in addition to the normal chromosome complement that was identical to the clone D. The offspring from mating between clones D and A had 159 chromosomes. Comparing with the clone A, the DA offspring showed three extra metacentric chromosomes. In addition, variable RAPD fingerprint patterns and unusual SCAR marker inheritance were, respectively, detected among individuals of artificial group G and in the mated DA offspring. Both the chromosome and molecular findings suggest that genome reshuffling might have occurred by manipulation or mating of the clones.  相似文献   

9.
The long-term genetic effects of maternal irradiation remain poorly understood. To establish the effects of radiation exposure on mutation induction in the germline of directly exposed females and the possibility of transgenerational effects in their non-exposed offspring, adult female BALB/c and CBA/Ca mice were given 1Gy of acute X-rays and mated with control males. The frequency of mutation at expanded simple tandem repeat (ESTR) loci in the germline of directly exposed females did not differ from that of controls. Using a single-molecule PCR approach, ESTR mutation frequency was also established for both germline and somatic tissues in the first-generation offspring of irradiated parents. While the frequency of ESTR mutation in the offspring of irradiated males was significantly elevated, maternal irradiation did not affect stability in their F(1) offspring. Considering these data and the results of our previous study, we propose that, in sharp contrast to paternal exposure to ionising radiation, the transgenerational effects of maternal high-dose acute irradiation are likely to be negligible.  相似文献   

10.

Background

Fetal alcohol exposure causes in the offspring a collection of permanent physiological and neuropsychological deficits collectively termed Fetal Alcohol Spectrum Disorder (FASD). The timing and amount of exposure cannot fully explain the substantial variability among affected individuals, pointing to genetic influences that mediate fetal vulnerability. However, the aspects of vulnerability that depend on the mother, the father, or both, are not known.

Methodology/Principal Findings

Using the outbred Sprague-Dawley (SD) and inbred Brown Norway (BN) rat strains as well as their reciprocal crosses, we administered ethanol (E), pair-fed (PF), or control (C) diets to the pregnant dams. The dams'' plasma levels of free thyroxine (fT4), triiodothyronine (T3), free T3 (fT3), and thyroid stimulating hormone (TSH) were measured to elucidate potential differences in maternal thyroid hormonal environment, which affects specific aspects of FASD. We then compared alcohol-exposed, pair fed, and control offspring of each fetal strain on gestational day 21 (G21) to identify maternal and paternal genetic effects on bodyweight and placental weight of male and female fetuses.

Conclusions

SD and BN dams exhibited different baseline hypothalamic-pituitary-thyroid function. Moreover, the thyroid function of SD dams was more severely affected by alcohol consumption while that of BN dams was relatively resistant. This novel finding suggests that genetic differences in maternal thyroid function are one source of maternal genetic effects on fetal vulnerability to FASD. The fetal vulnerability to decreased bodyweight after alcohol exposure depended on the genetic contribution of both parents, not only maternal contribution as previously thought. In contrast, the effect of maternal alcohol consumption on placental weight was consistent and not strain-dependent. Interestingly, placental weight in fetuses with different paternal genetic contributions exhibited opposite responses to caloric restriction (pair feeding). In summary, these novel findings demonstrate both maternal and paternal genetic contributions to in utero vulnerability to alcohol, refining our understanding of the genetically-based heterogeneity seen in human FASD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号