首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is shown that the incomplete, uncompetitive inhibition pattern exhibited by oligomycin toward Na,K,ATPase cannot be explained by a single-cycle enzyme model. In contrast, the experimental data are easily explained in terms of a dimeric enzyme, only one subunit of which can bind oligomycin at a time, and that subunit is then rendered inactive. In a brief analysis of the model thus obtained by way of numerical examples it is shown that it may show activation at small concentrations of moderator, which disappears at higher concentrations, a property observed for the hydrolysis ofp-nitro-phenylphosphate, which is also catalyzed by Na,K,ATPase.  相似文献   

2.
A guinea pig kidney membrane preparation was incubated with thimerosal and then thoroughly washed. Comparison of the properties of the native and the modified membranes showed that (a) Na++K+-dependent activity is substantially inhibited by thimerosal; (b) thimerosal does not diminish Na+-dependent ATPase activity; and (c) the thimerosal treated enzyme, like the native enzyme, is phosphorylated in the presence of Na+ and ATP, and dephosphorylated upon the addition of K+. It is suggested that thimerosal does not affect the binding of ATP to the high-affinity catalytic site, but that it blocks the binding of ATP to a low affinity modifying site the occupation of which is essential for the dissociation of the stable K+-dephosphoenzyme and the recycling of the enzyme.  相似文献   

3.
Conditioned culture media taken from fibroblast cell lines derived from skin biopsies of control or of patients with Cystic Fibrosis (CF) were incubated with membranes of rat submandibular glands. The Na/K - ATPase activity of these membranes was inhibited when treated with CF-media, including both ouabain sensitive and insensitive activities. However, the membrane associated Mg-ATPase, Ca-ATPase, and both basal and hormone-stimulated adenylate cyclase activities were relatively unaffected. Thus, a factor or factors produced by CF-fibroblasts was shown to be active in a cell-free system derived from an exocrine gland.  相似文献   

4.
5.
The biological activity of the endocrine secretum fraction isolated from the rat duodenum is determined. The fraction with the molecular weight about 3 kDa is found to possess the factor which inhibits the Na+,K+-ATPase activity of enterocytes. It is found that the inhibitory factor secretum depends on the solution which irrigates the duodenum cavity. The possible regulatory role of the intestine inhibitory factor is under discussion.  相似文献   

6.
A R Robbins  R M Baker 《Biochemistry》1977,16(23):5163-5168
Membrane preparations from two independent ouabain-resistant HeLa cell clones, HI-B1 and HI-C1, each appear to contain two species of (Na,K)ATPase. Two-thirds of the total (Na,K)ATPase in each mutant is indistinguishable from the enzyme in preparations of wild type cells with respect to ouabain binding, ouabain inhibition of (Na,K)ATPase activity, and dependence of ATP hydrolysis on Na, Mg, K, and ATP concentration. The remaining (Na,K)ATPase activity in the mutants is up to 1000 and 10 000 times, respectively, more resistant to ouabain than wild type enzyme. Resistance results from a lower affinity of the mutant enzymes for the inhibitor. The presence of Na, K, or Mg has little or no effect on the degree of resistance expressed by the mutant enzymes, although the resistance of the wild type enzyme varies 400-fold in the presence of different ligands. Incubation with 5 X 10(-8) M ouabain abolishes the activity of the wild type enzyme without affecting the activity of the resistant enzymes. Using this procedure we compared the parameters of ATP hydrolysis via the resistant and wild type enzymes. Ouabain-resistant (Na,K)ATPase of HI-C1 has an apparent K0.5 for potassium 3-4 times higher than that of either wild type enzyme or the resistant enzyme of HI-B1.  相似文献   

7.
8.
J B Fagan  E Racker 《Biochemistry》1977,16(1):152-158
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1.  相似文献   

9.
[14C]ADP binding to EDTA-washed ox brain cell membranes was increased by Na+, but decreased by K+, Mg2+ and Ca2+. Na+ abolished the effect of K+ on ADP binding by a competitive mechanism, but could not reverse the inhibitory action of Mg2+ and Ca2+. It is concluded that the cation-induced changes in ADP binding reflect properties of (Na+ + K+)-activated ATPase.  相似文献   

10.
J A Lee  P A Fortes 《Biochemistry》1985,24(2):322-330
Sodium plus potassium activated adenosinetriphosphatase [(Na,K)ATPase] is composed of a catalytic subunit (alpha) and a glycoprotein subunit (beta) of unknown function. A method has been developed to label the beta subunit of purified dog kidney (Na,K)ATPase with fluorescent probes. The method consists of oxidation of beta-subunit oligosaccharides, reaction of the resulting aldehydes with fluorescent hydrazides, and reduction of the hydrazones and unreacted aldehydes with NaBH4. Two oxidation methods were compared. Simultaneous treatment with neuraminidase and galactose oxidase did not inhibit significantly (Na,K)ATPase activity and allowed insertion of up to 11 mol of probe per mol of beta. In contrast, oxidation of (Na,K)ATPase oligosaccharides with periodate resulted in 50-80% inhibition of the (Na,K)ATPase activity with low or undetectable labeling. Eleven commercial probes and two novel hydrazides were tested for labeling of (Na,K)ATPase treated with galactose oxidase and neuraminidase. Eight probes did not label (Na,-K)ATPase but labeled red cell ghosts oxidized with periodate. Four probes labeled beta specifically but either adsorbed to the membrane tightly, or cross-linked the beta subunits, or formed unstable adducts. Lucifer yellow CH labeled beta specifically without membrane adsorption. Labeling stoichiometries from 1 to 11 mol of lucifer yellow CH per mol of beta were obtained without inhibition of (Na,K)ATPase activity and without significant alteration of the anthroylouabain binding capacity or its association and dissociation kinetics. Anthroylouabain specifically bound to the lucifer-labeled (Na,K)ATPase had a decreased quantum yield, probably due to resonance energy transfer. This suggests that the sites of lucifer attachment on beta are within energy transfer distance from the cardiac glycoside site on alpha.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

12.
The (Na+,k+)ATPase from the rectal gland of Carcharhinus obscurus has been solubilized in Lubrol WX as an active complex containing 379,900 g of protein and 61 mol of phospholipid. This detergent-lipid-protein complex contains two catalytic subunits of molecular weight 106,400 and four glycopeptide subunits of protein molecular weight 36,600. The latter subunit has a total molecular weight of 51,700 when the carbohydrate is included. Attempts to dissociate this active enzyme complex to smaller size by increasing the detergent concentration led to inactivation. Thus, the smallest active particle in the presence of Lubrol WX contains the two polypeptide subunits in a mole ratio of 2:4 under conditions where the micellar form of detergent is present at a 70:1 molar ratio. This large excess of Lubrol WX eliminates any possibility of artificial togetherness as the result of statistical considerations.  相似文献   

13.
(Na,K)ATPase from Torpedo californica was expressed in Xenopus laevis oocytes in the presence of tunicamycin by injecting mRNAs for the alpha- and beta-subunits derived from the cloned cDNAs into the oocytes. The oligosaccharide-deficient ATPase thus synthesized was transported to the oocyte plasma membrane, where it exhibited virtually the same ATPase activity, ouabain-binding capacity and 86Rb+ transport activity as the fully glycosylated enzyme. We conclude that the oligosaccharide chains on the beta-subunit has no effect on the catalytic activities of (Na,K)ATPase.  相似文献   

14.
15.
Fluorescein-labeled (Na,K)ATPase reconstituted into phospholipid vesicles has been used to study conformational transitions. Addition of K+ or Na+ to the vesicle medium induces fluorescence changes characteristic of the E2(K) or E1Na states of fluorescein-labeled (Na,K)ATPase (Karlish, S.J.D. (1980) J. Bioenerg. Biomembr. 12, 111-136). The cation effects are exerted from the cytoplasmic surface of inside-out-oriented pumps. Equilibrium cation titrations and measurements of rates of conformational transitions have led to the following observations. 1) The rate of E2(K)----E1Na or E2(T1)----E1Na is 4-6-fold faster and E1K----E2(K) is about 2-fold slower in vesicles compared to enzyme. In equilibrium titrations the K0.5 for K+ is higher and that for Na+ is lower for vesicles compared to enzyme. The conformational equilibrium E(1)2K----E2(2K) is apparently shifted toward E(1)2K in vesicles compared to enzyme. 2) Diffusion potentials, positive-outside, induced with valinomycin or Li+ ionophore AS701, do not affect the rates of E2(T1)----E1Na or E1K----E2(K), or equilibrium cation titrations. This demonstrates that the conformational transitions E(1)2K----E2(2K) are voltage-insensitive steps, confirming a prediction based on transport experiments. 3) In vesicles containing choline, K+, Na+, or Li+, the rate of E2(T1)----E1Na increases in the order given. Vesicles with reconstituted fluorescein-labeled (Na,K)ATPase provide a convenient system for correlating directly properties of conformational transitions with cation transport.  相似文献   

16.
17.
The Mg(2+)-dependent (Na(+),K(+))ATPase maintains several cellular processes and is essential for cell excitability. In view of the importance of the enzyme activity, the interaction and binding affinities to substrates and metal ions have been studied. We determined the effect of Zinc ion (Zn(2+)) on the (Na(+),K(+))ATPase activity present in both conducting (non-innervated) and post-synaptic (innervated) membranes of electrocyte from Electrophorus electricus (L.). Zn(2+) is involved in many biological functions and is present in pre-synaptic nerve terminals. This metal, which has affinity for thiol groups, acted as a potent competitive inhibitor of (Na(+),K(+))ATPase of both membrane fractions, which were obtained by differential centrifugation of the E. electricus main electric organ homogenate. We tried to recover the enzyme activity using dithiothreitol, a reducing agent. Kinetic analysis showed that dithiothreitol acted as a non-essential non-competitive activator of (Na(+),K(+))ATPase from both membrane fractions and was able to revert the Zn(2+) inhibition at mM concentrations. In the presence of dithiothreitol, this metal behaved as a competitive inhibitor of (Na(+),K(+))ATPase in the non-innervated membrane fractions and presented a non-competitive inhibition of (Na(+),K(+))ATPase in innervated membrane fractions. This difference may be attributed to formation of a Zn-dithiothreitol complex, as well as the involvement of other binding sites for both agents. The consequences of the enzyme inhibition by Zn(2+) may be considered in regard to its neurotoxic effects.  相似文献   

18.
1. The effect of ouabain on the molecular properties of (Na+/K+)-ATPase has been studied in purified preparations of the enzyme, isolated from the microsomal fraction of outer red medulla of porcine kidney, according to a modification of the method described by Jorgensen. 2. Ouabain, a specific inhibitor of (Na+/K+)-ATPase, binds at the potassium site of the enzyme, thus generating an increase in its stability towards the common denaturing agents, such as exposure to different concentration of guanidinium chloride (GdmC1) or to acidic solutions.  相似文献   

19.
20.
Kinetic studies on a rat brain (Na+ + K+)-dependent ATPase (EC 3.6.1.3) preparation demonstrated high-affinity sites for ATP, with a Km near 1 mum, and low affinity sites for ATP, with a Km near 0.5 mM. In addition, the dissociation constant for ATP at the low affinity sites was approached through the ability of ATP to modify the rate of photo-oxidation of the enzyme in the presence of methylene blue; a value of 0.4 mM was obtained. The temperature dependence of the Km values in these two concentration ranges also differed markedly, and the estimated entropy of binding was +27 cal/degree per mol at the high affinity sites, whereas it was -20 cal/degree per mol at the low affinity sites. Moreover, the relative affinities of various congeners of ATP as of the K+ -dependent phosphatase reaction of the enzyme indicated an interaction at the low-affinity sites for ATP: ATP, ADP, CTP, and the [beta-gamma] -imido analog of ATP all competed with Ki values near those for the ATPase reaction at the low affinity sites. Conversely, the Km for nitrophenyl phosphate as a substrate for the phosphatase reaction was near its Ki as a competitor at the low-affinity sites of the ATPase reaction. These observations are incorporated into a reaction scheme with two classes of substrate sites on a dimeric enzyme, manifesting idverse enzymatic and transport characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号