首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The regulation of the cell cycle by the ubiquitin-proteasome system is dependent on the activity of E3 ligases. Skp2 (S-phase kinase associated protein-2) is the substrate recognition subunit of the E3 ligase that ubiquitylates the cell cycle inhibitors p21cip1 and p27kip1 thus promoting cell cycle progression. Increased expression of Skp2 is frequently observed in diseases characterized by excessive cell proliferation, such as cancer and neointima hyperplasia. The stability and cellular localization of Skp2 are regulated by Akt, but the molecular mechanisms underlying these effects remain only partly understood. The scaffolding protein Ezrin-Binding Phosphoprotein of 50 kDa (EBP50) contains two PDZ domains and plays a critical role in the development of neointimal hyperplasia. Here we report that EBP50 directly binds Skp2 via its first PDZ domain. Moreover, EBP50 is phosphorylated by Akt on Thr-156 within the second PDZ domain, an event that allosterically promotes binding to Skp2. The interaction with EBP50 causes cytoplasmic localization of Skp2, increases Skp2 stability and promotes proliferation of primary vascular smooth muscle cells. Collectively, these studies define a novel regulatory mechanism contributing to aberrant cell growth and highlight the importance of scaffolding function of EBP50 in Akt-dependent cell proliferation.  相似文献   

6.
Interleukin-16 (IL-16) is an important pro-inflammatory cytokine that functions as a chemoattractant factor and is well characterized in human and other mammals, but is largely unknown in fish. In the present study, two isoforms of pro-IL-16 homologues were cloned and characterized from pufferfish Tetraodon nigroviridis. The full-length T. nigroviridis pro-IL-16 isoform 1 cDNA exhibits 2453 bp in size including 291 bp 5'UTR (untranslated region), 1704 bp ORF (open reading frame) and 458 bp 3'UTR, while pro-IL-16 isoform 2 cDNA exhibits a 3801 bp ORF and a 458 bp 3'UTR. Bioinformatics analysis demonstrated that the pro-IL-16 isoform 1 with a predicted mass of 60.6 kDa contained two PDZ (postsynaptic density/disc large/zona occludens-1) domains, whereas the 138.2 kDa pro-IL-16 isoform 2 had two additional PDZ domains in its N-terminal extension. RT-PCR results revealed that ,almost in all examined organs and tissues, the mRNA of both pro-IL-16 isoforms can be detected, except in intestine and gill, where the isoform 2 mRNA is absent. The two putative precursor proteins showed 30.0-33.0% identity to various mammalian and avian homologues. This is the first report of such genes in teleostean fish and we hope the molecular characterization of these two pro-IL-16 isoforms will provide insights into the study of both evolution of IL-16 precursor proteins and the immune system as a whole.  相似文献   

7.
Prior DNA microarray studies suggested that IL-16 mRNA levels decrease following T cell activation, a property unique among cytokines. We examined pro-IL-16 mRNA and protein expression in resting and anti-CD3 mAb-activated primary murine CD4(+) T cells. Consistent with the microarray reports, pro-IL-16 mRNA levels fell within 4 h of activation, and this response is inhibited by cyclosporin A. Total cellular pro-IL-16 protein also fell, reaching a nadir at 48 h. Pro-IL-16 comprises a C-terminal cytokine domain and an N-terminal prodomain that are cleaved by caspase-3. Pro-IL-16 expressed in transfected tumor cells was previously shown to translocate to the nucleus and to promote G(0)/G(1) arrest by stabilizing the cyclin-dependent kinase inhibitor p27(Kip1). In the present study, we observed increased S-phase kinase-associated protein 2 mRNA expression in IL-16 null mice, but basal expression and activation-dependent regulation of p27(Kip1) were no different from wild-type mice. Stimulation with anti-CD3 mAb induced transiently greater thymidine incorporation in IL-16-deficient CD4(+) T cells than wild-type controls, but there was no difference in cell survival or in the CFSE dilution profiles. Analysis of CD4(+) T cell proliferation in vivo using BrdU labeling similarly failed to identify a hyperproliferative phenotype in T cells lacking IL-16. These data demonstrate that pro-IL-16 mRNA and protein expression are dynamically regulated during CD4(+) T cell activation by a calcineurin-dependent mechanism, and that pro-IL-16 might influence T cell cycle regulation, although not in a dominant manner.  相似文献   

8.
9.
10.
11.
Nuclear translocation of the N-terminal prodomain of interleukin-16   总被引:3,自引:0,他引:3  
Interleukin-16 (IL-16) is a pleiotropic cytokine that functions as a chemoattractant factor, a modulator of T cell activation, and an inhibitor of human immunodeficiency virus (HIV) replication. These diverse functions are exclusively attributed to the secreted C-terminal peptide of 121 amino acids (mature IL-16), which is cleaved from the precursor protein (pro-IL-16) by caspase-3. Human pro-IL-16 is comprised of 631 amino acids with three PDZ domains, one of which is present in secreted mature IL-16. No cellular localization or biologic functions have been ascribed to the unusually large and highly conserved N-terminal prodomain formed as a result of proteolytic release of the third PDZ domain of pro-IL-16. Here we show that the N-terminal prodomain of pro-IL-16 translocates into the nucleus following cleavage of the C-terminal segment. The nuclear localization signal of pro-IL-16 consists of a classical bipartite nuclear targeting motif. We also show that the nuclear targeting of the IL-16 prodomain induces a G(0)/G(1) arrest in the cell cycle. Taken together, the high degree of conservation of the prodomain among species, the presence of two PDZ motifs, and the nuclear localization and subsequent inhibitory effect on cell cycle progression suggest that pro-IL-16 is cleaved into two functional proteins, a C-terminal-secreted cytokine and an N-terminal product, which affects the cell cycle.  相似文献   

12.
Skp2 (S-phase kinase associated protein 2) controls progression from G- to S-phase by promoting the proteolysis of the cyclin dependent kinase inhibitor p27KIP1. Despite the fact that a p27KIP1 decrease has been documented in melanoma progression, the role of Skp2 in these tumours is unknown. We therefore examined by immunohistochemistry the expression of Skp2, p27KIP1 and Ki-67 in 10 naevi (Ns), 15 superficial spreading melanomas (SSMs), 10 nodular melanomas (NMs) and 14 melanoma metastases (Ms). Nuclear Skp2 expression augmented with increasing malignancy (Ns: 1.4%, SSMs: 5.6%, NMs: 17.3%, Ms: 19.1%). In all tumours nuclear Skp2 expression correlated with Ki-67 (p=0.024) and inversely with p27KIP1 (p=0.007). A cytoplasmic reaction for Skp2 was also observed in most tumours and its expression decreased from Ns (12.3%) to SSMs (7.9%) and NMs (4.5%). In contrast, Ms showed an increase of cytoplasmic Skp2 (11.9%) that correlated with its nuclear expression (p=0.016). While nuclear Skp2 expression correlated with the pT-level (p=0.023), Clark-level (p=0.023) and Breslow index (p=0.019), the cytoplasmic Skp2 expression might be of biological significance only in NMs since it correlated with tumour depth (p=0.02) and pT-level (p=0.025). Our data suggests that Skp2 could contribute to melanoma progression. This is further highlighted by the fact that vertical growth phase (VGP) melanomas show significant higher nuclear Skp2 expressions when compared with the harmless radial growth phase (RGP) (p=0.047). Also nuclear Skp2 expression correlates with a reduced survival time (p=0.025) in melanoma.  相似文献   

13.
14.
Kuo YL  Giam CZ 《The EMBO journal》2006,25(8):1741-1752
The human T-lymphotropic virus type 1 (HTLV-1) Tax binds the anaphase promoting complex (APC) and activates it ahead of schedule. Here, we show that APC activation by Tax induces rapid senescence (tax-IRS) independently of p53 and pRB. In response to tax, cyclin A, cyclin B1, securin, and Skp2 becomes polyubiquitinated and degraded starting in S phase. This is followed by a surge in p21(CIP1/WAF1) and p27(KIP1) in mid to late S and G2/M leading to a permanent G1 arrest. Tax-positive HTLV-1-transformed T-cell lines express elevated levels of p21(CIP1/WAF1), but low levels of p27(KIP1). Finally, Tax can be stably expressed in p27(KIP1)-null NIH3T3 cells. These results indicate that APC activation by Tax causes inactivation of SCF(Skp2) and stabilization of p21(CIP1/WAF1) and p27(KIP1). The build-up of p21(CIP1/WAF1) and especially p27(KIP1) commits cells to senescence. Evading tax-IRS through a loss of p27(KIP1) function is likely to be critical for cell transformation by Tax and development of adult T-cell leukemia after HTLV-1 infection. Finally, activation of APC ahead of schedule may be exploited to arrest cancer cell growth.  相似文献   

15.
Yeung ML  Tam TS  Tsang AC  Yao KM 《EMBO reports》2003,4(4):412-418
PDZD2 (PDZ-domain-containing 2; also known as PAPIN, AIPC and PIN1) is a ubiquitously expressed multi-PDZ-domain protein. We have shown that PDZD2, which shows extensive homology to pro-interleukin-16 (pro-IL-16), is localized mainly to the endoplasmic reticulum (ER). Pro-IL-16 is cleaved in a caspase-3-dependent mechanism to generate the secreted cytokine IL-16. The abundant expression of PDZD2 in the ER, and its sequence similarity to pro-IL-16, suggests that similar post-translational processing of PDZD2 may occur. Indeed, western blotting and mass spectrometry analysis of conditioned medium from cells transfected with epitope-tagged PDZD2 show that there is secretion of a PDZD2 peptide of approximately 37 kDa (sPDZD2, for secreted PDZD2) that contains two PDZ domains. Expression of PDZD2 was detected in several tissues. Furthermore, sPDZD2 secretion is suppressed by the mutation of a sequence that shows similarity to caspase recognition motifs or by treatment with a caspase inhibitor. In summary, PDZD2 is the first reported multi-PDZ protein that is processed by proteolytic cleavage to generate a secreted peptide containing two PDZ domains.  相似文献   

16.
17.
18.
19.
Skp2 is well known as the F-box protein of the SCF(Skp2) x Roc1 complex targeting p27 for ubiquitylation. Skp2 also forms complexes with cyclin A, which is particularly abundant in cancer cells due to frequent Skp2 overexpression, but the mechanism and significance of this interaction remain unknown. Here, we report that Skp2-cyclin A interaction is mediated by novel interaction sequences on both Skp2 and cyclin A, distinguishing it from the well known RXL-hydrophobic patch interaction between cyclins and cyclin-binding proteins. Furthermore, a short peptide derived from the mapped cyclin A binding sequences of Skp2 can block Skp2-cyclin A interaction but not p27-cyclin A interaction, whereas a previously identified RXL peptide can block p27-cyclin A interaction but not Skp2-cyclin A interaction. Functionally, Skp2-cyclin A interaction is separable from Skp2 ability to mediate p27 ubiquitylation. Rather, Skp2-cyclin A interaction serves to directly protect cyclin A-Cdk2 from inhibition by p27 through competitive binding. Finally, we show that disruption of cyclin A binding with point mutations in the cyclin A binding domain of Skp2 compromises the ability of overexpressed Skp2 to counter cell cycle arrest by a p53/p21-mediated cell cycle checkpoint without affecting its ability to cause degradation of cellular p27 and p21. These findings reveal a new functional mechanism of Skp2 and a new regulatory mechanism of cyclin A.  相似文献   

20.
The Pim-1 protein kinase plays an important role in regulating both cell growth and survival and enhancing transformation by multiple oncogenes. The ability of Pim-1 to regulate cell growth is mediated, in part, by the capacity of this protein kinase to control the levels of the p27, a protein that is a critical regulator of cyclin-dependent kinases that mediate cell cycle progression. To understand how Pim-1 is capable of regulating p27 protein levels, we focused our attention on the SCFSkp2 ubiquitin ligase complex that controls the rate of degradation of this protein. We found that expression of Pim-1 increases the level of Skp2 through direct binding and phosphorylation of multiple sites on this protein. Along with known Skp2 phosphorylation sites including Ser64 and Ser72, we have identified Thr417 as a unique Pim-1 phosphorylation target. Phosphorylation of Thr417 controls the stability of Skp2 and its ability to degrade p27. Additionally, we found that Pim-1 regulates the anaphase-promoting complex or cyclosome (APC/C complex) that mediates the ubiquitination of Skp2. Pim-1 phosphorylates Cdh1 and impairs binding of this protein to another APC/C complex member, CDC27. These modifications inhibit Skp2 from degradation. Marked increases in Skp2 caused by these mechanisms lower cellular p27 levels. Consistent with these observations, we show that Pim-1 is able to cooperate with Skp2 to signal S phase entry. Our data reveal a novel Pim-1 kinase-dependent signaling pathway that plays a crucial role in cell cycle regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号