首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N. F. Gray 《Mycopathologia》1985,90(3):165-176
Soil collected from throughout the maritime Antarctic was analyzed to determine the effects of a range of abiotic and biotic soil parameters on the distribution of nematophagous fungi. Endoparasites were far more abundant than predatory fungi due to the greater efficiency of endoparasites in attracting and infecting nematodes, which resulted in a rapid completion of the infection cycle. This allowed endoparasites to colonise even the most exposed soil habitats where conditions favourable for nematode activity were restricted to only a few hours daily. 76% of all endoparasites isolated formed adhesive conidia. The success of this group of endoparasites was due to the ability of the conidia to attract nematodes.Spontaneous trap forming predators were far more abundant than nonspontaneous trap formers. The former have a clear competitive advantage over the latter, as they are able to attract nematodes to the conidia which subsequently germinate and form traps only when induced by direct chemical stimulation of nematodes. These predators are able to use internal reserves only and so rapidly respond to short periods when the soil is unfrozen and the nematodes are active.Although nematodes were utilized by all the species isolated, many were also capable of using Protozoa and Rotifera as a food source. While endoparasites were capable of infecting Rotifera, they were never observed infecting, or were isolated from soil containing, Protozoa. The distribution of endoparasites and spontaneous trap forming predators was largely independent of abiotic soil parameters. They were however significantly associated with the presence and abundance of suitable prey. These species survive solely on nematodes and therefore do not require prolonged periods of suitable soil conditions in order to produce vegetative mycelium to adsorb nutrients saprophytically from the soil, which is a significant ecological advantage over the other groups of microfungi found in the Antarctic.  相似文献   

2.
Summary The distribution of nematophagous fungi in soil collected from a deciduous woodland is compared to various biotic and abiotic soil factors. The microfungi are isolated at all depths down to a maximum of 35 cm. Predators forming constricting rings, adhesive branches and adhesive knobs are restricted to the upper litter and humus layers. The net forming predators and endoparasites are isolated at all depths, although they are significantly more abundant in the lower mineral rich soils. A much greater species diversity of nematophagous fungi is recorded in the upper organic zones.Preliminary soil analysis indicates thatCephalosporium balanoides is independent of all soil variables, while predators able to form traps spontaneously are restricted to the organic soils which are rich in nematodes. Non-spontaneous trap forming predators, which are excellent saprophytes, are isolated from the deeper soils which are low in nutrients. The ecological significance of these results is discussed.  相似文献   

3.
Nematodes are the most abundant invertebrates in soils and are key prey in soil food webs. Uncovering their contribution to predator nutrition is essential for understanding the structure of soil food webs and the way energy channels through soil systems. Molecular gut content analysis of consumers of nematodes, such as soil microarthropods, using specific DNA markers is a novel approach for studying predator–prey interactions in soil. We designed new specific primer pairs (partial 18S rDNA) for individual soil‐living bacterial‐feeding nematode taxa (Acrobeloides buetschlii, Panagrellus redivivus, Plectus velox and Plectus minimus). Primer specificity was tested against more than 100 non‐target soil organisms. Further, we determined how long nematode DNA can be traced in the gut of predators. Potential predators were identified in laboratory experiments including nine soil mite (Oribatida, Gamasina and Uropodina) and ten springtail species (Collembola). Finally, the approach was tested under field conditions by analyzing five mite and three collembola species for feeding on the three target nematode species. The results proved the three primer sets to specifically amplify DNA of the respective nematode taxa. Detection time of nematode DNA in predators varied with time of prey exposure. Further, consumption of nematodes in the laboratory varied with microarthropod species. Our field study is the first definitive proof that free‐living nematodes are important prey for a wide range of soil microarthropods including those commonly regarded as detritivores. Overall, the results highlight the eminent role of nematodes as prey in soil food webs and for channelling bacterial carbon to higher trophic levels.  相似文献   

4.
Summary We sampled the soil microarthropod community monthly in the oak-mesquite sand hill ecosystem. Small fungiphagous prostigmated mites (pyemotids, lordalychids and tarsonemids) that dominated the soil fauna in winter were replaced by large predaceous mites (rhodacarids and laelapids) in summer and autumn.We compared organic matter loss and microarthropod and nematode populations in shinnery oak (Quercus harvardii) using insecticide and untreated litter in fiberglass litterbags.Microarthropods extracted from litterbags showed a seasonal pattern similar to the soil cores except that collembolans and psocopterans were abundant in the litter and not in the soil cores. Numbers of free living nematodes were consistently greater than from untreated litter. The ratio of non-stylet to stylet bearing nematodes extracted from litter decreased from 4:1 in one month bags to 0.8:1.0 in the one year bags. Laboratory experiments showed that rhodacarid mites fed voraciously on nematodes.Untreated litter exhibited higher rates of organic matter loss than the insecticide treated litter; 20% and 35% respectively.We suggest that the abundant mesostigmatid mites prey on free living nematodes and that eliminating the predators allows the nematodes to overgraze the fungi and bacteria. The soil modifies the microclimate in buried litter allowing for higher biological activity, hence higher rates of decomposition.  相似文献   

5.
Abstract

Observations were made on the attraction of Aporcelaimellus nivalis towards kairomones/attractants emitted by prey nematodes belonging to different trophic categories, viz., saprophagous, epidermal, migratory semi-endodermal, predatory nematodes, virus vectors and cortical feeders. Aporcelaimellus nivalis responded positively and significantly to prey kairomones, but showed variation in their individual behaviour. Predators are most attracted towards epidermal feeders and least attracted to virus vectors. The differential responses of A. nivalis towards different prey were attributed to the inert behaviour of predators, their preference for a particular species of prey, chemical composition, concentration, quality, quantity of prey attractant, formation of minimum perceptible attraction gradient of prey and minimum response threshold of predators. Various factors such as prey density, period of prey incubation, starvation of predators, temperature, agar concentration, agar thickness and distance of predators from the source of attraction (prey) govern chemosensory responses of predator. Aporcelaimellus nivalis maximum response was towards Hirschmanniella oryzae, when tested as 10 day starved predators in agar plates containing 2 mm thick layer of 1% water-agar with 200 prey individuals previously incubated for 16 h at 30°C. Prey kairomones were most attractive when A. nivalis were tested from a distance of 2 and 3 cm.  相似文献   

6.
The infection structures, trophism, and ecological character of nematophagous fungi are reviewed in this article on the basis of data extracted from the literature and the most recent experiments conducted in this area. Traditionally, nematophagous fungi are classified into four groups according to their modes of attacking nematodes: nematode-trapping fungi using adhesive or mechanical hyphal traps, endoparasitic fungi using their spores, eggparasitic fungi invading nematode eggs or females with their hyphal tips, and toxin-producing fungi immobilizing nematodes before invasion. In the present review, we focus on the first two groups. The living strategies of these nematophagous fungi depend on the diversity of their infection structures, such as different traps and spore types, which determine the modes of infecting nematodes. The diversity of trophic modes of nematophagous fungi is an important prerequisite for fungal survival and activity in soil. The abundance and activity of Hirsutella rhossiliensis and H. minnesotensis, representatives of endoparasites and potential biocontrol agents against nematodes, are highly dependent on environmental factors. Comprehensive understanding of the survival and activity of nematophagous fungi in soil is fundamental for the exploitation of these fungi as successful biocontrol agents.  相似文献   

7.
The diets of predators should reflect interactions between their behavioural and anatomical constraints and the availability and accessibility of prey, although feeding preferences may also reflect adaptation to locally abundant prey, particularly in closed populations. On the south‐east coast of Australia, the whelk Haustrum vinosum (Lamarck, 1822) and its prey communities provide a model system in which to test the effect of variation in prey availability on diet and dietary preferences. Haustrum vinosum is a direct developing species, forming effectively closed populations, with the potential for local adaptation at local and regional scales. Here we show that populations of whelks east and west of a biogeographical barrier encounter different prey assemblages, and have different feeding patterns and apparent prey preferences. We then use a prey choice experiment to test for evidence that H. vinosum from three populations west of the barrier display an inherent preference for its most frequently encountered western prey species, the mussel Brachidontes rostratus (Dunker, 1857), over a novel prey, the barnacle Tesseropora rosea (Krauss, 1848). We detected no prey preference within any population, suggesting past association with B. rostratus did not influence prey selection. Our data support the hypothesis that predators with limited dispersal and high population differentiation are able to maintain flexible generalist foraging patterns, even when they encounter novel prey. © 2013 The Linnean Society of London  相似文献   

8.
Insects form the most species‐rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode–insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle–nematode–bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five‐year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high‐throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate‐reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect‐associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate‐reducing bacteria suggests a possible link between beetle–bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment.  相似文献   

9.
N. F. Gray 《Plant and Soil》1988,108(2):286-290
The effects of the major soil nutrients and seven common metals on the distribution of nematophagous fungi were evaluated by comparing the concentration of the elements in soils with and without nematophagous fungi. Mineral nutrients, which were all positively correlated with nematode density, were the most important elements determining the presence of such fungi. Endoparasites producing adhesive conidia were independent of all the elements tested, while those species forming ingested conidia were isolated from soils high in nutrients, indicating a strong dependence on nematode density. Knob forming predators which rely on their ability to spontaneously produce traps to obtain nutrients were isolated from soils with low concentrations of mineral nutrients, while species with constricting rings were isolated from richer soils containing a greater density of nematodes. Net-forming species were largely independent of soil fertility, although generally they were isolated from soils with limited nutrientsd, especially K. Like other fungi, nematophagous fungi are generally not found in soils containing elevated concentrations of heavy metals. The results indicate that even concentrations of heavy metals which naturally occur in Irish soils can restrict the distribution of this fungal group. However the endoparasiteMeria coniospora is tolerant to all metals and to Cu in particular.  相似文献   

10.
Feeding preferences of Celtic Sea fishes were investigated using a database of stomach content records, collected between 1977 and 1994. The diet of cod Gadus morhua, hake Merluccius merluccius, megrim Lepidorhombus whiffiagonis, whiting Merlangius merlangus and saithe Pollachius virens changed markedly as the animals grew larger, and although large predators generally chose larger bodied prey, the variability of prey sizes consumed also increased. Large predators continued to select small, low value, benthic prey (e.g. Callionymus spp. and Trisopterus spp.) which were easier to catch, rather than larger, more energy lucrative pelagic prey (e.g. mackerel Scomber scombrus), even though these pelagic prey‐fishes were nearly always available and were often very abundant. Stock estimates of the International Council for the Exploration of the Sea and U.K. groundfish survey catches were used as indices of prey abundance. Blue‐whiting Micromesistius poutassou and other small pelagic fishes (Argentina spp. and clupeoids) were identified as being particularly important, and were consumed by some predators more often than would be expected given the abundance of these prey in the environment. There was no evidence for density‐dependent feeding by predators on mackerel and only hake exhibited density‐dependent feeding on horse‐mackerel. Hake, cod and megrim consumed more blue‐whiting when this prey was at higher abundance in the environment. In choosing what prey to consume, predators must balance costs and benefits, considering the quality of prey and the energy expended during search, capture and handling.  相似文献   

11.
Parasitus bituberosus Karg (Acari: Parasitidae) is one of the predatory mite species inhabiting mushroom houses. It is known to accept a wide range of prey, suggesting that it may be a promising candidate for the biological control of key pests of mushroom culture. In our study it did not show any prey preference among four groups of small organisms often occurring in mushroom growth medium, namely rhabditid nematodes, pygmephorid mites, and sciarid and phorid fly larvae. Nevertheless, the type of food these predators fed on affects their development. The shortest egg-to-adult development time was obtained on a nematode diet. On a diet of phorid larvae, mite development stopped at the deutonymph stage; none reached adulthood. All other diets sufficed to reach the adult phase. Female fecundity when fed nematodes and sciarid larvae did not differ, but it was much lower when fed pygmephorid mites. Other life table parameters confirmed that pygmephorid mites constituted the worst diet for P. bituberosus. The highest intrinsic rate of population increase (r m  = 0.34) was obtained on the nematode diet; when fed sciarid larvae and pygmephorid mites it was 0.25 and 0.14, respectively. Our study provides good reasons to further test P. bituberosus as biocontrol agent of especially sciarid flies and nematodes, especially when the compost is well colonized by mushroom mycelium (which retards nematode growth).  相似文献   

12.
In theory, predators should attempt to match the distribution of their prey, and prey to avoid areas of high predation risk. However, there is a scarcity of empirical knowledge on predator and prey spatial use when both are moving freely in their natural environment. In the current study, we use information collated on a predators’ diet, its population structure, as well as predator and prey relative abundance, and track the movements of predator and prey simultaneously to compare habitat use and evaluate predation pressure. The study was conducted in elasmobranch protected areas of coastal Tasmania, Australia. The species considered were the broadnose sevengill shark Notorynchus cepedianus, the apex predator in the area, and five chondrichthyan prey species. Notorynchus cepedianus and its prey show similar seasonality in the use of these coastal areas: more abundant in warmer months and absent in winter. Predator and prey also showed high spatial overlap and similar habitat use patterns. These similar movement patterns of predator and prey combined with the additional ecological information (diet, population structure of predator, relative abundance of predator and prey) suggests that N. cepedianus move into coastal areas to exploit seasonally abundant prey. Also, while in protected areas, chondrichthyans are subjected to high predation pressure. Overall, results illustrate the value of simultaneously recording and integrating multiple types of information to explore predator–prey relationships and predation pressure.  相似文献   

13.
Human–predator conflict is one of the biggest threats to large carnivore species worldwide. Its intensity is closely linked to farmer's attitudes and perceptions of predators. As a result, farmers' estimates of the number of livestock or game‐stock animals killed by predators are often formed based on the perceived number of predators present and their perceivably favoured prey species. This study aims to examine the prey preferences of cheetahs Acinonyx jubatus in relation to farmers' perceptions and the relative contribution of livestock and game‐stock to the cheetahs' diet. Cheetahs' prey preferences were determined through the cross‐sectional analysis of prey hair, found in cheetah scat. Cheetahs were found to predominantly prey on free‐ranging abundant game species, primarily kudu Tragelaphus strepsiceros. Game ranchers overestimated the prominence of game‐stock to the cheetahs' diet, especially springbok Antidorcas marsupialis. Potential reasons for these discrepancies and the importance of abundant natural prey as a potential human–predator coexistence strategy are discussed.  相似文献   

14.
Plant parasitic nematodes and arbuscular mycorrhizal fungi (AMF) share plant roots as a resource for food and space. The interest in AMF-nematode interactions lies in the possibility of enhanced resistance or tolerance of AMF-infected plants to nematodes, and the potential value of this for control of crop pests. Data collated from previous studies revealed a great diversity of AMF-nematode responses and we seek to generalise from these by evaluating and discussing interactions involving three groups of nematodes distinguished by their mode of parasitism: (i) ectoparasites; (ii) sedentary endoparasites; and (iii) migratory endoparasites. Based on proximity in tissue, we expected that the interactions between endoparasites and AMF would be stronger, i.e. more reciprocal effects of endoparasitic nematodes on AMF, than those between ectoparasites and AMF. Contrary to this hypothesis, we found that, relative to AMF-free plants, AMF-infected plants were damaged more by ectoparasites than by endoparasites. Of the sedentary endoparasites, numbers of root-knot nematodes were reduced more by mycorrhizal infection than were those of cyst nematodes. The reduction in nematode damage by AMF was not different for root-knot or cyst nematode infested plants. Migratory endoparasitic nematodes were the only group whose numbers were greater on AMF-infected plants. However, the experiments involving migratory nematodes were characterised by relatively high levels of AMF infection and little nematode damage compared to the other feeding types. The outcomes of the AMF-nematode interactions are determined by many factors during the interactions between organisms and their physical, physiological and temporal environments. Assessing effects by recording plant sizes and total nematode or AMF populations at the end of experiments gives very little information on the mechanisms of the interactions. It is time to stop doing studies of black boxes and time to start observing processes, directly by using microscopy and indirectly by application of molecular genetics.  相似文献   

15.
The relative importance of the factors driving change in the population dynamics of nematodes in the soil is almost completely unknown. Top-down control by micro-arthropod predators may have a significant impact on nematode population dynamics. We report experiments showing that mites and Collembola were capable of reducing nematode numbers in the laboratory and were feeding on a targeted nematode species in the field. A PCR-based approach was developed for the detection of predation on three species of slug- and insect-pathogenic nematodes: Phasmarhabditis hermaphrodita, Heterorhabditis megidis and Steinernema feltiae. The collembolan Folsomia candida and the mesostigmatid mite Stratiolaelaps miles were employed as model predators to calibrate post-ingestion prey DNA detection times. Fragments of cytochrome oxidase I (COI) mtDNA were sequenced and species-specific primers were designed, amplifying 154-, 154- and 203-bp fragments for each of the nematode species. Detection times for nematode DNA within the guts of Collembola were longer than in mites, with half-lives (50% of samples testing positive) of 08.75 h and 05.03 h, respectively. F. candida significantly reduced numbers of the nematode H. megidis, with rates of predation of approximately 0.4 nematode infective juveniles per collembolan per hour over 10 h. Four taxa of field-caught micro-arthropod that had been exposed to the nematode P. hermaphrodita for a period of 12 h were analysed and significant numbers of three taxa tested positive. This is the first application of PCR techniques for the study of nematophagy and the first time these techniques have been used to measure predation on nematodes in the field.  相似文献   

16.
We studied the role of nematode predation in the functioning of detrital food webs assembled in microcosms. The microcosms contained defaunated humus and litter materials, a diverse microbial community with bacteria, fungi and protozoa, and a birch (Betula pendula) seedling infected with mycorrhizal fungi. Different levels of top-down control upon microbivorous nematodes were set up by assembling food webs either without predators, or in combinations with a specialist and a non-specialist predatory mite (Mesostigmata). The nematode community was composed of either (1) three species of bacterivorous, or (2) three species of fungivorous nematodes or (3) both groups together. After two growing periods for the birch (38 weeks), the microcosms were destructively sampled for animal and microbial biomasses, concentration of mineral N in the soil, plant biomass and plant N concentration. The specialist predator reduced biomasses of both bacterial- and fungal-feeding nematodes by more than 50%, whereas the non-specialist predator weakly increased the biomass of fungivorous nematodes. Thus, under high predation pressure, the biomass of microbivores changed as predicted by trophic dynamic models assuming strong top-down control and uniformly behaving trophic levels. Despite this, microbial biomass was unaffected by the predators. However, microbial respiration increased slightly in the presence of predators. Assuming that microbial respiration correlates with microbial productivity, the increase in microbial respiration indicates a cascading productivity regulation. The composition of the microbivore community had only a minor effect on the outcome of the top-down control on microbes. The >50% reduction in nematode biomass and respiration coincided with <16% increase in microbial respiration and did not affect microbial biomass. Presence of the specialist predator slightly reduced soil NH+ 4 concentration in communities with fungivore nematodes but plant growth and N uptake remained unchanged. Thus, the structure of the community only weakly controlled nutrient mineralisation. Received: 18 May 1998 / Accepted: 3 May 1999  相似文献   

17.
Four piscine predator species were observed repeatedly attacking large (> 100,000) schools of flat-iron herring, Harengula thrissina. The predators could be categorized into two groups. Stalking predators (two species) were slow-moving, predominantly solitary hunters attacking from positions beneath the school. Attacks were directed at individual prey and the sequence of events was orient-approach-strike. Although the stalking species were seen most often and were responsible for the majority of the attacks, capture success was low. The remaining two species were fast-moving, pelagic hunters regularly occurring in groups of up to 8 individuals. These predators were extremely proficient at capturing prey, either by orienting on individuals (stragglers) or accelerating into the school and ramming their prey (impact attacks). Group size was positively associated with capture success, but not significantly so. Because stalking predators orient towards individual prey, they may suffer from the effect of confusion when attacking schooling prey. Use of the impact strategy, by comparison, may allow predators to overcome the confusion effect either by attacking prey already separated from the school, or by orienting towards aggregated prey rather than particular individuals.  相似文献   

18.
The arms race between specialist predators and their prey has resulted in the evolution of a variety of specific adaptations. In venomous predators, this can include venom composition, particularly if predators are specialized on dangerous prey. Here, we performed an integrative study using six species of highly specialized ant‐eating spiders of the genus Zodarion to investigate their phylogeny, realized trophic niche, efficacy in the capture of various ant species and venom composition. Data on natural diet obtained by next‐generation sequencing and field observations showed that the six Zodarion species exploit different ant species. Their phylogeny, based on mitochondrial and nuclear genes, correlated with the composition of their natural prey, indicating that closely related Zodarion species specialize on similar ant species. Prey‐capture parameters differed among Zodarion species suggesting prey‐specific efficacy. Similarly, the venom profiles of both low and high molecular compounds differed among species. Only the profiles of low molecular compounds were correlated with capture efficacy parameters, suggesting that the venom of Zodarion spiders contains prey‐specific components. Our study suggests that Iberian Zodarion spiders are specialized on particular ant species.  相似文献   

19.
Predator-prey relationships among larval dragonflies,salamanders, and frogs   总被引:2,自引:0,他引:2  
Summary Tadpoles of the barking tree frog, Hyla gratiosa, are abundant in spring and summer in some ponds and Carolina bays on the Savannah River Plant near Aiken, South Carolina. To determine how these tadpoles survive in the presence of predaceous salamander larvae, Ambystoma talpoideum, and larvae of an aeshnid dragonfly, Anax junius, we determined fields densities and sizes of the predators and the prey and conducted predation experiments in the laboratory. Tadpoles rapidly grow to a size not captured by Ambystoma, although Anax larvae can capture slightly larger tadpoles. Differing habitat preferences among the tadpoles and the two predator species probably aid in reducing predation pressure. Preliminary work indicates that the tadpoles may have an immobility response to an attack by a predator. In addition, the smallest, most vulnerable tadpoles have a distinctive color pattern which may function to disrupt the body outline and make them indiscernable to predators.  相似文献   

20.
Abstract

The attraction of Allodorylaimus americaus towards excised (cut into two pieces) and non-excised (live) individuals of plant parasitic nematodes viz., Tylenchorhynchus mashhoodi, Hoplolaimus indicus, Helicotylenchus indicus, Hirschmanniella oryzae, Xiphinema americanum and Hemicriconemoides mangiferae used as prey were tested in a Petri dish. A. americanus responded positively and significantly to prey kairomones but showed variation in their individual behaviour. A. americanus was most attracted towards excised individuals of T. mashhoodi. The differential responses of A. americanus towards different prey were attributed to the inert behaviour of the predator, their preference for a particular species of prey, chemical composition, concentration, quality, quantity of prey attractant, formation of minimum perceptible attraction gradient of prey and minimum response threshold of predators. Different factors such as temperature, period of prey incubation, prey density, starvation of predators, agar concentration, and agar thickness governed the attraction responses of the predator. A. americanus responded maximally towards T. mashhoodi, when tested as 5-day starved predators in agar plates containing a 2 mm thick layer of 1% water-agar with 200 prey individuals previously incubated for 16 h at 30°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号