首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benzo[b]phenanthro[2,3-d]thiophene (BPT), and a number of its metabolites, including BPT-3,4-diol, BPT sulfoxide, BPT sulfone, and 3-hydroxyBPT were assessed for their mutagenic activity in Salmonella typhimurium strain TA100, and S. typhimurium base-specific strains TA7001, TA7002, TA7003, TA7004, TA7005, and TA7006. Among the compounds tested in strain TA100, BPT, BPT sulfone, and 3-hydroxyBPT did not show any significant mutagenic response in the presence of S9. In contrast BPT sulfoxide and BPT-3,4-diol (a precursor to the bay-region diol epoxide of BPT) showed significant mutagenic activity in the presence of S9. Surprisingly, BPT sulfoxide was nearly 3.3-fold more mutagenic than BPT-3,4-diol in the presence of S9. BPT sulfoxide also displayed intrinsic mutagenic activity, which was nearly 1.5-fold less than that displayed by BPT-3,4-diol in the presence of S9. In base specific tester strains, BPT sulfoxide was the most active metabolite in strains TA7002, TA7004, and TA7005 with S9 activation. In these strains, BPT-3,4-diol was 2- to 7-fold less mutagenic than BPT sulfoxide in the presence of S9. Only in strain TA7006, BPT-3,4-diol was four-fold more mutagenic than BPT sulfoxide. The fact that BPT sulfoxide is significantly more mutagenic than BPT-3,4-diol in S. typhimurium strain TA100 suggests that the formation of sulfoxide may be the principal pathway for the metabolic activation of BPT to mutagenic products. Based on the results from Tester Strain TA7005, it indicate that BPT and its most mutagenic metabolite BPT sulfoxide induce predominantly CG --> AT transversion, which is observed as the most frequent base substitution mutation of p53 tumor-suppressor gene in human lung cancer.  相似文献   

2.
The differences in nitrogen fixation, growth rate and numbers of cyanobionts and heterocysts among three Azolla pinnata var. pinnata strains were examined. The relative growth rate (RGR) and nitrogen fixation of PP7002 and PP7003 were significantly low compared with those of PP7005. The application of ammonium ions at 0.2 mM or more increased the growth rate of PP7002 and PP7003, but not PP7005. The numbers of cyanobionts and heterocysts in the mature region of PP7002 and PP7003 were statistically lower than those of PP7005. The low nitrogen-fixing activity of PP7002 and PP7003 as compared with PP7005 might be related to the restricted number of heterocysts. In PP7002 and PP7003, nitrogen fixation might be insufficient for full growth.  相似文献   

3.
Antimutagenicity of water and chloroform extracts of dried myroblan Terminalia chebula was determined against two direct acting mutagens, sodium azide and 4-nitro-o-phenylenediamine (NPD) in strains TA100 and TA1535, and TA97a and TA98 of Salmonella typhimurium respectively and S9-dependent mutagen 2-aminofluorene (2-AF) in TA97a, TA98 and TA100 strains. Water extract reduced NPD as well as 2-AF induced his+ revertants significantly but did not have any perceptible effect against sodium azide included his+ revertants in TA100 and TA1535 strains of S. typhimurium. The pre-incubation studies, where the extract was incubated at 37 degrees C for 30 min with the said mutagen prior to plating, enhanced the inhibitory effect. Autoclaving the water extract reduced the inhibitory effect but the reduction in the effect was not significant. No inhibitory effect was observed in any of the strains and against any of the test mutagens with chloroform extract.  相似文献   

4.
Yim SH  Hee SS 《Mutation research》2001,492(1-2):13-27
The first aim was to compare the genotoxicities of two tobacco-specific nitrosamines (TSNA), 4-(methylnitrosamino)-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) in two types of tests, the Salmonella reverse mutation assay (250-2000 microg per plate) and the Mutatox test (up to 1000 microg/ml) using dark mutant M-169 of Vibrio fischeri. The second aim was to assess the effects of single other tobacco chemicals and metabolites (nicotine (NIC), cotinine (COT), trans-3-hydroxycotinine (3HC), cotinine-N-oxide (CNO) and nicotine-N-oxide (NNO)) on the mutagenic responses at relative concentrations observed physiologically. The Salmonella strains were TA100, TA7004, TA7005, and TA7006, all showing missense backmutations that are characteristic of the TSNA. NNN was a direct mutagen to strains TA100, TA7004, and in the Mutatox test, and was not mutagenic in the presence of rat or hamster S9. NNK was mutagenic only in strain TA7004 with rat and hamster S9, but not in TA100, but was directly mutagenic in the Mutatox test. While all the other tobacco chemicals were not mutagenic alone to strains TA100 and TA7004 in the presence and absence of rat or hamster S9, the Mutatox test produced direct mutagenicity for COT, 3HC, and NNO, but not CNO. The latter was mutagenic in the Mutatox test with rat or hamster S9, but only rat S9 was effective for COT, NNO and 3HC. Inhibitory potentiations of NNN by NIC and COT were observed on strain TA7004, and by NIC on strain TA100. There were no interactions on NNK in the presence of S9 for strain TA7004 or TA100. In contrast, a complex inhibition and enhancement behavior occurred in the Mutatox test for each interaction, but no effects were observed for CNO on NNK without S9, and few for NIC on NNK with hamster S9. Compounds which showed no activity alone modulated the genotoxicity of two potent TSNAs in both types of tests.  相似文献   

5.
Previous studies have identified two potent aromatic amine mutagens in the Nishitakase River, a tributary of the Yodo River, which serves as the main drinking water supply for the Osaka area in Japan. The two potent mutagens are 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-am ino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) and 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5- amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2). PBTA-1 and PBTA-2 are presumed to be formed from azo dyes discharged in a reduced form from dye factories to sewage treatment plants where they become chlorinated and are then discharged into the river. PBTA-1 and PBTA-2 account for 21% and 17% of the mutagenic activity of the Nishitakase River, respectively. Here we determined the mutation spectra induced by these two mutagens in TA98, TA100, and TA104 at 30-35, 8-10, and 2x, respectively, above the background. In TA98, the PBTA compounds produced identical mutation spectra, with 100% of the revertants containing the hotspot 2-base deletion of CG within the (CG)(4) sequence. In TA100, 73% of the revertants were GC-->TA transversions, with most of the remaining being GC-->AT transitions; the spectra produced by the two compounds in TA100 were not significantly different (p=0.8). In TA104, as in TA100, the majority (83%-87%) of the revertants were GC-->TA transversions, with most of the remaining revertants (11%-13%) being AT-->TA transversions. Thus, 83%-87% of the mutations induced by the PBTA compounds in TA104 were at G/C sites. The mutation spectra produced by the two compounds in TA104 were not significantly different (p0.08). PBTA-1 and PBTA-2 are structurally similar and have similar mutagenic potencies and mutation spectra in the respective strains. The mutation spectra produced by the PBTA compounds (100% hotspot deletion in TA98 and primarily GC-->TA transversions in TA100 and TA104) are similar to those produced by other potent aromatic amines, which is the class of compounds from which the PBTA mutagens derive.  相似文献   

6.
7.
alpha-Bisabolol (BISA) is a sesquiterpene alcohol found in the oils of chamomile (Matricaria chamomilla) and other plants. BISA has been widely used in dermatological and cosmetic formulations. This study was undertaken to investigate the mutagenicity and antimutagenicity of BISA in the Salmonella/microsome assay. Mutagenicity of BISA was evaluated with TA100, TA98, TA97a and TA1535 Salmonella typhimurium strains, without and with addition of S9 mixture. No increase in the number of his+ revertant colonies over the negative (solvent) control values was observed with any of the four tester strains. In the antimutagenicity assays, BISA was tested up to the highest nontoxic dose (i.e. 50 and 150 microg/plate, with and without S9 mix, respectively) against direct-acting (sodium azide, SA; 4-nitroquinoline-N-oxide, 4-NQNO; 2-nitrofluorene, 2-NF; and nitro-o-phenylenediamine, NPD) as well as indirect-acting (cyclophosphamide, CP; benzo[a]pyrene, B[a]P; aflatoxin B1, AFB1; 2-aminoanthracene, 2-AA; and 2-aminofluorene, 2-AF) mutagens. BISA did not alter mutagenic activity of SA and of NPD, and showed only a weak inhibitory effect on the mutagenicity induced by 4-NQNO and 2-NF. The mutagenic effects of AFB1, CP, B[a]P, 2-AA and 2-AF, on the other hand, were all markedly and dose-dependently reduced by BISA. It was also found that BISA inhibited pentoxyresorufin-o-depentylase (PROD, IC50 2.76 microM) and ethoxyresorufin-o-deethylase (EROD, 33.67 microM), which are markers for cytochromes CYP2B1 and 1A1 in rat liver microsomes. Since CYP2B1 converts AFB1 and CP into mutagenic metabolites, and CYP1A1 activates B[a]P, 2-AA and 2-AF, results suggest that BISA-induced antimutagenicity could be mediated by an inhibitory effect on the metabolic activation of these promutagens.  相似文献   

8.
Previously, we have demonstrated that cadmium acetate significantly induces hprt mutation frequency in Chinese hamster ovary (CHO)-K1 and that 3-amino-1,2,4-triazole (3AT), a catalase inhibitor, potentiates the mutagenicity of cadmium [Chem. Res. Toxicol. 9 (1996) 1360-1367]. In this study, we investigate the role of intracellular peroxide in the molecular nature of mutations induced by cadmium. Using 2',7'-dichlorofluorescin diacetate and fluorescence spectrophotometry, we have shown that cadmium dose-dependently increased the amounts of intracellular peroxide and the levels were significantly enhanced by 3AT. Furthermore, we have characterized and compared the hprt mutation spectra in 6-thioguanine-resistant mutants derived from CHO-K1 cells exposed to 4 microM of cadmium acetate for 4h in the absence and presence of 3AT. The mutation frequency induced by cadmium and cadmium plus 3AT was 11- and 16-fold higher than that observed in untreated populations (2.2 x 10(-6)), respectively. A total of 40 and 51 independent hprt mutants were isolated from cadmium and cadmium plus 3AT treatments for mRNA-polymerase chain reaction (PCR), genomic DNA-PCR and DNA sequencing analyses. 3AT co-administration significantly enhanced the frequency of deletions induced by cadmium. Cadmium induced more transversions than transitions. In contrast, 3AT co-administration increased the frequency of GC-->AT transitions and decreased the frequencies of TA-->AT and TA-->GC transversions. Together, the results suggest that intracellular catalase is important to prevent the formation of oxidative DNA damage as well as deletions and GC-->AT transitions upon cadmium exposure.  相似文献   

9.
After treatment with nitrite, Chinese cabbage showed direct-acting mutagenicity on Salmonella typhimurium TA100 inducing 3100 revertants per g. One of the mutagen precursors that became mutagenic after nitrite treatment was isolated, and identified as indole-3-acetonitrile. After treatment with nitrite, 1 mg of indole-3-acetonitrile induced 17 400 revertants of TA100 and 21 000 revertants of TA98 without S9 mix.  相似文献   

10.
The Escherichia coli AlkB protein encoded by alkB gene was recently found to repair cytotoxic DNA lesions 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) by using a novel iron-catalysed oxidative demethylation mechanism that protects the cell from the toxic effects of methylating agents. Mutation in alkB results in increased sensitivity to MMS and elevated level of MMS-induced mutations. The aim of this study was to analyse the mutational specificity of alkB117 in a system developed by J.H. Miller involving two sets of E. coli lacZ mutants, CC101-106 allowing the identification of base pair substitutions, and CC107-CC111 indicating frameshift mutations. Of the six possible base substitutions, the presence of alkB117 allele led to an increased level of GC-->AT transitions and GC-->TA and AT-->TA transversions. After MMS treatment the level of GC-->AT transitions increased the most, 22-fold. Among frameshift mutations, the most numerous were -2CG, -1G, and -1A deletions and +1G insertion. MMS treatment appreciably increased all of the above types of frameshifts, with additional appearance of the +1A insertion.  相似文献   

11.
Broiled chicken, pork, mutton, beef and sun-dried sardine were found to yield direct-acting mutagenicity after nitrite treatment. When 50% methanol extracts of cooked foods were treated with 50 mM nitrite at pH 3 for 1 h at 37 degrees C, they induced 3800-17,900 revertants of Salmonella typhimurium TA100 and 15,000-43,600 revertants of TA98 per g. In contrast, raw meat and uncooked sun-dried sardine showed little or no mutagenicity after nitrite treatment. Treatment of broiled chicken with 0.5-3 mM nitrite, which is a physiologically feasible concentration in the human stomach under some conditions, induced direct-acting mutagenicity. When broiled chicken was treated with 1 mM nitrite at pH 3 for 1 h at 37 degrees C, its mutagenicities on TA100 and TA98 without S9 mix were 7100 and 5400 revertants/g, respectively.  相似文献   

12.
We compared several phenylenediamines (4-nitro-o-phenylenediamine, NOP; 2-nitro-p-phenylenediamine, NPD; o-phenylenediamine, OPD; p-phenylenediamine, PPD; m-phenylenediamine, MPD) and aniline (ANL) for mutagenicity to Salmonella directly and following activation by plant and mammalian hepatic S9 using plate incorporation and preincubation protocols. In addition, we assayed each chemical for activation by intact plant cells using the plant cell/microbe coincubation protocol. At the concentrations tested, NOP, NPD, OPD, MPD and ANL were active in one or more assays. NPD, OPD and MPD were activated by mammalian hepatic S9 in one or more assay and each was activated by plant S9 or intact plant cells. ANL was mutagenic only in the presence of plant S9. PPD was not active under any of the test conditions.  相似文献   

13.
We determined the mutation spectra in Salmonella of four chlorinated butenoic acid analogues (BA-1 through BA-4) of the drinking water mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and compared the results with those generated previously by us for MX and a related compound, MCF. We then considered relationships between the properties of mutagenic potency and mutational specificity for these six chlorinated butenoic acid analogues. In TA98, the three most potent mutagens, BA-3, BA-4, MX, and the organic extract, all induced large percentages of complex frameshifts (33-67%), which distinguish these agents from any other class of compound studied previously. In TA100, which has only GC sites for mutation recovery, >71% of the mutations induced by all of the agents were GC-->TA transversions. The availability of both GC and TA sites for mutation in TA104 resulted in greater distinctions in mutational specificity than in TA100. MX targeted GC sites almost exclusively (98%); the structurally similar BA-4 and BA-2 produced mutations at similar frequencies at both GC and AT sites; and the structurally similar BA-3 and BA-1 induced most mutations at AT sites (69%). Thus, large variations in structural properties influencing relative mutagenic potency appeared to be distinct from the more localized similar structural features influencing mutagenic specificity in TA104. Among a set of physicochemical properties examined for the six butenoic acids, a significant correlation was found between pK(a) and mutagenic potency in TA100, even when the unionized fraction of the activity dose was considered. In addition, a correlation in CLOGP for BA-1 to BA-4 suggested a role for bioavailability in determining mutagenic potency. These results illustrate the potential value of structural analyses for exploring the relationship between chemical structure and mutational mechanisms. To our knowledge, this is the first study in which such analyses have been applied to structural analogues for which both mutagenic potency and mutation spectra date were available.  相似文献   

14.
Previously, Alternaria extract and metabolite mutagenicities+/-nitrosylation were characterized using Ames Salmonella strains TA98 and TA100, which are both reverted at GC sites. To examine other targets for mutation, the metabolites Altertoxin I (ATX I), Altenuene (ALT), Alternariol (AOH), Alternariol monomethyl ether (AME), Tentoxin (TENT), Tenuazonic acid (TA) and Radicinin (RAD) were reexamined+/-nitrosylation, using Ames Salmonella strain TA97, sensitive to frameshift mutations at a run of C's, as well as strains TA102 and TA104, reverted by base pair mutations at AT sites and more sensitive to oxidative damage. ATX I was also assessed for mammalian mutagenicity at the Hprt gene locus in Chinese hamster V79 lung fibroblasts and rat hepatoma H4IIE cells. When tested from 1 to 100 microg/plate without nitrosylation, ATX I was mutagenic in TA102+/-rat liver S9 for activation and weakly mutagenic in TA104+/-S9, demonstrating direct-acting AT base pair mutagenicity. AOH was also directly mutagenic at AT sites in TA102+/-S9 while AME was weakly mutagenic in TA102+/-S9 and TA104+S9. Nitrosylation of ATX I enhanced mutagenicity at AT sites in TA104+/-S9 but produced little change in TA102+/-S9 compared to native ATX I. However, nitrosylated ATX I generated a potent direct-acting frameshift mutagen at C sites in TA97+/-S9. While ATX I was not mutagenic in either V79 cells or H4IIE cells, 5 and 10 microg/ml nitrosylated ATX I produced a doubling of 6-thioguanine resistant V79 colonies and 0.5 and 1 microg/ml were mutagenic to H4IIE cells, becoming toxic at higher concentrations. These results suggest ATX I, AME and AOH induce mutations at AT sites, possibly through oxidative damage, with nitrosylation enhancing ATX I frameshift mutagenicity at runs of C's. Nitrosylated ATX I was also directly mutagenic in mammalian test systems.  相似文献   

15.
Diethylstilbestrol was tested for mutagenicity with his- S. typhimurium strains under 10 different matabolic situations (no exogenous metabolizing system; S9 mix from liver homogenate of rats induced with Aroclor 1254, with or without inhibition of epoxide hydratase; liver and/or kidney S9 mix from control or hamsters treated with Aroclor 1254; horse-radish peroxidase + H2O2). Under none of these conditions did diethylstilbestrol give any indication of a mutagenic effect. Furthermore, 11 metabolites and other derivatives of diethylstilbestrol, 2 of them potent inducers of sister-chromatid exchange in cultured fibroblasts, were not mutagenic with any of the 4 tester strains (S. typhimurium TA100, TA98, TA1537, TA1535) in the presence or absence of S9 mix from liver homogenate of rats induced with Aroclor 1254. Thus, one of the few known human carcinogens is very resistant to detection by the mammalian enzyme-mediated Salmonella typhimurium mutagenicity test (Ames test). This is especially remarkable since the metabolizing systems used included: (1) some of very high metabolic activity (S9 mix from liver homogenate of rats and hamsters induced with Aroclor 1254); (2) metabolizing systems from organs susceptible to the carcinogenic activity of diethylstilbestrol (hamster kidney); as well as (3) a mixture of (1) and (2) in case both activities are required for the carcinogenic effect in the whole animal.  相似文献   

16.
以60Co-γ射线辐照为参照体系,研究了低能氮离子诱发大肠杆菌利福平抗性突变。结果表明,低能氮离子注入具有损伤轻而突变率较高的特点。碱基置换型突变与其检出频率分析表明,CG→TA、GC→AT、AT→GC转换与AT→TA颠换为低能氮离子诱发大肠杆菌活体细胞内的高频突变,占检出总突变数的875% (77/88)。并鉴定出大肠杆菌rpoB基因中两个新的利福平抗性决定位点。位点一位于1551位鸟嘌呤脱氧核苷酸(dG)被胞嘧啶脱氧核苷酸(dC)取代,导致Gln517 (谷氨酰胺残基) 被His (组氨酸) 替代;位点二位于1692的胞嘧啶脱氧核苷酸(dC)被胸腺嘧啶脱氧核苷酸(dT)替代,导致Pro564 (脯氨酸残基) 被Leu (亮氨酸) 取代,使突变子产生抗性。其中位点一还未见报道,位点二的同义突变已有报道,但1692位点C到T的核苷酸突变并没有得到鉴定。  相似文献   

17.
Cyclopenta[cd]pyrene (1) and its congeners dicyclopenta[cd,mn]- (2), dicyclopenta[cd,fg]- (3), dicyclopenta[cd,jk]pyrene (4), which were all identified as constituents of combustion exhausts, as well as their partially hydrogenated derivatives 3,4-dihydrocyclopenta[cd]- (5), 1,2,4,5-tetrahydrodicyclopenta[cd,mn]- (6), 5,6,7,8-tetrahydrodicyclopenta[cd,fg]- (7) and 1,2,6,7-tetrahydrodicyclopenta[cd,jk]pyrene (8), were assayed for mutagenicity in the Salmonella typhimurium strain TA98 using different concentrations of microsomal protein in the metabolic activation system (S9-mix, with S9-fraction from liver of Aroclor-1254-treated rats: 2, 4 and 10% (v/v), respectively). Whereas a positive mutagenic response is found for 1-4 in the presence of S9-mix, 5-8 exert no mutagenicity either with or without S9-mix. Since for 1-4 the highest response is observed with S9-mix 2% (v/v) instead of the standard 4% (v/v), a one-step activation pathway, i.e. epoxidation of the five-membered ring olefinic bonds, appears to be operational. Surprisingly, 3 and, to a lesser extent, 2 (11.7 versus 4.2 His revertants/nmol) also give a positive response in the absence of S9-mix. Hence, 2 and 3 are expected to contribute to the direct-acting mutagenicity of the non-polar fraction of combustion exhausts. Presumably for the direct-acting mutagenicity one-electron transfer processes play a role in bioactivation. The experimental observations are supported by semi-empirical AM1 calculations on the possible ultimate metabolites, i.e. mono-epoxides (2a-4a), cis-di-epoxides (2b-4b) and trans-di-epoxides (2c-4c) and the related mono-hydroxy carbocations (2d-4d and 2e-4e), and the radical anions 1*(-)-4*(-).  相似文献   

18.
The mutagenic activities of 2,6-dinitrotoluene (2,6-DNT) and its 6 metabolites, and their 8 related compounds were examined using Salmonella typhimurium strains TA98 and TA100 in the absence or presence of S9 mix. 2,6-DNT itself showed no mutagenicity toward either strain, but 2,6-dinitrobenzaldehyde (2,6-DNBAl), one of the metabolites of 2,6-DNT, showed the highest mutagenic activity in strain TA100. 2,6-DNBAl was a direct-acting mutagen, not requiring metabolic activation. The other compounds containing nitro groups showed weak or no mutagenic activity. This result suggests that the direct-acting mutagenicity of 2,6-DNBAl is mainly due to the aldehyde group of the 2,6-DNBAl molecule.  相似文献   

19.
When a mixture of N-nitrosomorpholine and S. typhimurium TA100 in saline was irradiated with near-ultraviolet light, mutagenesis of the bacteria took place. The same observation was made with S. typhimurium TA1535, E. coli WP2 uvrA, pKM101 and uvrA/pKM101. Several other nitrosamines showed ed the same, but weaker, effect. Evidence is presented to indicate that the mutagenicity arises from the cellular phosphate-mediated photochemical formation of direct-acting mutagen from the nitrosamine.  相似文献   

20.
Exposures of Salmonella typhimurium strain TA100 with and without S9 metabolic activation to low ppm levels of pure peroxyacetyl nitrate (PAN) in the gas phase were conducted. Measurements of the gas-phase PAN exposure concentration and the concentration of its decomposition products in surrogate test media led to a measured mutagenic activity of 34 +/- 5 revertants/mumole. The data indicate that PAN is a relatively weak direct-acting mutagen with TA100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号