首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular pathogenesis of adrenal myelolipoma is unclear. Endocrine activity of these tumors and association with other endocrine tumors have stimulated the hypothesis that it may belong to the group of sporadic tumors caused by defects of the gene responsible for multiple endocrine neoplasia type I (MEN-I). DNA of blood and tumoral sections from two patients with adrenal myelolipoma were analyzed by examination of variable number of tandem repeats (VNTR) loci PYGM, D11S987, D11S480, and D11S449 on chromosome 11q13 and by complete direct DNA sequencing of all coding exons and splice junctions of the MEN-I gene. Menin expression was examined by RT-PCR. RT-PCR did not detect menin expression in one adrenal myelolipoma. No loss of heterozygozity on chromosome 11q13 was identified. Intragenic heterozygozity was retained in codon 418 of the menin gene in both patients. No mutation was identified in the coding exons of the menin gene. Complete DNA sequencing yielded no hint that defects of the MEN-I gene are responsible for the formation of adrenal myelolipomas. Adrenal myelolipomas do not share the loss of heterozygozity on chromosome 11q13 observed in some benign adenomatous and many malignant adrenocortical tumors.  相似文献   

2.
The discovery of mutations of the menin gene in a few multiple endocrine neoplasma type 1 (MEN I)-associated lipomas and loss of heterozygosity (LOH) on chromosome 11q13 in some sporadic lipomas has stimulated the hypothesis that lipomas may belong to the group of sporadic tumors caused by defects of the gene responsible for MEN I. Since it is unclear if the above hypothesis applies to all patients with lipoma or just to specific subsets, we searched to enlarge the database on this topic. For this purpose, we identified two patients with multiple cutaneous lipomas. One had an additional pituitary adenoma and familial presentation of multiple lipomas, the other had recurrent goiter in the setting of a family history of adenomatous goiter. Deoxyribonucleic acid (DNA) was analyzed by complete direct DNA sequencing of all coding exons and splice junctions of the MEN I gene. No mutation was identified in the coding exons of the menin gene. In contrast to former data on sporadic lipomas, these data are the first to render evidence that mutations of the MEN I gene may not be responsible for the formation of multiple lipomas, even if they appear in the context of other endocrine tumors.  相似文献   

3.
Summary Gastrinomas are pancreatic endocrine neoplasms that arise either sporadically or are inherited as part of the multiple endocrine neoplasia type I syndrome (MEN I). Loss of heterozygosity (LOH) in the region flanking the MEN I gene at chromosome 11q13 has been documented in a few sporadic and familial pancreatic endocrine tumors, but not previously in sporadic gastrinomas. It has therefore been suggested that gastrinomas develop by a mechanism different from other tumors associated with the MENI syndsrome. We report LOH on chromosome 11 in 5 of 11 sporadic gastrinomas. Four of these tumors have LOH for markers flanking the MEN I region. Molecular evaluation of segments of chromosomes 3, 13, and 17 known to contain cloned or putative tumor suppressor genes fail to show LOH except at one locus in one tumor. These data suggest that a tumor suppressor DNA segment exists at 11q13 that may be involved in the development of sporadic gastrinomas.  相似文献   

4.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder in which affected individuals develop tumors primarily in the parathyroids, anterior pituitary, endocrine pancreas, and duodenum. The locus for MEN1 is tightly linked to the marker PYGM on chromosome 11q13, and linkage analysis has previously placed the MEN1 gene within a 2-Mb interval flanked by markers D11S1883 and D11S449. Loss of heterozygosity (LOH) studies in MEN1 and sporadic tumors have helped narrow the location of the gene to a 600-kb interval between PYGM and D11S449. Eighteen new polymerase chain reaction (PCR)-based polymorphic markers were generated for the MEN1 region, with ten mapping to the PYGM-D11S449 interval. These new markers, along with 14 previously known polymorphic markers, were precisely mapped on a 2.8-Mb (D11S480–D11S913) high-density clone contig-based, physical map generated for the MEN1 region. Received: 21 February 1997 / Accepted: 5 June 1997  相似文献   

5.
Multiple endocrine neoplasia type 1 (MEN1) syndrome is a rare hereditary cancer disorder characterized by tumors of the parathyroids, of the neuroendocrine cells, of the gastro-entero-pancreatic tract, of the anterior pituitary, and by non-endocrine neoplasms and lesions. MEN1 gene, a tumor suppressor gene, encodes menin protein. Loss of heterozygosity at 11q13 is typical of MEN1 tumors, in agreement with the Knudson's two-hit hypothesis. In silico analysis with Target Scan, Miranda and Pictar-Vert softwares for the prediction of miRNA targets indicated miR-24-1 as capable to bind to the 3'UTR of MEN1 mRNA. We investigated this possibility by analysis of miR-24-1 expression profiles in parathyroid adenomatous tissues from MEN1 gene mutation carriers, in their sporadic non-MEN1 counterparts, and in normal parathyroid tissue. Interestingly, the MEN1 tumorigenesis seems to be under the control of a "negative feedback loop" between miR-24-1 and menin protein, that mimics the second hit of Knudson's hypothesis and that could buffer the effect of the stochastic factors that contribute to the onset and progression of this disease. Our data show an alternative way to MEN1 tumorigenesis and, probably, to the "two-hit dogma". The functional significance of this regulatory mechanism in MEN1 tumorigenesis is also the basis for opening future developments of RNA antagomir(s)-based strategies in the in vivo control of tumorigenesis in MEN1 carriers.  相似文献   

6.
The MEN1 gene is considered to be a tumour suppressor gene and has been localised to a 1-Mb region of 11q13.1. In this study, we report the physical localisation of the 13-kDa FK506 and rapamycin binding protein gene (FKBP2) to the cosmid marker D11S750, which is located inside the MEN1 region of non-recombination. The product of this gene is involved in signal transduction and is thus a candidate cell growth regulator or tumour suppressor gene. Northern studies have revealed that FKBP2 is expressed in those tissues predisposed to hyperplasia in MEN1; however, single-strand conformation polymorphism analysis and direct sequencing of DNAs from affected members of MEN1 kindreds and sporadic tumour DNAs have been performed and no mutations have been found. These studies exclude FKBP2 as a candidate gene for MEN1.  相似文献   

7.
Two classes of genes are the targets of mutations involved in human tumorigenesis: oncogenes, the activation of which leads to growth stimulation, and tumor suppressor genes, which become tumorigenic through loss of function, often through allelic deletion. To obtain evidence for a role for tumor suppressor genes in thyroid tumorigenesis, we examined DNA from 80 thyroid neoplasms for loss of heterozygosity in multiple chromosomal loci using 19 polymorphic genomic probes. None of the informative thyroid tumors studied had allelic loss detected with probes for chromosome 2q (D2S44), 3p (D3F15S2, D3S32), 3q (D3S46), 4p (D4S125), 6p (D6S40), 8q (D8S39), 9q (D9S7), 12p (D12S14), 13q (D13S52), 17p (D17S30), or 18q (D18S10). One of eight of the follicular adenomas had a 10q deletion detected with marker D10S15, and one of 26 had a 10q deletion detected with D10S25. One of two of the follicular carcinomas had an 11p deletion in the H-ras locus. The most significant findings were on chromosome 11q13, the site containing the putative gene predisposing to multiple endocrine neoplasia type I. Four of 27 follicular adenomas had loss of heterozygosity for probes in this region. Allelic deletions were detected with the following probes: D11S149, PYGM, D11S146, and INT2. None of 13 informative papillary carcinomas and none of two follicular carcinomas had loss of heterozygosity detectable with these 11q13 markers. Allelic loss is a relatively infrequent event in human thyroid tumors. Deletions of chromosome 11q13 are present in about 14% of follicular, but not papillary, neoplasms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Forty loci (16 polymorphic and 24 non-polymorphic) together with 23 cosmids isolated from a chromosome 11-specific library were used to construct a detailed genetic map of 11p13-11g13. The map was constructed by using a panel of 13 somatic cell hybrids that sub-divided this region into 19 intervals, a meiotic mapping panel of 33 multiple endocrine neoplasia type 1 (MEN1) families (134 affected and 269 unaffected members) and a mitotic mapping panel that was used to identify loss of heterozygosity in 38 MENI-associated tumours. The results defined the most likely order of the 16 loci as being: 11pter-D11S871(D11S288, D11S149)-11cen-CNTF-PGA-ROM1-D11S480-PYGM-SEA-D11S913-D115970-D11S97-D11S146-INT2-D11S971-D11S533-11gter. The meiotic mapping studies indicated that the most likely location of the MEN1 gene was in the interval flanked by PYGM and D11S97, and the results of mitotic mapping suggested a possible location of the MEN1 gene telomeric to SEA. Mapping studies of the gene encoding μ-calpain (CAPN1) located CAPN1 to llg13 and in the vicinity of the MEN1 locus. However, mutational analysis studies did not detect any germ-line CAPN1 DNA sequence abnormalities in 47 unrelated MEN1 patients and the results therefore exclude CAPN1 as the MEN1 gene. The detailed genetic map that has been constructed of the 11p13-11g13 region should facilitate the construction of a physical map and the identification of candidate genes for disease loci mapped to this region.  相似文献   

9.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant syndrome predisposing to tumors of the parathyroid, endocrine pancreas, anterior pituitary, adrenal glands, and diffuse neuroendocrine tissues. The MEN1 gene has been assigned, by linkage analysis and loss of heterozygosity, to chromosome 11q13 and recently has been identified by positional cloning. In this study, a total of 84 families and/or isolated patients with either MEN1 or MEN1-related inherited endocrine tumors were screened for MEN1 germ-line mutations, by heteroduplex and sequence analysis of the MEN1 gene-coding region and untranslated exon 1. Germ-line MEN1 alterations were identified in 47/54 (87%) MEN1 families, in 9/11 (82%) isolated MEN1 patients, and in only 6/19 (31.5%) atypical MEN1-related inherited cases. We characterized 52 distinct mutations in a total of 62 MEN1 germ-line alterations. Thirty-five of the 52 mutations were frameshifts and nonsense mutations predicted to encode for a truncated MEN1 protein. We identified eight missense mutations and five in-frame deletions over the entire coding sequence. Six mutations were observed more than once in familial MEN1. Haplotype analysis in families with identical mutations indicate that these occurrences reflected mainly independent mutational events. No MEN1 germ-line mutations were found in 7/54 (13%) MEN1 families, in 2/11 (18%) isolated MEN1 cases, in 13/19 (68. 5%) MEN1-related cases, and in a kindred with familial isolated hyperparathyroidism. Two hundred twenty gene carriers (167 affected and 53 unaffected) were identified. No evidence of genotype-phenotype correlation was found. Age-related penetrance was estimated to be >95% at age >30 years. Our results add to the diversity of MEN1 germ-line mutations and provide new tools in genetic screening of MEN1 and clinically related cases.  相似文献   

10.
Substantial genetic evidence suggests that chromosome 11q is involved in regulating initiation and progression of malignant melanomas. Mutations of the MEN1 gene, located in chromosome 11q13, predispose individuals to the multiple endocrine neoplasia type 1 (MEN1) familial syndrome. MEN1 patients develop primary malignant melanoma, suggesting a potential link between MEN1 syndrome and development of melanomas, but the precise molecular mechanism is poorly understood. Here we show that the MEN1 gene suppresses malignant phenotypes of melanoma cells through multiple signalling pathways. Ectopic expression of menin, the product of MEN1 gene, significantly inhibited melanoma cell proliferation and migration in vitro and in vivo. The inhibition was partly achieved through suppressing expression of growth factor pleiotrophin (PTN) and receptor protein tyrosine phosphatase (RPTP) β/ζ, accompanied with the reduced expression of phosphatidylinositol 3-kinase (pI3K) and decreased phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase (ERK1/2). Interestingly, reduced expression of menin was associated with hypermethylation of the CpG islands of the MEN1 promoter in melanoma cells. Taken together, these findings suggest a previously unappreciated function for menin in suppressing malignant phenotypes of melanomas and unravel a novel mechanism involving in regulating PTN signalling by menin in development and progression of melanomas.  相似文献   

11.
The multiple endocrine neoplasia type 1 (MEN1) locus has been previously localised to 11q13 by combined tumour deletion mapping and linkage studies and a 3.8-cM region flanked by PYGM and D11S97 has been defined. The zinc finger in the MEN1 locus (ZFM1) gene, which has also been mapped to this region, represents a candidate gene for MEN1. The ZFM1 gene, which consists of 14 exons, encodes a 623-amino acid protein and exons 2, 8 and 12 encode the putative nuclear localisation signal, a zinc finger motif, and a proline-rich region, respectively. We have investigated these potentially functional regions for germ-line mutations by single-stranded conformational polymorphism (SSCP) analysis in 64 unrelated MEN1 patients. In addition, we performed DNA sequence analysis of all the 14 exons and 13 of the 26 exon-intron boundaries in four unrelated MEN1 patients. A 6-bp deletion that resulted in the loss of two proline residues at codons 479 and 480 in exon 12 was found in one MEN1 patient. However, this did not co-segregate with MEN1 in the family and represented a rare polymorphism. Analysis by SSCP, DNA sequencing, northern blotting, Southern blotting and pulsed field gel electrophoresis revealed no additional genetic abnormalities of ZFM1 in the other MEN1 patients. Thus, our results indicate that ZFM1 is excluded as a candidate gene for MEN1. Received: 29 October 1996 / Revised: 16 December 1996  相似文献   

12.
Various genetic loci harboring oncogenes, tumor suppressor genes, and genes for calcium receptors have been implicated in the development of parathyroid tumors. We have carried out loss of heterozygosity (LOH) studies in chromosomes 1p, 1q, 3q, 6q, 11q, 13q, 15q, and X in a total of 89 benign parathyroid tumors. Of these, 28 were sporadic parathyroid adenomas from patients with no family history of the disease, 41 were secondary parathyroid tumors, 5 were from patients with a history of previous irradiation to the neck, 12 were from patients with a family history of hyperparathyroidism, and 3 were parathyroid tumors related to multiple endocrine neoplasia type 1 (MEN1). In addition, we determined the chromosomal localization of a second putative calcium-sensing receptor, CaS, for inclusion in the LOH studies. Based on analysis of somatic cell hybrids and fluorescent in situ hybridization to metaphase chromsomes, the gene for CaS was mapped to chromosomal region 2q21-q22. The following results were obtained from the LOH studies: (1) out of the 24 tumors that showed LOH, only 4 had more than one chromosomal region involved, (2) in the tumours from uremic patients, LOH of chromosome 3q was detected in a subset of the tumors, (3) LOH of the MEN1 region at 11q13 was the most common abnormality found in both MEN1-related and sporadic parathyroid tumours but was not a feature of the other forms of parathyroid tumors, (4) LOH in 1p and 6q was not as frequent as previously reported, and (5) tumor suppressor genes in 1q and X might have played a role, particularly on the X chromosome, in the case of familial parathyroid adenomas. We therefore conclude that the tumorigenesis of familial, sporadic, and uremic hyperparathyroidism involves different genetic triggers in a non-progressive pattern. Received: 28 October 1996 / Revised: 16 November 1996  相似文献   

13.
MEN1 is a tumor suppressor gene that is responsible for multiple endocrine neoplasia type 1 (MEN1) and that encodes a 610-amino-acid protein, called menin. While the majority of germ line mutations identified in MEN1 patients are frameshift and nonsense mutations resulting in truncation of the menin protein, various missense mutations have been identified whose effects on menin activity are unclear. For this study, we analyzed a series of menin proteins with single amino acid alterations and found that all of the MEN1-causing missense mutations tested led to greatly diminished levels of the affected proteins in comparison with wild-type and benign polymorphic menin protein levels. We demonstrate here that the reduced levels of the mutant proteins are due to rapid degradation via the ubiquitin-proteasome pathway. Furthermore, the mutants, but not wild-type menin, interact both with the molecular chaperone Hsp70 and with the Hsp70-associated ubiquitin ligase CHIP, and the overexpression of CHIP promotes the ubiquitination of the menin mutants in vivo. These findings reveal that MEN1-causing missense mutations lead to a loss of function of menin due to enhanced proteolytic degradation, which may be a common mechanism for inactivating tumor suppressor gene products in familial cancer.  相似文献   

14.
The multiple endocrine neoplasia type 1 (MEN1) locus has been previously localised to 11q13 by combined tumour deletion mapping and recombination studies, and a 0.5-Mb region, flanked by PYGM and D11S449, has been defined. In the course of constructing a contig, we have identified the location of the gene encoding the B56β subunit of protein phosphatase 2A (PP2A), which is involved in cell signal transduction pathways and thus represents a candidate gene for MEN1. We have searched for mutations in the PP2A-B56β coding region, together with the 5′ and 3′ untranslated regions in six MEN1 patients. DNA sequence abnormalities were not identified and thus the PP2A-B56β gene is excluded as the candidate gene for MEN1. However, our precise localisation of PP2A-B56β to this region of 11q13 may help in elucidating the basis for other disease genes mapping to this gene-rich region. Received: 17 April 1997 / Accepted: 22 April 1997  相似文献   

15.
16.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder with a high penetrance characterized by tumors of the parathyroid glands, the endocrine pancreas, and the anterior pituitary. TheMEN1gene, a putative tumor suppressor gene, has been mapped to a 3- to 8-cM region in chromosome 11q13 but it remains elusive as yet. We have combined the efforts and resources from four laboratories to form the European Consortium on MEN1 with the aims of establishing the genetic and the physical maps of 11q13 and of further narrowing the MEN1 region. A 5-Mb integrated map of the region was established by fluorescencein situhybridization on both metaphase chromosomes and DNA fibers, by hybridization to DNA from somatic cell hybrids containing various parts of human chromosome 11, by long-range restriction mapping, and by characterization of YACs and cosmids. Polymorphic markers were positioned and ordered by physical mapping and genetic linkage in 86 MEN1 families with 452 affected individuals. Two critical recombinants identified in two affected cases placed theMEN1gene in an ≈2-Mb region aroundPYGM,flanked by D11S1883 and D11S449.  相似文献   

17.
18.
19.
Von Hippel-Lindau (VHL) disease is a dominantly inherited familial cancer syndrome characterised by the development of retinal and central nervous system haemangioblastomas, renal cell carcinoma (RCC), phaeochromocytoma and pancreatic tumours. The VHL disease gene maps to chromosome 3p25-p26. To investigate the mechanism of tumourigenesis in VHL disease, we analysed 24 paired blood/tumour DNA samples from 20 VHL patients for allele loss on chromosome 3p and in the region of tumour suppressor genes on chromosomes 5, 11, 13, 17 and 22. Nine out of 24 tumours showed loss of heterozygosity (LOH) at at least one locus on chromosome 3p and in each case the LOH included the region to which the VHL gene has been mapped. Chromosome 3p allele loss was found in four tumour types (RCC, haemangioblastoma, phaeochromocytoma and pancreatic tumour) suggesting a common mechanism of tumourigenesis in all types of tumour in VHL disease. The smallest region of overlap was between D3S1038 and D3S18, a region that corresponds to the target region for the VHL gene from genetic linkage studies. The parental origin of the chromosome 3p25-p26 allele loss could be determined in seven tumours from seven familial cases; in each tumour, the allele lost had been inherited from the unaffected parent. Our results suggest that the VHL disease gene functions as a recessive tumour suppressor gene and that inactivation of both alleles of the VHL gene is the critical event in the pathogenesis of VHL neoplasms. Four VHL tumours showed LOH on other chromosomes (5q21, 13q, 17q) indicating that homozygous VHL gene mutations may be required but may not be sufficient for tumourigenesis in VHL disease.  相似文献   

20.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder that predisposes affected individuals to neoplasms of the parathyroid glands, endocrine pancreas, anterior pituitary, and carcinoids. The MEN1 locus has been localized by family studies to 11q13, flanked by markers PGA and D11S97. Eight new polymorphisms located in three separate radiation-reduced somatic cell hybrid segregation groups were developed. The order of the new markers, within the context of previously described loci, was determined by linkage analysis on the Venezuelan reference pedigree. Four independent MEN1 families, consisting of 57 affected individuals, and 70 individuals at-risk for the disease were genotyped. Sixteen people inherited a chromosome that shows recombination between a linked marker and the disease. The nearest proximal and distal markers that show recombination with the disease are D11S822 and GSTP1, respectively, thereby narrowing the candidate region for MEN1 by 50% on the distal side. Using these loci in haplotype analysis, an accurate presymptomatic molecular diagnostic test has been developed. These new markers in 11q13 linked to MEN1 also facilitate the genetic and physical characterization of this very gene-rich region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号