首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hobbie EA  Jumpponen A  Trappe J 《Oecologia》2005,146(2):258-268
Nitrogen isotopes (15N/14N ratios, expressed as δ15N values) are useful markers of the mycorrhizal role in plant nitrogen supply because discrimination against 15N during creation of transfer compounds within mycorrhizal fungi decreases the 15N/14N in plants (low δ15N) and increases the 15N/14N of the fungi (high δ15N). Analytical models of 15N distribution would be helpful in interpreting δ15N patterns in fungi and plants. To compare different analytical models, we measured nitrogen isotope patterns in soils, saprotrophic fungi, ectomycorrhizal fungi, and plants with different mycorrhizal habits on a glacier foreland exposed during the last 100 years of glacial retreat and on adjacent non-glaciated terrain. Since plants during early primary succession may have only limited access to propagules of mycorrhizal fungi, we hypothesized that mycorrhizal plants would initially be similar to nonmycorrhizal plants in δ15N and then decrease, if mycorrhizal colonization were an important factor influencing plant δ15N. As hypothesized, plants with different mycorrhizal habits initially showed similar δ15N values (−4 to −6‰ relative to the standard of atmospheric N2 at 0‰), corresponding to low mycorrhizal colonization in all plant species and an absence of ectomycorrhizal sporocarps. In later successional stages where ectomycorrhizal sporocarps were present, most ectomycorrhizal and ericoid mycorrhizal plants declined by 5–6‰ in δ15N, suggesting transfer of 15N-depleted N from fungi to plants. The values recorded (−8 to −11‰) are among the lowest yet observed in vascular plants. In contrast, the δ15N of nonmycorrhizal plants and arbuscular mycorrhizal plants declined only slightly or not at all. On the forefront, most ectomycorrhizal and saprotrophic fungi were similar in δ15N (−1 to −3‰), but the host-specific ectomycorrhizal fungus Cortinarius tenebricus had values of up to 7‰. Plants, fungi and soil were at least 4‰ higher in δ15N from the mature site than in recently exposed sites. On both the forefront and the mature site, host-specific ectomycorrhizal fungi had higher δ15N values than ectomycorrhizal fungi with a broad host range. From these isotopic patterns, we conclude:(1) large enrichments in 15N of many ectomycorrhizal fungi relative to co-occurring ectomycorrhizal plants are best explained by treating the plant-fungal-soil system as a closed system with a discrimination against 15N of 8–10‰ during transfer from fungi to plants, (2) based on models of 15N mass balance, ericoid and ectomycorrhizal fungi retain up to two-thirds of the N in the plant-mycorrhizal system under the N-limited conditions at forefront sites, (3) sporocarps are probably enriched in 15N by an additional 3‰ relative to available nitrogen, and (4) host-specific ectomycorrhizal fungi may transfer more N to plant hosts than non-host-specific ectomycorrhizal fungi. Our study confirms that nitrogen isotopes are a powerful tool for probing nitrogen dynamics between mycorrhizal fungi and associated plants.  相似文献   

2.
The successful use of natural abundances of carbon (C) and nitrogen (N) isotopes in the study of ecosystem dynamics suggests that isotopic measurements could yield new insights into the role of fungi in nitrogen and carbon cycling. Sporocarps of mycorrhizal and saprotrophic fungi, vegetation, and soils were collected in young, deciduous-dominated sites and older, coniferous-dominated sites along a successional sequence at Glacier Bay National Park, Alaska. Mycorrhizal fungi had consistently higher δ15N and lower δ13C values than saprotrophic fungi. Foliar δ13C values were always isotopically depleted relative to both fungal types. Foliar δ15N values were usually, but not always, more depleted than those in saprotrophic fungi, and were consistently more depleted than in mycorrhizal fungi. We hypothesize that an apparent isotopic fractionation by mycorrhizal fungi during the transfer of nitrogen to plants may be attributed to enzymatic reactions within the fungi producing isotopically depleted amino acids, which are subsequently passed on to plant symbionts. An increasing difference between soil mineral nitrogen δ15N and foliar δ15N in later succession might therefore be a consequence of greater reliance on mycorrhizal symbionts for nitrogen supply under nitrogen-limited conditions. Carbon signatures of mycorrhizal fungi may be more enriched than those of foliage because the fungi use isotopically enriched photosynthate such as simple sugars, in contrast to the mixture of compounds present in leaves. In addition, some 13C fractionation may occur during transport processes from leaves to roots, and during fungal chitin biosynthesis. Stable isotopes have the potential to help clarify the role of fungi in ecosystem processes. Received: 7 January 1998 / Accepted: 9 November 1998  相似文献   

3.
The genus Ramaria is composed of several subgenera that often correspond to specific trophic strategies. Because carbon and nitrogen isotopes can be used to assess fungal trophic status and nitrogen sources, we accordingly carried out an extensive survey of isotopic patterns in archived specimens of Ramaria from Germany and other locations. Isotopic patterns in species generally corresponded to subgeneric affiliations and to the range of different potential substrates, with fungi fruiting on wood and litter (subgenera Asteroramaria and Lentoramaria) much lower in δ15N (≈−3‰) than ectomycorrhizal taxa (≈12‰) (subgenus Ramaria) or taxa fruiting on soil (≈13‰) (subgenus Echinoramaria). Conversely, fungi fruiting on wood and litter were higher in δ13C (−23‰) than those fruiting on soil (≈−27‰), with ectomycorrhizal fungi intermediate (≈−24.5‰). Fungi colonizing mineral soil horizons were about 3‰ enriched in 15N relative to those colonizing both mineral and organic horizons. The high δ15N and low δ13C signatures of taxa fruiting on soil remains unexplained. The high degree of fidelity of isotopic signatures with subgeneric classifications and life history traits suggests that sporocarps are good integrators of patterns of carbon and nitrogen cycling for specific taxa. Archived specimens represent a useful trove of life history information that could be mined without requiring extensive supporting isotopic data from other ecosystem pools.  相似文献   

4.
The hyphae of ectomycorrhizal and ericoid mycorrhizal fungi proliferate in nitrogen (N)-limited forests and tundra where the availability of inorganic N is low; under these conditions the most common fungal species are those capable of protein degradation that can supply their host plants with organic N. Although it is widely understood that these symbiotic fungi supply N to their host plants, the transfer is difficult to quantify in the field. A novel approach uses the natural 15N:14N ratios (expressed as δ15N values) in plants, soils, and mycorrhizal fungi to estimate the fraction of N in symbiotic trees and shrubs that enters through mycorrhizal fungi. This calculation is possible because mycorrhizal fungi discriminate against 15N when they create compounds for transfer to plants; host plants are depleted in 15N, whereas mycorrhizal fungi are enriched in 15N. The amount of carbon (C) supplied to these fungi can be stoichiometrically calculated from the fraction of plant N derived from the symbiosis, the N demand of the plants, the fungal C:N ratio, and the fraction of N retained in the fungi. Up to a third of C allocated belowground, or 20% of net primary production, is used to support ectomycorrhizal fungi. As anthropogenic N inputs increase, the C allocation to fungi decreases and plant δ15N increases. Careful analyses of δ15N patterns in systems dominated by ectomycorrhizal and ericoid mycorrhizal symbioses may reveal the ecosystem-scale effects of alterations in the plant–mycorrhizal symbioses caused by shifts in climate and N deposition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The degree of trophic differentiation of millipedes in taxocenes of temperate and tropical forests was estimated by isotopic analysis. The isotope ratio variation among species was notably wider in a tropical forest (23 millipede species, δ15N ranges within 10‰) than in a temperate broad-leaved forest (9 species, δ15N range less than 3‰). It is suggested that partitioning of food resources among species contributes significantly to the maintenance of high diversity of soil saprotrophic animals in tropical ecosystems.  相似文献   

6.
Nitrogen isotope measurements may provide insights into changing interactions among plants, mycorrhizal fungi, and soil processes across environmental gradients. Here, we report changes in δ15N signatures due to shifts in species composition and nitrogen (N) dynamics. These changes were assessed by measuring fine root biomass, net N mineralization, and N concentrations and δ15N of foliage, fine roots, soil, and mineral N across six sites representing different post-deglaciation ages at Glacier Bay, Alaska. Foliar δ15N varied widely, between 0 and –2‰ for nitrogen-fixing species, between 0 and –7‰ for deciduous non-fixing species, and between 0 and –11‰ for coniferous species. Relatively constant δ15N values for ammonium and generally low levels of soil nitrate suggested that differences in ammonium or nitrate use were not important influences on plant δ15N differences among species at individual sites. In fact, the largest variation among plant δ15N values were observed at the youngest and oldest sites, where soil nitrate concentrations were low. Low mineral N concentrations and low N mineralization at these sites indicated low N availability. The most plausible mechanism to explain low δ15N values in plant foliage was a large isotopic fractionation during transfer of nitrogen from mycorrhizal fungi to plants. Except for N-fixing plants, the foliar δ15N signatures of individual species were generally lower at sites of low N availability, suggesting either an increased fraction of N obtained from mycorrhizal uptake (f), or a reduced proportion of mycorrhizal N transferred to vegetation (T r). Foliar and fine root nitrogen concentrations were also lower at these sites. Foliar N concentrations were significantly correlated with δ15N in foliage of Populus, Salix, Picea, and Tsuga heterophylla, and also in fine roots. The correlation between δ15N and N concentration may reflect strong underlying relationships among N availability, the relative allocation of carbon to mycorrhizal fungi, and shifts in either f or T r. Received: 14 December 1998 / Accepted: 16 August 1999  相似文献   

7.
The majority of chlorophyllous orchids form mycorrhizal associations with so‐called rhizoctonia fungi, a phylogenetically heterogeneous assemblage of predominantly saprotrophic fungi in Ceratobasidiaceae, Tulasnellaceae, and Serendipitaceae. It is still a matter of debate whether adult orchids mainly associated with rhizoctonia species are partially mycoheterotrophic. Here, we investigated the nutritional modes of green and albino variants of Goodyera velutina, an orchid species considered to be mainly associated with Ceratobasidium spp., by measuring their 13C and 15N abundances, and by molecular barcoding of their mycorrhizal fungi. Molecular analysis revealed that both green and albino variants of G. velutina harbored a similar range of mycobionts, mainly saprotrophic Ceratobasidium spp., Tulasnella spp., and ectomycorrhizal Russula spp. In addition, stable isotope analysis revealed that albino variants were significantly enriched in 13C but not so greatly in 15N, suggesting that saprotrophic Ceratobasidium spp. and Tulasnella spp. are their main carbon source. However, in green variants, 13C levels were depleted and those of 15N were indistinguishable from the co‐occurring autotrophic plants. Therefore, we concluded that the albino G. velutina variants are fully mycoheterotrophic plants whose C derives mainly from saprotrophic rhizoctonia, while the green G. velutina variants are mainly autotrophic plants, at least at our study site, in spite of their additional associations with ectomycorrhizal fungi. This is the first report demonstrating that adult nonphotosynthetic albino variants can obtain their nutrition mainly from nonectomycorrhizal rhizoctonia.  相似文献   

8.
Foliar δ15N, %N and %P in the dominant woody and herbaceous species across nutrient gradients in New Zealand restiad (family Restionaceae) raised bogs revealed marked differences in plant δ15N correlations with P. The two heath shrubs, Leptospermum scoparium (Myrtaceae) and Dracophyllum scoparium (Epacridaceae), showed considerable isotopic variation (−2.03 to −15.55‰, and −0.39 to −12.06‰, respectively) across the bogs, with foliar δ15N strongly and positively correlated with P concentrations in foliage and peat, and negatively correlated with foliar N:P ratios. For L. scoparium, the isotopic gradient was not linked to ectomycorrhizal (ECM) fractionation as ECMs occurred only on higher nutrient marginal peats where 15N depletion was least. In strong contrast, restiad species (Empodisma minus Sporadanthus ferrugineus, S. traversii) showed little isotopic variation across the same nutrient gradients. Empodisma minus and S. traversii had δ15N levels consistently around 0‰ (means of −0.12‰ and +0.15‰ respectively), and S. ferrugineus, which co-habited with E. minus, was more depleted (mean −4.97‰). The isotopic differences between heath shrubs and restiads were similar in floristically dissimilar bogs and may be linked to contrasting nutrient demands, acquisition mechanisms, and root morphology. Leptospermum scoparium shrubs on low nutrient peats were stunted, with low tissue P concentrations, and high N:P ratios, suggesting they were P-limited, which was probably exacerbated by markedly reduced mycorrhizal colonisations. The coupling of δ15N depletion and %P in heath shrubs suggests that N fractionation is promoted by P limitation. In contrast, the constancy in δ15N of the restiad species through the N and P gradients suggests that these are not suffering from P limitation.  相似文献   

9.
Stable isotope ratios of sulfur (34S/32S), carbon (13C/12C), and nitrogen (15N/14N) were analyzed in the soft tissues of 12 common species of fish from the near-shore waters of the Peter the Great Bay in the Sea of Japan. The average δ13C values of individual species varied from −20.7‰ for planktivorous fish to −16.8‰ for benthivorous fish, reflecting the growing relative contribution of benthic primary producers to fish nutrition. The majority of the various species representatives studied can be assigned to one trophic level, as indicated by their narrow range of δ15N values (9.9 to 12.6‰). Large interspecific variations were found in the sulfur stable isotope ratios of fish (the mean δ34S values ranged from 11.2 to 19.5‰). This is the result of the different contributions to fish nutrition of infaunal invertebrates that are depleted in 34S due to the microbial food chain of the bottom sediments.  相似文献   

10.
Interpretation of nitrogen isotope signatures using the NIFTE model   总被引:4,自引:0,他引:4  
Nitrogen cycling in forest soils has been intensively studied for many years because nitrogen is often the limiting nutrient for forest growth. Complex interactions between soil, microbes, and plants and the consequent inability to correlate δ15N changes with biologic processes have limited the use of natural abundances of nitrogen isotopes to study nitrogen (N) dynamics. During an investigation of N dynamics along the 250-year-old successional sequence in Glacier Bay, Alaska, United States, we observed several puzzling isotopic patterns, including a consistent decline in δ15N of the late successional dominant Picea at older sites, a lack of agreement between mineral N δ15N and foliar δ15N, and high isotopic signatures for mycorrhizal fungi. In order to understand the mechanisms creating these patterns, we developed a model of N dynamics and N isotopes (Nitrogen Isotope Fluxes in Terrestrial Ecosystems, NIFTE), which simulated the major transformations of the N cycle and predicted isotopic signatures of different plant species and soil pools. Comparisons with field data from five sites along the successional sequence indicated that NIFTE can duplicate observed patterns in δ15N of soil, foliage, and mineral N over time. Different scenarios that could account for the observed isotopic patterns were tested in model simulations. Possible mechanisms included increased isotopic fractionation on mineralization, fractionation during the transfer of nitrogen from mycorrhizal fungi to plants, variable fractionation on uptake by mycorrhizal fungi compared to plants, no fractionation on mycorrhizal transfer, and elimination of mycorrhizal fungi as a pool in the model. The model results suggest that fractionation during mineralization must be small (˜2‰), and that no fractionation occurs during plant or mycorrhizal uptake. A net fractionation during mycorrhizal transfer of nitrogen to vegetation provided the best fit to isotopic data on mineral N, plants, soils, and mycorrhizal fungi. The model and field results indicate that the importance of mycorrhizal fungi to N uptake is probably less under conditions of high N availability. Use of this model should encourage a more rigorous assessment of isotopic signatures in ecosystem studies and provide insights into the biologic transformations which affect those signatures. This should lead to an enhanced understanding of some of the fundamental controls on nitrogen dynamics. Received: 1 July 1998 / Accepted: 23 December 1998  相似文献   

11.
Billings SA  Richter DD 《Oecologia》2006,148(2):325-333
Understanding what governs patterns of soil δ15N and δ13C is limited by the absence of these data assembled throughout the development of individual ecosystems. These patterns are important because stable isotopes of soil organic N and C are integrative indicators of biogeochemical processing of soil organic matter. We examined δ15N of soil organic matter (δ15NSOM) and δ13CSOM of archived soil samples across four decades from four depths of an aggrading forest in southeastern USA. The site supports an old-field pine forest in which the N cycle is affected by former agricultural fertilization, massive accumulation of soil N by aggrading trees over four decades, and small to insignificant fluxes of N via NH3 volatilization, nitrification, and denitrification. We examine isotopic data and the N and C dynamics of this ecosystem to evaluate mechanisms driving isotopic shifts over time. With forest development, δ13CSOM became depth-dependent. This trend resulted from a decline of ~2‰ in the surficial 15 cm of mineral soil to −26.0‰, due to organic matter inputs from forest vegetation. Deeper layers exhibited relatively little trend in δ13CSOM with time. In contrast, δ15NSOM was most dynamic in deeper layers. During the four decades of forest development, the deepest layer (35–60 cm) reached a maximum δ15N value of 9.1‰, increasing by 7.6‰. The transfer of >800 kg ha−1 of soil organic N into aggrading vegetation and the forest floor and the apparent large proportion of ectomycorrhizal (ECM) fungi in these soils suggest that fractionation via microbial transformations must be the major process changing δ15N in these soils. Accretion of isotopically enriched compounds derived from microbial cells (i.e., ECM fungi) likely promote isotopic enrichment of soils over time. The work indicates the rapid rate at which ecosystem development can impart δ15NSOM and δ13CSOM signatures associated with undisturbed soil profiles.  相似文献   

12.
We studied the nutritional modes of the orchid Serapias strictiflora and its mycorrhizal fungus Epulorhiza sp. using the differences in carbon isotopic composition (δ13C) of C3 orchid and C4 maize tissues. We found that if cultivated in substrate lacking any organic compounds, the mycorrhizal extraradical mycelia (δ13C = −26.3 ± 0.2 ‰) developed well, despite being fully dependent on nutrition from orchid roots (δ13C = −28.6 ± 0.1 ‰). If the mycorrhizal fungus had additional access to and colonized decaying maize roots (δ13C = −14.6 ± 0.1 ‰), its isotopic composition (δ13C = −21.6 ± 0.4 ‰) reflected a mixture of biotrophy and saprotrophy. No statistically significant differences in δ13C of new storage tubers were found between Epulorhiza-associated orchids with (δ13C = -28.2 ± 0.1 ‰) and without access to maize roots (δ13C = −28.6 ± 0.2 ‰). We conclude that autotrophy is the predominant nutritional mode of mature S. strictiflora plants and that they supply their mycorrhizal fungus with substantial amount of carbon (69 ± 3 % of the fungus demand), even if the fungus feeds saprotrophically.  相似文献   

13.
Because nitrogen and phosphorus are primary resources for plant, algal, and microbial production, increases in nutrient inputs can markedly alter aquatic ecosystems. Coastal wetland plots at Belle W. Baruch Marine Field Laboratory (South Carolina, USA) have been amended with nitrogen and phosphorus for ~20 years to determine the effects of nutrient loading on coastal wetlands. We conducted a survey of δ15N and δ13C natural abundance in coastal wetland organic pools (sediment, vegetation) with long-term nutrient amendments (control, no addition; nitrogen; phosphorus; and nitrogen + phosphorus additions). Additionally, we conducted laboratory assays to quantify pore water nutrient availability and nitrification rates. Marsh vegetation (Spartina alterniflora) had enriched δ13C values (mean −14‰) relative to bulk sediment samples (mean −18‰). Nitrogen-amended plots (alone and in combination with phosphorus) had enriched δ13C values in the surface sediment (0–5 cm; mean −16.1‰) relative to control (mean −16.5‰) and phosphorus-amended plots (mean −16.8‰). Nitrogen-amended plots also had depleted δ15N in S. alterniflora leaf tissues (−3.3‰) and surface sediment samples (mean 2.1‰) relative to leaf tissues (mean 2.1‰) or sediment samples (mean 5.8‰) from control or phosphorus-only amended plots. Nitrate availability (as increased pore water concentration) was higher in N-amended plots although ammonium availability did not differ. Phosphorus availability was higher only in phosphorus-only amended plots. Overall, we found that long-term nutrient amendments to coastal wetlands significantly altered nutrient availability and uptake rates as well as natural abundance of δ13C and δ15N in multiple organic matter sources.  相似文献   

14.
Addressing spatial variability in nitrogen (N) availability in the Central Brazilian Amazon, we hypothesized that N availability varies among white-sand vegetation types (campina and campinarana) and lowland tropical forests (dense terra-firme forests) in the Central Brazilian Amazon, under the same climate conditions. Accordingly, we measured soil and foliar N concentration and N isotope ratios (δ15N) throughout the campina-campinarana transect and compared to published dense terra-firme forest results. There were no differences between white-sand vegetation types in regard to soil N concentration, C:N ratio and δ15N across the transect. Both white-sand vegetation types showed very low foliar N concentrations and elevated foliar C:N ratios, and no significant difference between site types was observed. Foliar δ15N was depleted, varying from −9.6 to 1.6‰ in the white-sand vegetations. The legume Aldina heterophylla had the highest average δ15N values (−1.5‰) as well as the highest foliar N concentration (2.1%) while the non-legume species had more depleted δ15N values and the average foliar N concentrations varied from 0.9 to 1.5% among them. Despite the high variation in foliar δ15N among plants, a significant and gradual 15N-enrichment in foliar isotopic signatures throughout the campina–campinarana transect was observed. Individual plants growing in the campinarana were significantly enriched in 15N compared to those in campina. In the white-sand N-limited ecosystems, the differentiation of N use seems to be a major cause of variations observed in foliar δ15N values throughout the campina–campinarana transect.  相似文献   

15.
13C natural abundance variations were measured in peat soil and vegetation from two contrasting boreal forest wetlands: an upland watershed basin and a permanently saturated lowland mire. Evidence of methane oxidation was shown in the permanently saturated wetland with δ13C values as low as -97 ‰ in carbonate minerals found in floating peat mats. It is postulated that13C depleted CH4 is oxidized in the mat and reacts with calcium ions to form calcite (identified through x-ray diffraction). Methane flux measurements during the summer of 1992 showed much lower fluxes in areas with floating peat mats relative to open water. Secondary carbonates in the basin peat have isotope compositions close to the δ13C values of the peat organic carbon (-25 ‰), indicating their origin from fermentation and possibly from sulfate-reduction. In the upland basin peat deposits, the δ13CPDB values of organic C were constant with depth, while the permanently saturated mire had localities of13C enrichment in deeper layers of the peat. The13C enrichment may reflect areas of intense CH4 production in which13C enriched residual substrate is left behind during the production of highly13C depleted CH4.  相似文献   

16.
The distribution of plant species in boreal forest understories is hypothesized to reflect mycorrhizal guilds and associated adaptations for organic nitrogen (N) acquisition. In this study of a natural edaphic gradient, where supply rates of inorganic N increase with site productivity, we noted a decline in understory ectomycorrhizal, ericoid, and arbutoid plant communities on productive sites, in contrast to a positive response by most arbuscular species. We then assessed the rate of change in foliar N concentration (Nconc) and abundance of 15N (δ15N) of select plants from these mycorrhizal guilds. Two arbuscular plant species (Rubus parviflorus and Viburnum edule) had the sharpest increases in foliar Nconc with enhanced supplies of NH4 + and NO3 , but with no differences in foliar δ15N. An ectomycorrhizal species, Abies lasiocarpa, and ericoid species, Vaccinium membranaceum, had parallel increases in both Nconc and δ15N with soil N supply. The foliar δ15N of two arbutoid plants (Orthilia secunda and Pyrola asarifolia) were as enriched as ectomycorrhizal sporocarps, likely indicating N transfer from mycorrhizal networks. The depletion of foliar δ15N by ectomycorrhizal and ericoid plants on poorer sites likely reflected a high degree of N retention and photosynthate demand by fungi, whereas arbuscular plants may have had a less significant δ15N response because of a more passive role by fungi in scavenging organic N. The results suggest differences in how mycorrhiza exploit diverse soil N supplies (recalcitrant and labile organic N, NH4 +, NO3 , and parasitized N) could be an important factor in boreal plant community composition.  相似文献   

17.
Mycorrhizal and saprotrophic (SAP) fungi are essential to terrestrial element cycling due to their uptake of mineral nutrients and decomposition of detritus. Linking these ecological roles to specific fungi is necessary to improve our understanding of global nutrient cycling, fungal ecophysiology, and forest ecology. Using discriminant analyses of nitrogen (δ15N) and carbon (δ13C) isotope values from 813 fungi across 23 sites, we verified collector-based categorizations as either ectomycorrhizal (ECM) or SAP in > 91% of the fungi, and provided probabilistic assignments for an additional 27 fungi of unknown ecological role. As sites ranged from boreal tundra to tropical rainforest, we were able to show that fungal δ13C (26 sites) and δ15N (32 sites) values could be predicted by climate or latitude as previously shown in plant and soil analyses. Fungal δ13C values are likely reflecting differences in C-source between ECM and SAP fungi, whereas 15N enrichment of ECM fungi relative to SAP fungi suggests that ECM fungi are consistently delivering 15N depleted N to host trees across a range of ecosystem types.  相似文献   

18.
Benthic biofilms have been identified using stable isotope analysis (SIA) as an important resource supporting many freshwater food webs. However, biofilm δ13C signatures are highly variable in freshwaters, which may hamper our understanding of energy flow through food webs in these systems. There has been little consideration of the influence that substratum may have on biofilm δ13C signature variability and energy flows to primary consumers. We investigated the effect of organic and inorganic substrata on biofilm dynamics by examining: (1) temporal variability of biofilm stable isotope (δ13C, δ15N) signatures on allochthonous leaf-litter (Eucalyptus camaldulensis) and cobble substrata over 12 months in a lowland river in south-eastern Australia; and (2) the effect of substrata on biofilm energy flows to a grazer snail, Physa acuta (Gastropoda: Physidae), using SIA and ecological stoichiometry in a laboratory experiment. The temporal study indicated that cobble biofilm varied significantly in δ13C signature during the 12 months (up to 11‰), whereas the δ13C signature of leaf biofilm was less variable (less than 2‰). In contrast, biofilm δ15N signatures varied temporally on both cobble (2.6‰) and leaf (1‰) substrata. This suggests that leaf biofilm was more reliant on leaf tissue for carbon and therefore less limited by carbon supply than cobble biofilm whereas for nitrogen biofilm on both substrata was reliant on external sources. In the laboratory experiment, snails fed leaf biofilm reflected more of an allochthonous δ13C signature than cobble biofilm fed snails, suggesting assimilation of leaf carbon via the heterotrophic microbial community within the biofilm. Snails grew largest on cobble biofilm, which had lower C:N ratios than leaf biofilm. Our results demonstrate that the type of substratum can influence the temporal variability of biofilm δ13C signatures and energy flow to primary consumers.  相似文献   

19.
The effects of the liquid pig manure (LM) used in organic farming on the natural abundance of 15N and 13C signatures in plant tissues have not been studied. We hypothesized that application of LM will (1) increase δ15N of plant tissues due to the high δ15N of N in LM as compared with soil N or inorganic fertilizer N, and (2) increase δ13C of plant tissues as a result of high salt concentration in LM that decreases stomatal conductance of plants. To test these hypotheses, variations in the δ15N and δ13C of Chinese cabbage (Brassica campestris L.) and chrysanthemum (Chrysanthemum morifolium Ramatuelle) with two different LMs (with δ15N of +15.6 and +18.2‰) applied at two rates (323 and 646 kg N ha-1 for cabbage and 150 and 300 kg N ha-1 for chrysanthemum), or urea (δ15N = -2.7‰) applied at the lower rate above for the respective species, in addition to the control (no N input) were investigated through a 60-day pot experiment. Application of LM significantly increased plant tissue δ15N (range +9.4 to +14.9‰) over the urea (+3.2 to +3.3‰) or control (+6.8 to 7.7‰) treatments regardless of plant species, strongly reflecting the δ15N of the N source. Plant tissue δ13C were not affected by the treatments for cabbage (range −30.8 to −30.2‰) or chrysanthemum (−27.3 to −26.8‰). However, cabbage dry matter production decreased while its δ13C increased with increasing rate of LM application or increasing soil salinity (P < 0.05), suggesting that salinity stress caused by high rate of LM application likely decreased stomatal conductance and limited growth of cabbage. Our study expanded the use of the δ15N technique in N source (organic vs. synthetic fertilizer) identification and suggested that plant tissue δ13C maybe a sensitive indicator of plant response to salinity stress caused by high LM application rates.  相似文献   

20.
Plants collected from diverse sites on subantarctic Macquarie Island varied by up to 30‰ in their leaf δ15N values. 15N natural abundance of plants, soils, animal excrement and atmospheric ammonia suggest that the majority of nitrogen utilised by plants growing in the vicinity of animal colonies or burrows is animal-derived. Plants growing near scavengers and animal higher in the food chain had highly enriched δ15N values (mean = 12.9‰), reflecting the highly enriched signature of these animals' excrement, while plants growing near nesting penguins and albatross, which have an intermediate food chain position, had less enriched δ15N values (>6‰). Vegetation in areas affected by rabbits had lower δ15N values (mean = 1.2‰), while the highly depleted δ15N values (below −5‰) of plants at upland plateau sites inland of penguin colonies, suggested that a portion of their nitrogen is derived from ammonia (mean 15N =−10‰) lost during the degradation of penguin guano. Vegetation in a remote area had δ15N values near −2‰. These results contrast with arctic and subarctic studies that attribute large variations in plant 15N values to nitrogen partitioning in nitrogen-limited environments. Here, plant 15N reflects the 15N of the likely nitrogen sources utilised by plants. Received: 18 December 1997 / Accepted: 13 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号