首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal properties of novel arsonolipid-containing liposomes in PBS pH 7.4 and in water in absence and presence of Ca(2+) ions are reported. Liposomes composed of arsonolipids with different acyl chains (C(12), C(16) and C(18)) were prepared by the one step method. Microcalorimetry results showed that (i) the thermotropic transitions of arsonoliposomes (in PBS, pH 7.4, and in water) increase as a function of arsonolipid fatty acyl chain length, (ii) arsonoliposomes of long fatty acyl chain arsonolipids (C(16) and C(18)) showed higher enthalpy and transition temperature in the buffer compared to those observed in water (for arsonoliposomes of C(12)-fatty acyl chain arsonolipid, the order was reversed which might be attributed to their different structure), and (iii) the presence of 2 mM CaCl(2) has more pronounced effects on the thermal properties of arsonoliposomes in distilled water than in buffer, which suggests that the ionic strength of the dispersion medium plays an important role in determining the thermal properties of arsonoliposomes.  相似文献   

2.
Immunosuppressants such as cyclosporinA and FK506 (tacrolimus) are widely prescribed to treat numerous disorders and to treat organ transplant recipients. However, cyclosporine A and FK506 are both known to produce hypomagnesaemia. The mechanism of this effect is still unclear. The present study determined the effects of immunosuppressant treatment on the parathyroid hormone (PTH) mediated Mg(2+) uptake and the mitogen-activated protein kinase (MAPK) activation in mouse distal convoluted tubule (MDCT) cells. The intracellular Ca(2+) and Mg(2+) concentrations in a single MDCT cell were measured by using the fluorescentdye Fura-2 AM and Mag-fura-2 AM, respectively. Cyclosporine A and FK506 illicited a transient increase of intracellular Ca(2+) from a basal level of 99 +/- 16 nM to 685 +/- 105 and 608 +/- 96 nM, respectively. In order to determine the Mg(2+) transport, the MDCT cells were Mg(2+)-depleted by culturing them in Mg(2+)-free media for 16 h, and the Mg(2+) uptake was measured by microfluorescence after placing the depleted cells in 1.5mM MgCl(2). The mean rate of Mg(2+) uptake, d([Mg(2+)](i))/dt, was 140 +/- 16 nM/s in the control MDCT cells. PTH increased the Mg(2+) uptake more than 2 times in this cell. Cyclosporine A (10 microM) and FK506 (0.1 microM) did not affect the basal Mg(2+)uptake (140 +/- 16 and 142 +/- 14 nM/s, respectively), but they inhibited the PTH-stimulated Mg(2+) entry, decreasing it from 248+/-12 to 147 +/- 7 and 148 +/- 14 nM/s, respectively. These effects were inhibited by L685818, which is a potent competitive antagonist of FK506. PTH stimulated the extracellular signal-regulated kinase1/2 (ERK1/2) protein synthesis. This PTH-stimulated ERK1/2 activation was inhibited by cyclosporine A and FK506. In the present study, the role of ERK1/2 activation on the PTH-dependent magnesium uptake was examined in MDCT cells, and we showed that immunosuppressants inhibit the hormone-stimulated Mg(2+) uptake into the MDCT cells by inhibiting the MAPK pathway.  相似文献   

3.
Conditions were developed in the absence of Ca(2+) for purification, delipidation, and long term stabilization of octaethylene glycol monododecyl ether (C(12)E(8))-solubilized sarcoplasmic reticulum Ca(2+)-ATPase with tightly bound Mg(2+) and F(-), an analog for the phosphoenzyme intermediate without bound Ca(2+). The Ca(2+)-ATPase activity to monitor denaturation was assessed after treatment with 20 mm Ca(2+) to release tightly bound Mg(2+)/F(-). The purification and delipidation was successfully achieved with Reactive Red-agarose affinity chromatography. The solubilized Mg(2+)/F(-)-bound Ca(2+)-ATPase was very rapidly denatured at pH 8, but was perfectly stabilized at pH 6 against denaturation for over 20 days at 4 degrees C even without exogenously added phospholipid and at a high C(12)E(8)/enzyme weight ratio (10:1). The activity was not restored unless the enzyme was treated with 20 mm Ca(2+), showing that tightly bound Mg(2+)/F(-) was not released during the long term incubation. The perfect stability was attained with or without 0.1 mm dithiothreitol, but inactivation occurred with a half-life of 10 days in the presence of 1 mm dithiothreitol, possibly due to reduction of a specific disulfide bond(s). The remarkable stability is likely conferred by intimate gathering of cytoplasmic domains of Ca(2+)-ATPase molecule induced by tight binding of Mg(2+)/F(-). The present study thus reveals an essential property of the Mg(2+)/F(-)/Ca(2+)-ATPase complex, which will likely provide clues to understanding structure of the Ca(2+)-released form of phosphoenzyme intermediate at an atomic level.  相似文献   

4.
Two types of Na(+)-independent Mg(2+) efflux exist in erythrocytes: (1) Mg(2+) efflux in sucrose medium and (2) Mg(2+) efflux in high Cl(-) media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na(+)-independent Mg(2+) efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K(+),Cl(-)- and Na(+),K(+),Cl(-)-symport, Na(+)/H(+)-, Na(+)/Mg(2+)-, Na(+)/Ca(2+)- and K(+)(Na(+))/H(+) antiport, Ca(2+)-activated K(+) channel and Mg(2+) leak flux. We suggest that, in choline Cl medium, Na(+)-independent Mg(2+) efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg(2+) efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg(2+) to the same degree. The K(d) value for inhibition of [(14)C]choline efflux and for inhibition of Mg(2+) efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg(2+) efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg(2+) efflux was reduced to the same degree by these inhibitors as was the [(14)C]choline efflux.  相似文献   

5.
Accumulation of Ca(2+) into the Golgi apparatus is mediated by sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) and by secretory pathway Ca(2+)-ATPases (SPCAs). Mammals and birds express in addition to the housekeeping SPCA1 (human gene name ATP2C1, cytogenetic position 3q22.1) a homologous SPCA2 isoform (human gene name ATP2C2, cytogenetic position 16q24.1). We show here that both genes present an identical exon/intron layout. We confirmed that hSPCA2 has the ability to transport Ca(2+), demonstrated its Mn(2+)-transporting activity, showed its Ca(2+)- and Mn(2+)-dependent phosphoprotein intermediate formation, and documented the insensitivity of these functional activities to thapsigargin inhibition. The mRNA encoding hSPCA2 showed a limited tissue expression pattern mainly confined to the gastrointestinal and respiratory tract, prostate, thyroid, salivary, and mammary glands. Immunocytochemical localization in human colon sections presented a typical apical juxtanuclear Golgi-like staining. The expression in COS-1 cells allowed the direct demonstration of (45)Ca(2+) (K(0.5) = 0.27 microm) or (54)Mn(2+) transport into an A23187-releasable compartment.  相似文献   

6.
We used frequency domain measurements of fluorescence resonance energy transfer to recover the distribution of distances between Met 25 and Cys 98 in rabbit skeletal troponin C. These residues were labeled with dansylaziridine as energy donor and 5-(iodoacetamido)eosin as acceptor and are located on the N- and C-terminal lobes of the two-domain protein, respectively. We developed a procedure to correct for the fraction of the sample that was incompletely labeled with the acceptor independent of chemical data. At pH 7.5 and in the presence of Mg2+, the mean distance was near 15 A with a half-width of the distribution of 15 A; when Mg2+ was replaced by Ca2+, the mean distance increased to 22 A with a decrease in the half-width by 4 A. Similar but less pronounced differences in the mean distance and half-width between samples containing Mg2+ and Ca2+ were also observed with troponin C complexed to troponin I. The results suggest that the conformation of troponin C is altered by Ca2+ binding to the Ca(2+)-specific sites and displacing bound Mg2+ at the Ca2+/Mg2+ sites. This alteration may play an important role in Ca2+ signaling in muscle. At pH 7.5, the anisotropy decays of the donor-labeled troponin C showed two components, with the long rotational correlation time (12 ns) reflecting the overall motion of the protein. When the pH was lowered from 7.5 to 5.2, the mean distribution distance of apotroponin C increased from 22 to 32 A and the half-width decreased by a factor of 2 from 13 to 7 A. The long correlation time of apotroponin C increased to 19 ns at the acidic pH. These results are discussed in terms of a model in which skeletal troponin C is a dimer at low pH and enable comparison of the solution conformation of the protein at neutral pH with a crystal structure obtained at pH 5.2. While the conformation of the monomeric unit of troponin C dimer at pH 5.2 is extended and consistent with the crystal structure, the conformation at neutral pH is likely more compact than the crystal structure predicts.  相似文献   

7.
Calcium uptake was examined in sealed plasma membrane vesicles isolated from red beet (Beta vulgaris L.) storage tissue using (45)Ca(2+). Uptake of (45)Ca(2+) by the vesicles was ATP-dependent and radiotracer accumulated by the vesicles could be released by the addition of the calcium ionophore A23187. The uptake was stimulated by gramicidin D but slightly inhibited by carbonylcyanide m-chlorophenylhydrazone. Although the latter result might suggest some degree of indirect coupling of (45)Ca(2+) uptake to ATP utilization via deltamuH(+), no evidence for a secondary H(+)/Ca(2+) antiport in this vesicle system could be found. Following the imposition of an acid-interior pH gradient, proton efflux from the vesicle was not enhanced by the addition of Ca(2+) and an imposed pH gradient could not drive (45)Ca(2+) uptake. Optimal uptake of (45)Ca(2+) occurred broadly between pH 7.0 and 7.5 and the transport was inhibited by orthovanadate, N,N'-dicyclohexylcarbodiimide, and diethylstilbestrol but insensitive to nitrate and azide. The dependence of (45)Ca(2+) uptake on both calcium and Mg:ATP concentration demonstrated saturation kinetics with K(m) values of 6 micromolar and 0.37 millimolar, respectively. While ATP was the preferred substrate for driving (45)Ca(2+) uptake, GTP could drive transport at about 50% of the level observed for ATP. The results of this study demonstrate the presence of a unique primary calcium transport system associated with the plasma membrane which could drive calcium efflux from the plant cell.  相似文献   

8.
The Ca(2+)-ATPase from sarcoplasmic reticulum (SR) membranes couples the Ca(2+) transport to ATP hydrolysis through phosphorylation in its cytoplasmic catalytic domain. Interactions between protein domains and the role of monomer-monomer interactions remain unclear. Here, we report a differential scanning calorimetric study of the thermal unfolding of this protein. In the pH range 6-8, thermal unfolding of the Ca(2+)-ATPase in glycogen phosphorylase-free SR membranes shows a major endothermic peak with a critical temperature midpoint ranging between 51 and 55 degrees C, depending on pH, Ca(2+), Mg(2+)-ADP and KCl concentrations. The enthalpy change of the overall unfolding process ranged between 250 and 300 kcal/mol of Ca(2+)-ATPase monomer. Thermal denaturation of the Ca(2+)-ATPase in SR membranes is well fitted to an irreversible process that can be rationalized in terms of a non-two state process, N (native)right harpoon over left harpoon I (intermediate)-->D (denatured). Thermodynamic analysis show that this protein has a compact structure, implying a tight structural interconnection between catalytic and Ca(2+) transport domains. The apparent cooperative unit, defined by the van 't Hoff enthalpy to the overall unfolding enthalpy ratio, increased from 1.1 at pH 6 to 1.8 at pH 8, showing that monomer-monomer interactions are stronger at weakly basic pH than at weakly acidic pH. While micromolar Ca(2+) concentrations had only a weak effect on the cooperativity of the unfolding process, this is clearly increased by millimolar Mg(2+)-ADP. In addition, high ionic strength lowered the apparent cooperative unit to approximately 1.0 in the pH range 6-8. Taken together, these results suggest that protein-protein interactions are altered by variables that modulate the catalytic activity of this enzyme.  相似文献   

9.
In this work, we exploited the capability of the plasma membrane Ca-ATPase to utilize ITP as a substrate to study its characteristics in plasma membrane vesicles purified from radish (Raphanus sativus L.) seedlings. The majority of the ITPase activity of plasma membrane was Ca(2+)-dependent. The Ca(2+)-dependent ITPase activity was Mg(2+)-dependent and was stimulated by the calcium ionophore A23187. It was inhibited by erythrosin B (concentration giving 50% inhibition, 50 nanomolar) and by vanadate (concentration giving 50% inhibition, 3 micromolar) and displayed a broad pH optimum around pH 7.2 to 7.5. Both the hydrolytic and the transport activity of the plasma membrane Ca-ATPase were half-saturated by Ca(2+) in the micromolar concentration range. No major effect of EGTA on the saturation kinetics of the enzyme was observed. The affinity of the plasma membrane Ca-ATPase for Ca(2+) was about fourfold higher at pH 7.5 than at pH 6.9. The Ca(2+)-dependent ITPase activity was stimulated about twofold by polyoxyethylene 20 cetyl ether, although it was inhibited by Triton X-100 and by lysolecithin.  相似文献   

10.
The kinetics of activation and inactivation of K(+)/Cl(-) cotransport (KCC) have been measured in rabbit red blood cells for the purpose of determining the individual rate constants for the rate-limiting activation and inactivation events. Four different interventions (cell swelling, N-ethylmaleimide [NEM], low intracellular pH, and low intracellular Mg(2+)) all activate KCC with a single exponential time course; the kinetics are consistent with the idea that there is a single rate-limiting event in the activation of transport by all four interventions. In contrast to LK sheep red cells, the KCC flux in Mg(2+)-depleted rabbit red cells is not affected by cell volume. KCC activation kinetics were examined in cells pretreated with NEM at 0 degrees C, washed, and then incubated at higher temperatures. The forward rate constant for activation has a very high temperature dependence (E(a) approximately 32 kCal/mol), but is not affected measurably by cell volume. Inactivation kinetics were examined by swelling cells at 37 degrees C to activate KCC, and then resuspending at various osmolalities and temperatures to inactivate most of the transporters. The rate of transport inactivation increases steeply as cell volume decreases, even in a range of volumes where nearly all the transporters are inactive in the steady state. This finding indicates that the rate-limiting inactivation event is strongly affected by cell volume over the entire range of cell volumes studied, including normal cell volume. The rate-limiting inactivation event may be mediated by a protein kinase that is inhibited, either directly or indirectly, by cell swelling, low Mg(2+), acid pH, and NEM.  相似文献   

11.
The effects of Mg(2+) on reactive oxygen species (ROS) and cell Ca(2+) during reoxygenation of hypoxic rat cardiomyocytes were studied. Oxidation of 2',7'-dichlorodihydrofluorescein (DCDHF) to dichlorofluorescein (DCF) and of dihydroethidium (DHE) to ethidium (ETH) within cells were used as markers for intracellular ROS levels and were determined by flow cytometry. DCDHF/DCF is sensitive to H(2)O(2) and nitric oxide (NO), and DHE/ETH is sensitive to the superoxide anion (O(2)(-).), respectively. Rapidly exchangeable cell Ca(2+) was determined by (45)Ca(2+) uptake. Cells were exposed to hypoxia for 1 h and reoxygenation for 2 h. ROS levels, determined as DCF fluorescence, were increased 100-130% during reoxygenation alone and further increased 60% by increasing extracellular Mg(2+) concentration to 5 mM at reoxygenation. ROS levels, measured as ETH fluorescence, were increased 16-24% during reoxygenation but were not affected by Mg(2+). Cell Ca(2+) increased three- to fourfold during reoxygenation. This increase was reduced 40% by 5 mM Mg(2+), 57% by 10 microM 3,4-dichlorobenzamil (DCB) (inhibitor of Na(+)/Ca(2+) exchange), and 75% by combining Mg(2+) and DCB. H(2)O(2) (25 and 500 microM) reduced Ca(2+) accumulation by 38 and 43%, respectively, whereas the NO donor S-nitroso-N-acetyl-penicillamine (1 mM) had no effect. Mg(2+) reduced hypoxia/reoxygenation-induced lactate dehydrogenase (LDH) release by 90%. In conclusion, elevation of extracellular Mg(2+) to 5 mM increased the fluorescence of the H(2)O(2)/NO-sensitive probe DCF without increasing that of the O(2)(-).-sensitive probe ETH, reduced Ca(2+) accumulation, and decreased LDH release during reoxygenation of hypoxic cardiomyocytes. The reduction in LDH release, reflecting the protective effect of Mg(2+), may be linked to the effect of Mg(2+) on Ca(2+) accumulation and/or ROS levels.  相似文献   

12.
In a previous study we overexpressed the thapsigargin (tg)-insensitive Pmr1 Ca(2+) pump of the Golgi apparatus of Caenorhabditis elegans in COS-1 cells and studied the properties of the Ca(2+) store into which it was integrated. Here we assessed the properties of an endogenous tg-insensitive nonmitochondrial Ca(2+) store in A7r5 and 16HBE14o- cells, which express a mammalian homologue of Pmr1. The tg-insensitive Ca(2+) store was considerably less leaky for Ca(2+) than the sarco(endo)plasmic-reticulum Ca(2+)-ATPase (SERCA)-containing Ca(2+) store. Moreover like for the worm Pmr1 Ca(2+) pump expressed in COS-1 cells, Ca(2+) accumulation into the endogenous tg-insensitive store showed a 2 orders of magnitude lower sensitivity to cyclopiazonic acid than the SERCA-mediated transport. 2,5-Di-(tert-butyl)-1,4-benzohydroquinone was only a very weak inhibitor of the tg-insensitive Ca(2+) uptake in A7r5 and 16HBE14o- cells and in COS-1 cells overexpressing the worm Pmr1. Inositol 1,4,5-trisphosphate released 11% of the Ca(2+) accumulated in permeabilized A7r5 cells pretreated with tg with an EC(50) that was 5 times higher than for the SERCA-containing Ca(2+) store but failed to release Ca(2+) in 16HBE14o- cells. In the presence of tg, 15% of intact A7r5 cells responded to 10 microm arginine-vasopressin with a small rise in cytosolic Ca(2+) concentration after a long latency. In conclusion, A7r5 and 16HBE14o- cells express a Pmr1-containing Ca(2+) store with properties that differ substantially from the SERCA-containing Ca(2+) store.  相似文献   

13.
Calcium accumulation by purified vesicles derived from basolateral membranes of kidney proximal tubules was reversibly inhibited by micromolar concentrations of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of anion transport. The inhibitory effect of this compound on Ca2+ uptake cannot be attributed solely to the inhibition of anion transport: (Ca(2+)+Mg2+)ATPase and ATP-dependent Ca2+ transport, respectively. The rate constant of EGTA-induced Ca2+ efflux from preloaded vesicles was not affected by DIDS, indicating that this compound does not increase the permeability of the membrane vesicles to Ca2+. In the presence of DIDS, the effects of the physiological ligands Ca2+, Mg2+, and ATP on (Ca(2+)+Mg2+)ATPase activity were modified. The Ca2+ concentration that inhibited (Ca(2+)+Mg2+)ATPase activity in the low-affinity range decreased from 91 to 40 microM, but DIDS had no effect on the Km for Ca2+ in the high-affinity, stimulatory range. Free Mg2+ activated (Ca(2+)+Mg2+)ATPase activity at a low Ca2+ concentration, and DIDS impaired this stimulation in a noncompetitive fashion. The inhibition by DIDS was eliminated when the free ATP concentration of the medium was raised from 0.3 to 8 mM, possibly due to an increase in the turnover of the enzyme caused by free ATP accelerating the E2----E1 transition, and leading to a decrease in the proportion of E2 forms under steady-state conditions. Alkaline pH totally abolished the inhibition of the (Ca(2+)+Mg2+)ATPase activity by DIDS, with a half-maximal effect at pH 8.3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In isolated spinach chloroplasts, low concentrations (I(50)=14 microM) of methyl trachyloban-19-oate ester inhibited ATP synthesis and coupled electron transport as well as light-activated membrane-bound Mg(2+)-ATPase activity. Basal (-Pi) and uncoupled electron transport and heat-activated Ca(2+)-dependent ATPase activity of isolated coupling factor proteins were unaffected by methyl trachyloban-19-oate. Thylakoids partially stripped of coupled factor by EDTA were unable to accumulate protons in the light. However, increasing concentrations of methyl trachyloban-19-oate ester restored this ability. It is concluded that the methyl trachyloban-19-oate ester effects result from blocking proton transport through the CF(0) channel. Methyl trachyloban-19-oate ester exhibited non-competitive kinetics with DCCD and triphenyltin. These results suggest that the natural products, DCCD and triphenyltin, access inhibition sites in CF(0). The K(i) is 75 microM.  相似文献   

15.
An absolute requirement for divalent cations is reported for H(14)CO(3) (-) influx in Chara corallina. Effective substitution of eluted Ca(2+) by Mg(2+) and Sr(2+) was observed, but Mn(2+) was completely ineffective in restoring H(14)CO(3) (-) transport activity. Similarly, La(3+) could not substitute for Ca(2+) in this system. Low concentrations of ethylenediaminetetraacetate (0.01 to 0.06 mm) significantly enhanced the rate at which H(14)CO(3) (-) transport capacity was lost.Examination of the response of OH(-) efflux, during Ca(2+)-free treatment, indicated that the cellular control over OH(-) efflux remained unaffected until membrane integrity became severely affected. This conclusion was supported by the response of OH(-) efflux to 10 mm K(+). Therefore, assimilation of H(14)CO(3) (-) is not rate-limited by an effect of Ca(2+) elution on the OH(-) transport system. Kinetic experiments indicated that Ca(2+) removal from the membrane resulted in noncompetitive inhibition of H(14)CO(3) (-) assimilation; the apparent Michaelis constant remained unaltered over a wide range of conditions. An hypothesis is presented which suggests that membrane integrity is necessary for HCO(3) (-) transport to occur, but Ca(2+) (Mg(2+), Sr(2+)), per se, must be bound to the transport complex before activity is established.  相似文献   

16.
The eosin Y inhibitory effect on the activity of smooth muscle plasma membrane Ca(2+)-transporting ATPase was studied: effect of this inhibitor on the maximal initial rate of ATP-hydrolase reaction, catalyzed by Ca2+, Mg(2+)-ATPase, on the affinity of enzyme for the reaction reagents (Ca2+, Mg2+, ATP). Dependence of eosin Y inhibitory effect on some physicochemical factors of incubation medium was studied too. It was determined that eosin Y inhibited reversibly and with high specificity purified Ca2+, Mg(2+)-ATPase solubilized from myometrial cell plasma membrane (Ki--0.8 microM), decreased the turnover rate of this enzyme determined both by Mg2+, ATP and Ca2+. This inhibitor had no effect on the enzyme affinity for Ca2+, increased affinity for Mg2+ and decreased affinity for ATP. It was determined that inhibition of Ca2+, Mg(2+)-ATPase by eosin Y depended on pH and dielectric permeability of the incubation medium: increasing of pH from 6.5 to 8.0 reduced the apparent Ki, decreasing of dielectric permeability from 74.07 to 71.19 increased the apparent Ki.  相似文献   

17.
Role of calcium in serine transport into tobacco cells   总被引:1,自引:0,他引:1  
Smith IK 《Plant physiology》1978,62(6):941-948
The transport of serine into tobacco (Nicotiana tabacum L. var. Xanthi) cells grown in liquid medium was studied. Serine transport was maximal below pH 4.0. A time-dependent stimulation of transport was observed when cells were incubated in medium containing 0.5 mm Ca(2+). Maximum transport rates were achieved after 6 hours preincubation in Ca(2+). The following three distinct roles of Ca(2+) in serine transport were demonstrated: time-dependent stimulation of transport rate, maintenance of high transport rates, and retention of transported material. Stimulation occurred in the presence of either Ca(2+) or Mg(2+) and was inhibited by either La(3+) or K(+). Removal of Ca(2+) from the transport medium caused a rapid decline in the rate of serine uptake. This decline was prevented by addition of La(3+) after Ca(2+) removal. Cells transferred to medium lacking Ca(2+) lost substantial amounts of transported serine, this loss was significantly reduced by either La(3+) or K(+).Cells placed in (45)Ca(2+) rapidly bound more than 3 micromoles of Ca(2+)/gram fresh weight, which was exchangeable within 10 minutes with medium Ca(2+). Seventy-five per cent of the (45)Ca(2+) transported into the cells in 4 hours could be exchanged with medium Ca(2+) in the same period. The amount of net Ca(2+) transport into tobacco cells is insignificant relative to the total exchangeable Ca(2+).It is proposed that serine transport into tobacco cells involves H(+) cotransport and that the stimulation by Ca(2+) is due to an increase in the proton-motive force.  相似文献   

18.
Calcium (Ca2+) is sequestered into vacuoles of oat root cells through a H+/Ca2+ antiport system that is driven by the proton-motive force of the tonoplast H+-translocating ATPase. The antiport has been characterized directly by imposing a pH gradient in tonoplast-enriched vesicles. The pH gradient was imposed by diluting K+-loaded vesicles into a K+-free medium. Nigericin induced a K+/H+ exchange resulting in a pH gradient of 2 (acid inside). The pH gradient was capable of driving 45Ca2+ accumulation. Ca2+ uptake was tightly coupled to H+ loss as increasing Ca2+ levels progressively dissipated the steady state pH gradient. Ca2+ uptake displayed saturation kinetics with a Km(app) for Ca2+ of 10 microM. The relative affinity of the antiporter for transport of divalent cations was Ca2+ greater than Sr2+ greater than Ba2+ greater than Mg2+. La3+ or Mn2+ blocked Ca2+ uptake possibly by occupying the Ca2+-binding site. Ruthenium red (I50 = 40 microM) and N,N'-dicyclohexylcarbodiimide (I50 = 3 microM) specifically inhibited the H+/Ca2+ antiporter. When driven by pH jumps, the H+/Ca2+ exchange generated a membrane potential, interior positive, as shown by [14C]SCN accumulation. Furthermore, Ca2+ uptake was stimulated by an imposed negative membrane potential. The results support a simple model of one Ca2+ taken up per H+ lost. The exchange transport can be reversed, as a Ca2+ gradient (Ca2+in greater than Ca2+out) was effective in forming a pH gradient (acid inside). We suggest that the H+/Ca2+ exchange normally transports Ca2+ into the vacuole; however, under certain conditions, Ca2+ may be released into the cytoplasm via this antiporter.  相似文献   

19.
The vesicular nucleotide transporter (VNUT) is a secretory vesicle protein that is responsible for the vesicular storage and subsequent exocytosis of ATP (Sawada, K., Echigo, N., Juge, N., Miyaji, T., Otsuka, M., Omote, H., and Moriyama, Y. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 5683-5686). Because VNUT actively transports ATP in a membrane potential (Δψ)-dependent manner irrespective of divalent cations such as Mg(2+) and Ca(2+), VNUT recognizes free ATP as a transport substrate. However, whether or not VNUT transports chelating complexes with divalent cations remains unknown. Here, we show that proteoliposomes containing purified VNUT actively took up Mg(2+) when ATP was present, as detected by atomic absorption spectroscopy. The VNUT-containing proteoliposomes also took up radioactive Ca(2+) upon imposing Δψ (positive-inside) but not ΔpH. The Δψ-driven Ca(2+) uptake required ATP and a millimolar concentration of Cl(-), which was inhibited by Evans blue, a specific inhibitor of SLC17-type transporters. VNUT in which Arg-119 was specifically mutated to alanine, the counterpart of the essential amino acid residue of the SLC17 family, lost the ability to take up both ATP and Ca(2+). Ca(2+) uptake was also inhibited in the presence of various divalent cations such as Mg(2+). Kinetic analysis indicated that Ca(2+) or Mg(2+) did not affect the apparent affinity for ATP. RNAi of the VNUT gene in PC12 cells decreased the vesicular Mg(2+) concentration to 67.7%. These results indicate that VNUT transports both nucleotides and divalent cations probably as chelating complexes and suggest that VNUT functions as a divalent cation importer in secretory vesicles under physiological conditions.  相似文献   

20.
ATPase activity of the plasma membrane fraction from primary roots of corn (Zea mays L. WF9 x M14) was activated by Mg(2+) and further stimulated by monovalent cations (K(+) > Rb(+) > Cs(+) > Na(+) > Li(+)). K(+)-stimulated activity required Mg(2+) and was substrate-specific. Maximum ATPase activity in the presence of Mg(2+) and K(+) was at pH 6.5 and 40 C. Calcium and lanthanum (<0.5 mm) were inhibitors of ATPase, but only in the presence of Mg(2+). Oligomycin was not an inhibitor of the plasma membrane ATPase, whereas N,N'-dicyclohexylcarbodiimide was. Activity showed a simple Michaelis-Menten saturation with increasing ATP.Mg. The major effect of K(+) in stimulating ATPase activity was on maximum velocity. The kinetic data of K(+) stimulation were complex, but similar to the kinetics of short term K(+) influx in corn roots. Both K(+)-ATPase and K(+) influx kinetics met all criteria for negative cooperativity. The results provided further support for the concept that cation transport in plants is energized by ATP, and mediated by a cation-ATPase on the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号