首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Involvement of sphingomyelinases in TNF signaling pathways   总被引:5,自引:0,他引:5  
Sphingomyelin (N-acylsphingosin-1-phosphorylcholine) is a phospholipid preferentially found in the plasma membrane of mammalian cells. Signaling through the sphingomyelin pathway is associated with generation of ceramide, which acts as a second messenger in activating a variety of cellular functions. Ceramide belongs to the group of sphingosine-based lipid second messenger molecules that are critically involved in the regulation of signal transduction of diverse cell surface membrane receptors. The emerging picture suggests that coupling of ceramide to specific signaling cascades is both stimulus- and cell type-specific and depends on the subcellular topology of its production. Following membrane receptor triggering, neutral and acid isoforms of sphingomyelinases are rapidly activated generating ceramide through sphingomyelin hydrolysis. Here the molecular mechanisms of TNF-induced activation of sphingomyelinases and the functional consequences of ceramide generation will be discussed.  相似文献   

2.
Hydrolysis of sphingomyelin and 2-N-(hexade-canoyl)-amino-4-nitrophenyl-phosphorylcholine (HDA-PC), a synthetic analogue of sphingomyelin, by acid and Mg-dependent neutral sphingomyelinases was tested with a homogenate of normal human brain cortex. Results demonstrated quite different substrate specificities for these enzymes. Acid sphingomyelinase, which is neither activated by MgCl2 nor inhibited by EDTA, hydrolyzed both substrates (the hydrolysis ratio of HDA-PC to sphingomyelin is ?2). In contrast, Mg-dependent neutral sphingomyelinase, which is inhibited by EDTA and reactivated by MgCl2, hydrolyzed only sphingomyelin (the hydrolysis ratio of HDA-PC to sphingomyelin is ?0-0.05). This synthetic substrate seems to be useful for selective determination of acid sphingomyelinase and for avoiding interference of Mg-dependent neutral sphingomyelinase.  相似文献   

3.
Sphingolipid biosynthesis and breakdown in yeast share many homologies in their pathways with higher eukaryotes (Dickson, R. C. 1998. Sphingolipid functions in Saccharomyces cerevisiae: comparison to mammals. Annu. Rev. Biochem. 67: 27-48). In mammals, ceramide can be generated through hydrolysis of sphingomyelin catalyzed by sphingomyelinase (SMase). To date, as many as five SMases have been identified molecularly, separated into three main groups: acid, alkaline, and neutral SMases (nSMases) (Marchesini, N., and Y. Hannun. 2004. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem. Cell Biol. 82: 27-44). nSMase in mammals is represented by its homolog, inositol phosphosphingolipase C, codified by ISC1 in Saccharomyces cerevisiae (Sc) and Cryptococcus neoformans (Cn) and by CSS1 (Can't Stop Synthesizing cell wall) in Schizosaccharomyces pombe (Sp). Yeasts do not have sphingomyelin but instead have inositol phosphosphingolipids, which may function as orthologs of mammalian sphingomyelin. In this review, we will describe findings related to the function of ISC1, its localization, mechanisms, and its roles in cell response to different types of stresses. These studies serve as a foundation for the elucidation of the properties and functions of the extended family of nSMases.  相似文献   

4.
Sphingomyelinases C are enzymes that catalyze the hydrolysis of sphingomyelin in biological membranes to ceramide and phosphorylcholine. Various pathogenic bacteria produce secreted neutral sphingomyelinases C that act as membrane-damaging virulence factors. Mammalian neutral sphingomyelinases C, which display sequence homology to the bacterial enzymes, are involved in sphingolipid metabolism and signaling. This article describes the first structure to be determined for a member of the neutral sphingomyelinase C family, SmcL, from the intracellular bacterial pathogen Listeria ivanovii. The structure has been refined to 1.9-A resolution with phases derived by single isomorphous replacement with anomalous scattering techniques from a single iridium derivative. SmcL adopts a DNase I-like fold, and is the first member of this protein superfamily to have its structure determined that acts as a phospholipase. The structure reveals several unique features that adapt the protein to its phospholipid substrate. These include large hydrophobic beta-hairpin and hydrophobic loops surrounding the active site that may bind and penetrate the lipid bilayer to position sphingomyelin in a catalytically competent position. The structure also provides insight into the proposed general base/acid catalytic mechanism, in which His-325 and His-185 play key roles.  相似文献   

5.
Sphingomyelin hydrolysis and ceramide generation have emerged as key events in cellular regulation. Sphingomyelinases (SMases) catalyse the breakdown of sphingomyelin to form ceramide and phosphorylcholine. Ceramide formed through activation of SMases may function as a second messenger in mediating cell growth, differentiation, stress responses, and programmed cell death (apoptosis). So far, five types of SMases have been described and they include the acidic, the acidic zinc-dependent, the neutral magnesium-dependent, the neutral magnesium-independent, and the alkaline SMase. These SMases differ in tissue distribution, cofactor dependence, mechanism for regulation, and involvement in diverse cellular processes. At least two of these sphingomyelinases may regulate the intracellular levels of ceramide and subsequent ceramide-mediated responses. This review will focus on the identification, regulation and roles of SMases in cell function.  相似文献   

6.
Activation of acid and neutral sphingomyelinases, and the ensuing generation of ceramide, contributes to the biological effects of tumour necrosis factor-alpha (TNF-alpha), one of which is apoptosis. While the mechanisms of activation of sphingomyelinases by the cytokine are being unravelled, less is known about regulation of their activity. Nitric oxide has previously been shown to exert a cyclic GMP-dependent inhibition of early apoptotic events triggered by TNF-alpha in the U937 monocytic cell line. We therefore investigated whether inhibition of sphingomyelinases by nitric oxide plays a role in regulating such early events. We found that activation of both acid and neutral sphingomyelinases, triggered in the first minutes after U937 cell stimulation with TNF-alpha, is regulated in an inhibitory fashion by nitric oxide, working through generation of cyclic GMP and activation of protein kinase G. Using a range of inhibitors selective for either sphingomyelinase we found that the acid sphingomyelinase contributes to activation of the initiator caspase-8 and early DNA fragmentation and that inhibition of the acid enzyme by nitric oxide accounts for cyclic GMP-dependent early protection from apoptosis. We also found that the protective effect by both cGMP and acid sphingomyelinase inhibitors progressively disappeared at later stages of the apoptotic process. Inhibition of sphingomyelinases represents a novel action of nitric oxide, which might be of physiological relevance in regulating initial phases of apoptosis as well as other biological actions of ceramide.  相似文献   

7.
Ceramide and other sphingolipids are now recognized as novel intracellular signal mediators. One of the important and regulated steps in the metabolism of sphingolipids is the hydrolysis of sphingomyelin into ceramide by sphingomyelinases. Whereas some studies suggest a role for acid sphingomyelinase in cell regulation, several lines of investigation suggest that neutral sphingomyelinase (N-SMase) plays a critical role in stress responses including apoptosis. Recently the advanced purification of neutral membrane-bound magnesium-dependent sphingomyelinase from rat brain was reported on. The specific activity of the purified N-SMase was increased by approximately 3000-fold over the rat brain homogenate, and it is specifically activated by phosphatidylserine. In cells, N-SMase may be coupled to either the redox state and/or glutathione metabolism. The significance of N-SMase and ceramide in stress responses is discussed.  相似文献   

8.
Purified rat brain microvessels have been shown to hydrolyze radiolabeled sphingomyelin by means of two different enzyme systems. Enzymatic activity was detected at pH 7.4 and was strongly stimulated by magnesium or manganese and inhibited by calcium. Activity at pH 5.1 could also be found and was not dependent on any of these cations. At neutral pH and in the presence of magnesium, the rate of sphingomyelin hydrolysis did not exhibit a linear relationship with protein concentration. In contrast, increasing the protein concentration from 0.05 to 0.5 mg/ml resulted in a constant increase of sphingomyelin hydrolysis at pH 5.1. Kinetic parameters of both neutral and acid activities have been determined and were similar in magnitude to values reported previously for neural sphingomyelinases. This work demonstrates the occurrence of a neutral sphingomyelinase activity in purified rat brain microvessels, an observation raising the question of its role at the level of the blood-brain interface.  相似文献   

9.
Several physiologic and pathophysiologic processes in which sphingomyelinases (SMases) have been implicated may involve extracellular sphingomyelin (SM) hydrolysis. A candidate enzyme for these processes is a recently discovered SMase called secretory SMase, or S-SMase. S-SMase arises from the acid sphingomyelinase (ASM) gene via differential protein trafficking of a common protein precursor; this precursor can be targeted to either lysosomes or the Golgi secretory pathway. S-SMase is activated by physiologic levels of Zn2+, although the S-SMase from endothelial cells, which secrete abundant amounts of the enzyme, is partially Zn2+-independent. S-SMase functions best at acid pH but can hydrolyze certain physiologic substrates, such as atherogenic lipoproteins, at neutral pH. In endothelial cells, the secretion of S-SMase is regulated at the level of protein trafficking by inflammatory cytokines. Current work implicates a role for S-SMase in atherogenesis, and future work will be directed at understanding the potential roles of S-SMase in other processes, such as ceramide-mediated cell-signaling and the host inflammatory response.  相似文献   

10.
NK and NKT cells play a major role in both innate immunity and in influencing the development of adaptive immune responses. CD161 (human NKR-P1A), a protein encoded in the NK gene complex, is a major phenotypic marker of both these cell types and is thought to be involved in the regulation of NK and NKT cell function. However, the mechanisms of action and signaling pathways of CD161 are poorly understood. To identify molecules able to interact with the cytoplasmic tail of human CD161 (NKR-P1A), we have conducted a yeast two-hybrid screen and identified acid sphingomyelinase as a novel intracellular signaling pathway linked to CD161. mAb-mediated cross-linking of CD161, in both transfectants and primary human NK cells, triggers the activation of acid, but not neutral sphingomyelinase. The sphingomyelinases represent the catabolic pathway for N-acyl-sphingosine (ceramide) generation, an emerging second messenger with key roles in the induction of apoptosis, proliferation, and differentiation. These data therefore define a novel signal transduction pathway for the CD161 (NKR-P1A) receptor and provide fresh insights into NK and NKT cell biology.  相似文献   

11.
In addition to the acid and neutral sphingomyelinases (SMase) that occur in most tissues, distinct alkaline sphingomyelinases occur in the mucosa of the gastrointestinal tract and human bile. These enzymes exhibit characteristic properties with regard to bile-salt dependence, protease resistance, and longitudinal distribution in the gut. Alkaline SMase has now been partially purified from human bile and from rat small intestine. It is thought to have a role in sphingomyelin (SM) digestion but may also be important for the generation of antiproliferative sphingolipid messengers in the gut. It occurs throughout the whole length of the intestine and also in the colon. It is decreased in colon cancer tissue compared to surrounding mucosa and is extremely low in colon mucosa from patients with familial adenomatous polyposis (FAP). This chapter reviews the properties and potential physiological and pathophysiological significance of alkaline SMase. It also briefly summarizes the knowledge about sphingolipid digestion and about the ceramidases of the gut.  相似文献   

12.
Miura Y  Gotoh E  Nara F  Nishijima M  Hanada K 《FEBS letters》2004,557(1-3):288-292
Sphingosylphosphocholine (SPC), the N-deacylated form of sphingomyelin (SM), is a naturally occurring lipid mediator. However, little is known about the metabolism of SPC. We here report an in vitro assay system for SPC-phospholipase C (PLC). Using this assay system, we demonstrated that nSMase1 and nSMase2, human neutral sphingomyelinases (SMases), are capable of hydrolyzing SPC efficiently under detergent-free conditions. Bacterial and plasmodial neutral SMases also showed SPC-PLC activity. The substrate specificity of neutral SMases that hydrolyze SM, SPC, and monoradyl glycerophosphocholine, but not diradyl glycerophosphocholine, suggested that a hydrogen-bond donor at the C-2 or sn-2 position in the substrate is required for recognition by the enzymes.  相似文献   

13.
Sphingomyelin signal transduction pathway regulates cell cycle through a number of lipid second messengers, which stimulate cell proliferation (sphingosine-1-phosphate), initiate growth arrest or induce apoptosis (sphingosine, ceramide). To asses the functioning of sphingomyelin pathway during liver regeneration after partial hepatectomy in rat (PH) we measured the content of sphingomyelin (SM), ceramide (CER), sphingosine (SPH), sphingosine-1-phosphate (S1P), the activity of neutral Mg(2+)-dependent and acidic sphingomyelinases and ceramidases, in the remnant liver lobes during the first 24h after PH in rat. The activity of acidic ceramidase was highest at 4th hour after PH, whereas the activity of neutral ceramidases peaked at 12th hour after the operation. At these time points the activity Mg(2+)-dependent sphingomyelinase was also elevated, together with the content of SPH, S1P and the ratio of S1P to CER. The activity of acidic sphingomyelinase increased gradually from 4th to 24th hour after the operation. This was accompanied by significant increase in the content of ceramide between 4th and 24th hour and reduction in the content of S1P and S1P to CER ratio. It is concluded that partial hepatectomy induces production of the pro-mitogenic intermediates of sphingomyelin signaling pathway during the first 12h of liver regeneration in rat.  相似文献   

14.
Liver regeneration after partial hepatectomy (PH) is achieved through proliferation of hepatocytes and non-parenchymal cells. The nuclear peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in regulation of lipid metabolism and proliferation of hepatic cells. The sphingomyelin signal transduction pathway is involved in the regulation of the cell cycle in eukaryotic organisms. Sphingosine-1-phosphate (S1P) and ceramide (CER)-- the intermediates of the pathway--are known to stimulate and to inhibit cellular proliferation. The aim of the present study was to investigate the effect of PPARalpha activation by bezafibrate on the sphingomyelin signaling pathway during the first 24h of liver regeneration after PH in the rat. The content of sphingomyelin, ceramide, sphingosine, sphinganine, sphingosine-1-phosphate and the activity of sphingomyelinases and ceramidases were determined at various time points after PH. It has been found that the activity of neutral Mg(2+)-dependent sphingomyelinase (nSMase) increased, whereas the activity of acidic sphingomyelinase (aSMase) decreased in the regenerating liver. Activation of PPARalpha by bezafibrate lower the activity of nSMase and increased the activity of aSMase in the regenerating rat liver. The content of ceramide was higher in bezafibrate-treated rats, whereas the content of sphingosine-1-phosphate was markedly lower as compared to the untreated rats. Therefore, it is concluded that activation of PPARalpha by bezafibrate decreases the growth-stimulatory activity of the sphingomyelin pathway in regenerating rat liver.  相似文献   

15.
Sphingomyelinases: enzymology and membrane activity   总被引:13,自引:0,他引:13  
Goñi FM  Alonso A 《FEBS letters》2002,531(1):38-46
This paper reviews our present knowledge of sphingomyelinases as enzymes, and as enzymes acting on a membrane constituent lipid, sphingomyelin. Six types of sphingomyelinases are considered, namely acidic, secretory, Mg(2+)-dependent neutral, Mg(2+)-independent neutral, alkaline, and bacterial enzymes with both phospholipase C and sphingomyelinase activity. Sphingomyelinase assay methods and specific inhibitors are reviewed. Kinetic and mechanistic studies are summarized, a kinetic model and a general-base catalytic mechanism are proposed. Sphingomyelinase-membrane interactions are considered from the point of view of the influence of lipids on the enzyme activity. Moreover, effects of sphingomyelinase activity on membrane architecture (increased membrane permeability, membrane aggregation and fusion) are described. Finally, a number of open questions on the above topics are enunciated.  相似文献   

16.
The molecular cloning and the elucidation of the gene structures of the acid (aSMase) and a neutral sphingomyelinases (nSMase) of mouse and human facilitated the structural and functional analysis of these enzymes responsible for the catabolism of sphingomyelin present ubiquitously in the membrane lipid bilayer of mammalian cells. The protein and enzymic properties of the glycoprotein aSMase and of a non-glycosylated nSMase residing in the membranes of the endoplasmic reticulum have been analysed in the native as well as in the recombinant shingomyelinases. Important insight was gained from gene targeting experiments in which an aSMase deficient mouse line was generated which mimics the neurovisceral form of the human Niemann-Pick disease. The availability of the cloned aSMase and nSMases discovered so far led to a genetic approach to the verification of the concept that these enzymes in the 'sphingomelin cycle' are responsible for the generation of ceramide regarded as a lipophilic second messenger in the intracellular signal cascades activated by e.g. TNF-alpha, Fas ligand or cellular stress. All the available evidence derived from the aSMase deficient mouse line and several cell lines overexpressing aSMase and nSMase questions a role of ceramide released by the mammalian sphingomyelinases known so far in intracellular signal transduction.  相似文献   

17.
Tissue injury in inflammation involves the release of several cytokines that activate sphingomyelinases and generate ceramide. In the lung, the impaired metabolism of surfactant phosphatidylcholine (PC) accompanies this acute and chronic injury. These effects are long-lived and extend beyond the time frame over which tumor necrosis factor (TNF)-alpha and interleukin-1beta are elevated. In this paper, we demonstrate that in H441 lung cells these two processes, cytokine-induced metabolism of sphingomyelin and the inhibition of PC metabolism, are directly interrelated. First, metabolites of sphingomyelin hydrolysis themselves inhibit key enzymes necessary for restoring homeostasis between sphingomyelin and its metabolites. Ceramide stimulates sphingomyelinases as effectively as TNF-alpha, thereby amplifying the sphingomyelinase activation, and TNF-alpha, ceramide, and sphingosine all inhibit PC:ceramide phosphocholine transferase (sphingomyelin synthase), the enzyme that restores homeostasis between sphingomyelin and ceramide pools. Second, ceramide inhibits PC synthesis, probably because of its effects on CTP:phosphocholine cytidylyltransferase, the rate-limiting enzymatic step in de novo PC synthesis. The data presented here suggest that TNF-alpha may be an inhibitor of phospholipid metabolism in inflammatory tissue injury. These actions may be amplified because of the ability of metabolites of sphingomyelin to inhibit the pathways that should restore the normal ceramide-sphingomyelin homeostasis.  相似文献   

18.
Sphingolipids including ceramide and its derivatives such as ceramide-1-phosphate, glycosyl-ceramide, and sphinogosine (-1-phosphate) are now recognized as novel intracellular signal mediators for regulation of inflammation, apoptosis, proliferation, and differentiation. One of the important and regulated steps in these events is the generation of these sphingolipids via hydrolysis of sphingomyelin through the action of sphingomyelinases (SMase). Several lines of evidence suggest that reactive oxygen species (ROS; O2-, H2O2, and OH-,) and reactive nitrogen species (RNS; NO, and ONOO-) and cellular redox potential, which is mainly regulated by cellular glutathione (GSH), are tightly linked to the regulation of SMase activation. On the other hand, sphingolipids are also known to play an important role in maintaining cellular redox homeostasis through regulation of NADPH oxidase, mitochondrial integrity, and antioxidant enzymes. Therefore, this paper reviews the relationship between cellular redox and sphingolipid metabolism and its biological significance.  相似文献   

19.
We have studied the localization of neutral sphingomyelinase (N-SMase) in rat liver nuclei. The levels of neutral sphingomyelinase in regenerating liver nuclei were also assessed.We found that rat liver nuclei contain a sphingomyelinase having a pH optima of 7.2 and a kDa of 92. In intact nuclei, neutral sphingomyelinase was associated predominantly with the nuclear envelope. In regenerating/proliferating rat liver (during DNA synthesis), neutral sphingomyelinase was translocated from the nuclear envelope to the nuclear matrix. The levels of sphingomyelin in whole nuclei decreased in reverse proportion to an increase in the levels of neutral sphingomyelinase. By contrast, there was a corresponding increase in the levels of ceramide and sphingosine during cell regeneration/proliferation. Thus, endogenous nuclear neutral sphingomyelinase may play a role in the regulation of sphingomyelin levels and in relevant signal transduction reactions involving cell regeneration/proliferation. The potential significance of ceramide generation may be aimed at programmed cell death to allow the regeneration of liver mediated via target proteins such as, ceramide activated protein kinases/phospholipases or other unknown mechanisms.Abbreviations N-SMase neutral sphingomyelinase - A-SMase acid sphingomyelinase  相似文献   

20.
The enzymatic activities of acidic and neutral sphingomyelinases (aSMase and nSMase) in crude extracts of HL-60 cells prepared by short ultrasonic irradiation (sonicates) were characterized. It was found that although both have similar Km and Vmax (approximately 0.2 mM and approximately 3.5 nmol/mg per h, respectively), the two activities differ in many other aspects, including the following: (1) the aSMase activity has higher stability at 37 degrees C; (2) the aSMase is much less sensitive to Triton X-100 ( > 5 mM), compared with < or = 0.4 mM for the nSMase; (3) the nSMase, but not the aSMase, can discriminate between the natural bovine sphingomyelin substrate and the fluorescent substrate lissamine rhodamine dodecanoyl sphingosyl phosphocholine, suggesting that nSMase has higher substrate specificity. TNFalpha, which upon incubation with the HL-60 cells induces cellular SM hydrolysis, does not affect Km or Vmax of the nSMase in HL-60 sonicates. This suggests that TNFalpha may operate through translocation of either the enzyme or the substrate, thereby enhancing substrate availability and rate of hydrolysis, and not through enzyme activation. The relevance of these studies to the sphingomyelin cycle is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号