首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Chicken breasts with skin were packaged either in air, under vacuum or in modified atmospheres of (i) 30% CO2/70% N2 and (ii) 70% CO2/30% N2. After 3, 7, 14 and 21 days of storage at 4 °C, the samples were evaluated for spoilage microbial growth, odour and overall aspect. As expected, pseudomonads grew well in air or under vacuum, but growth was suppressed in both types of modified atmosphere packaging (MAP). However, growth of lactobacilli, Enterobacteriaceae and Brochothrix thermosphacta was not inhibited in MAPs. Modified atmosphere packaging (ii) extended shelf-life up to 21 days compared to 5 days for air-packed samples.  相似文献   

2.
Differences in mitochondrial membrane composition and ultrastructure were studied after storage of cauliflower ( Brassica oleracea , L., Botrytis group) for 5 days at 25°C in air or under controlled atmospheres: 3% O2, 21% O2+ 15% CO2 or 3% O2+ 15% CO2. In air, postharvest senescence involved a 20% decrease in mitochondrial phospholipid content. A large reduction in the relative abundance of phosphati-dylcholine (PC) and in the degree of unsaturation of PC and phosphatidyl ethanolamine (PE) was observed. However, the degree of unsaturation increased in cardiolipin (CL). Storage under 3% O2 did not prevent phospholipid breakdown. Low O2 prevented the relative decrease in PC observed during storage in air and the loss of linoleic acid from PC, but not from PE. This relative protection offered by the low O2 atmosphere was lost under 3% O2+ 15% CO2. The high CO2 atmospheres caused twice as much loss in phospholipids as that observed during storage in air. Extensive loss of mitochondrial protein, a marked decrease in phospholipid to protein ratio, and electron micrograph observations suggest structural alterations in the presence of high CO2.  相似文献   

3.
Application of anaerobic conditions with CO2 or N2 atmospheres to remove astringency from harvested persimmon fruit ( Diospryros kaki L. cv. Triumph), caused production of more acetaldehyde under CO2 than under N2, 14CO2 applied in a 100% CO2 atmosphere, for 48 h to astringent persimmon fruits was incorporated mainly into malate and very little into other metabolites, such as carbohydrate or amino acids. Application of malate or pyruvate to pulp discs of astringent persimmons caused an immediate rise in acetaldehyde production. The higher levels of acetaldehyde produced by whole fruits held in a CO2 atmosphere, than by fruits held in a N2 atmosphere, can be explained through fixation of atmospheric CO2 into malate, leading to acetaldehyde production.  相似文献   

4.
The involvement of phytochrome in stomatal movement in Commelina communis L. is indicated by the following observations: 1) Short irradiation with red or blue light causes opening, of isolated stomata and swelling of guard cell protoplasts. This is reversed by subsequent far red irradiation. 2) In a similar way, stomatal response to prolonged irradiation with red or blue light is decreased by concomitant far red irradiation. 3) Pretreatment with filipin, which interferes with phytochrome binding to membranes, decreases stomatal opening in red and blue light. The stomatal responses to blue and red light are modified by DCMU, N2, CO2-enriched atmosphere, and CO2-free air, which are known to affect, among other processes, chlorophyll fluorescence. Increased chlorophyll fluorescence by DCMU, N2 and CO2-enriched atmosphere enhanced stomatal opening in blue light and inhibited it in red light. CO2-free air, which decreases chlorophyll fluorescence, had the opposite effect.  相似文献   

5.
Abstract: Two populations of the psocid, Liposcelis bostrychophila Badonnel, were exposed to two CO2-enriched atmospheres (35% CO2 + 21% O2, and 55% CO2 + 21% O2, balance N2) for 30 generations. Controls were reared in normal atmospheres. The reserves of triacylglycerol and polysaccharides were evaluated in adults of the two experimental and the control populations in generations F15 and F30. The utilization rate of triacylglycerol and polysaccharides in the CO2-enriched atmospheres were also determined in generation F30. The results indicated that the reserves of triacylglycerol and polysaccharides increased significantly during selection for CO2 resistance; the higher the resistance level, the greater the reserves. Exposure of these populations to controlled atmosphere was associated with a steady utilization of the reserves. By contrast, the unselected population responded to controlled atmospheres by accelerated utilization of triacylglycerol and polysaccharides. Comparison of the utilization rates during CO2 exposure showed that triacylglycerol is the main energy source, and polysaccharides contribute to metabolic energy supply only to a small extent.  相似文献   

6.
The effects of 80% oxygen–20% carbon dioxide (O2–CO2) and 80% nitrogen–20% carbon dioxide (N2–CO2) atmospheres were compared with respect to the microbial and sensory characteristics of vacuum skin-packaged grain-fed beef steaks stored at −1 and 4 °C. In both N2–CO2 and O2–CO2 atmospheres, lactobacilli were predominant over Brochothrix , pseudomonads, enterobacteria and yeasts and moulds. The results of the current investigation showed that the O2–CO2 atmospheres did not yield total viable counts in excess of 105 cfu cm−2 on beef steaks after 4 weeks of storage. However, the sensory analysis and thiobarbituric acid (TBA) values (as a measure of oxidative rancidity) of the products were unacceptable at this time. In contrast, the N2–CO2 atmospheres yielded maximum total viable counts of approximately 107 cfu cm−2 and the sensory analysis and TBA values of the product were judged to be acceptable after 4 weeks of storage at −1 °C. These results indicate that sensory effects of the product were influenced to a greater extent by the chemical effects of high concentration of O2 on rancidity than by the high levels of lactobacilli.  相似文献   

7.
Aims:  To evaluate the impact of modified atmosphere packaging on in vitro growth of Aspergillus carbonarius and Aspergillus niger , and possible effects on ochratoxin A (OTA) biosynthesis.
Methods and Results:  Ochratoxigenic isolates belonging to the species A. carbonarius and A. niger were grown on a synthetic grapejuice medium (SNM) and packaged in combinations of controlled O2 (1% and 5%) and CO2 levels (0% and 15%), and in air as a control. Colony diameters were recorded every 3 days up to 21 days, and OTA was analysed after 7, 14 and 21 days. The greatest reductions in mycelial growth rate were observed at 1% O2 followed by 1% O2/15% CO2, whereas 5% O2 stimulated the growth of all isolates. OTA production by A. carbonarius and A. niger isolates was minimized at 1% O2/15% CO2 and 1% O2, respectively, after 7 days of incubation. Maximal OTA accumulation after 7 days was observed for all isolates in the control pack and at 5% O2.
Conclusions:  Of the atmospheres tested, only 1% O2 combined with 15% CO2 consistently reduced fungal growth and OTA synthesis by A. carbonarius and A. niger .
Significance and Impact of the Study:  Storage under modified atmospheres is unlikely to be suitable as the sole method for OTA minimization and grape preservation; other inhibitory factors are necessary.  相似文献   

8.
The development of the microflora of smoked pork loin and frankfurter sausage was followed during storage in vacuum, N2 and CO2 atmospheres at 4°C. The total aerobic count on the smoked pork loin reached 107 organisms/g after 37 d in vacuum, 43 d in N2 and 49 d in CO2. The corresponding value for the sausage was 77 d in vacuum, while the growth stopped at 6 times 104 organisms/g after 98 d in N2, and at 4 times 102 organisms/g after 48 d in CO2.
The predominant organisms on the fresh products were Bacillus spp., coryneform bacteria, Flavobacterium spp. and Pseudomonas spp.
At the end of the storage time the microflora on both products in the three gas atmospheres, consisted mainly of Lactobacillus spp. and two large groups of organisms that could not be identified as any described genus. Some of the unidentified strains could be classified as a Lactobacillus sp. after subsequent subculturing on laboratory media.
The numbers of Lactobacillus spp. at the end of storage decreased in the order, CO2 > N2 > vacuum. Lactobacillus viridescens generally constituted a substantial part of the Lactobacillus flora (5–72%). On the sausages two large uniform groups of unidentifiable homofermentative Lactobacillus spp. were also found.  相似文献   

9.
Abstract. The metabolic rates, as expressed by oxygen (O2) consumption, carbon dioxide (CO2) production, and losses in wet and dry weights, were examined for adults of three strains of the red flour beetle Tribolium castaneum (Herbst), during exposure to two modified atmospheres (MAs). Exposure of a strain selected for resistance over twenty-one generations to an atmosphere of 65% CO2, 20% O2 and the balance nitrogen (N2), termed a high carbon dioxide concentration atmosphere (HCC) and exposure of an unselected strain to HCC, showed considerable levels of aerobic metabolism during exposure. For the unselected strain water loss and mobilization of energy reserves were rapid and mortality was followed by rapid desiccation. For the HCC-resistant strain water balance was maintained and energy reserves were utilized more slowly over a prolonged period. Exposure of a strain selected for resistance over twenty-one generations to a low oxygen concentration atmosphere (LOC) of 0.5% O2 in N2, and an unselected strain to LOC, revealed that even at 0.5% O2, metabolism was largely aerobic in both strains. Maintenance of water balance was not a major factor causing mortality of either strain during exposure to LOC. In air, metabolic rates of both the resistant strains were lower than that of the unselected strain.  相似文献   

10.
Abstract. Two nonallelic, nuclear recessive mutants of Arabidopsis thaliana (L.) Heynh. which become chlorotic when grown in an atmosphere enriched to 20000 cm3 CO2 m-3 have been isolated. For one of the mutants, chlorosis begins at the veins and gradually spreads to the interveinal regions. A minimum photon flux density of ca 50 μmol m-2 s-1 is required for this response. For the other mutant, the yellowing is independent of the light intensity and begins at the basal regions of the leaves and spreads to the tips. The injurious effects of CO2 seem to be restricted to photosynthetic tissues, since root elongation and callus growth were not inhibited by a high atmospheric CO2 concentration for either mutant. Neither mutant became chlorotic in a low O2 atmosphere that suppressed photorespiration as effectively as the elevated CO2 does. Thus, the mutations do not impose a requirement for photorespiration. The possibilities that the high CO2-sensitive phenotypes are caused by an effect of CO2 in stomata, on ethylene synthesis, or on mineral uptake are discussed but are considered unlikely.  相似文献   

11.
Evolution of natural algal populations at elevated CO2   总被引:1,自引:0,他引:1  
Collins S  Bell G 《Ecology letters》2006,9(2):129-135
Over the next century, it is expected that the concentration of CO2 in the atmosphere will roughly double ( Watson et al. , 2001 , Climate Change 2001: the Scientific Basis , Intergovernmental Panel on Climate Change, Geneva). Microbial populations, which have large population sizes and short generation times, may respond to CO2 enrichment through genetic change. Here we describe microalgae isolated from the soil of natural CO2 springs and compare these strains with lines of Chlamydomonas that were selected at elevated CO2 in the laboratory. Both the laboratory and natural populations failed to evolve specific adaptations to elevated CO2, and contain populations that grow poorly at ambient levels of CO2. Laboratory and CO2 spring populations also include lines whose growth rates are insensitive to CO2. This demonstrates that, although laboratory selection experiments use simplified environments, the evolutionary responses that are seen following long-term CO2 enrichment correspond to those found in natural populations that have experienced similar conditions.  相似文献   

12.
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2+↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction.  相似文献   

13.
Short-term exposure to high CO2 increases rates of photosynthesis and growth in soybeans, but with prolonged high CO2 exposure, these high rates are sometimes not maintained. Growth of soybean (Glycine max (L.) Merrill cv. Fiskeby V) seedlings kept for 25 days at atmospheres of 350 or 1000 μ/l CO2 was compared with growth of plants given 2, 4 or 6 day alternating exposure to high and low CO2 levels (13 days of total exposure to each level). Final dry weight of plants increased with number of days in high CO2 but leaf areas were not greatly affected. Thus dry weight gains per unit leaf area (net assimilation rates) were higher in high CO2 than in low CO2 throughout the entire period of the experiment and the pattern of exposure to high CO2 did not affect the rate of dry weight gain in high CO2.  相似文献   

14.
Yield of wheat across a subambient carbon dioxide gradient   总被引:1,自引:0,他引:1  
Yields and yield components of two cultivars of day-neutral spring wheat ( Triticum aestivum L.) were assessed along a gradient of daytime carbon dioxide (CO2) concentrations from about 200 to near 350 μmol CO2 (mol air)–1 in a 38 m-long controlled environment chamber. The range in CO2 concentration studied approximates that of Earth's atmosphere since the last ice age. This 75% rise in CO2 concentration increased grain yields more than 200% under well-watered conditions and by 80–150% when wheat was grown without additions of water during the last half of the 100-day growing season. The 27% increase in CO2 from the pre-industrial level of 150 years ago (275 μmol mol–1) to near the current concentration (350 μmol mol–1) increased grain yields of 'Yaqui 54' and 'Seri M82' spring wheats by 55% and 53%, respectively, under well-watered conditions. Yield increased because of greater numbers of grains per spike, rather than heavier grains or numbers of spikes per plant. Water use increased little with CO2 concentration, resulting in improved water use efficiency as CO2 rose. Data suggest that rising CO2 concentration contributed to the substantial increase in average wheat yields in the U.S. during recent decades.  相似文献   

15.
Origin, fate and significance of CO2 in tree stems   总被引:1,自引:1,他引:0  
Although some CO2 released by respiring cells in tree stems diffuses directly to the atmosphere, on a daily basis 15–55% can remain within the tree. High concentrations of CO2 build up in stems because of barriers to diffusion in the inner bark and xylem. In contrast with atmospheric [CO2] of c.  0.04%, the [CO2] in tree stems is often between 3 and 10%, and sometimes exceeds 20%. The [CO2] in stems varies diurnally and seasonally. Some respired CO2 remaining in the stem dissolves in xylem sap and is transported toward the leaves. A portion can be fixed by photosynthetic cells in woody tissues, and a portion diffuses out of the stem into the atmosphere remote from the site of origin. It is now evident that measurements of CO2 efflux to the atmosphere, which have been commonly used to estimate the rate of woody tissue respiration, do not adequately account for the internal fluxes of CO2. New approaches to quantify both internal and external fluxes of CO2 have been developed to estimate the rate of woody tissue respiration. A more complete assessment of internal fluxes of CO2 in stems will improve our understanding of the carbon balance of trees.  相似文献   

16.
17.
Portions of skinless chicken breast meat (pH 5·8) were inoculated with a strain of Listeria monocytogenes and stored at 1, 6 or 15°C in (1) aerobic conditions; (2) 30% CO2+ air; (3) 30% CO2+ N2; and (4) 100% CO2. When samples were held at 1°C the organism failed to grow under any of the test conditions, despite marked differences between treatments in spoilage rate and ultimate microflora. At 6°C counts of L. monocytogenes increased ca 10-fold in aerobic conditions before spoilage of the meat, but only when the inoculum culture was incubated at 1°C rather than 37°C. In CO2 atmospheres growth of L. monocytogenes was inhibited on meat held at 6°C, especially under 100% CO2. By contrast, storage at 15°C led to spoilage of the meat within 2 d, in all gaseous environments, and listeria levels increased up to 100-fold. Differences in the behaviour of L. monocytogenes on poultry and red meats are discussed.  相似文献   

18.
Ecosystem CO2 and N2O exchanges between soils and the atmosphere play an important role in climate warming and global carbon and nitrogen cycling; however, it is still not clear whether the fluxes of these two greenhouse gases are correlated at the ecosystem scale. We collected 143 pairs of ecosystem CO2 and N2O exchanges between soils and the atmosphere measured simultaneously in eight ecosystems around the world and developed relationships between soil CO2 and N2O fluxes. Significant linear regressions of soil CO2 and N2O fluxes were found for all eight ecosystems; the highest slope occurred in rice paddies and the lowest in temperate grasslands. We also found the dominant role of growing season on the relationship of annual CO2 and N2O fluxes. No significant relationship between soil CO2 and N2O fluxes was found across all eight ecosystem types. The estimated annual global N2O emission based on our findings is 13.31 Tg N yr−1 with a range of 8.19–18.43 Tg N yr−1 for 1980–2000, of which cropland contributes nearly 30%. Our findings demonstrated that stoichiometric relationships may work on ecological functions at the ecosystem level. The relationship of soil N2O and CO2 fluxes developed here could be helpful in biogeochemical modeling and large-scale estimations of soil CO2 and N2O fluxes.  相似文献   

19.
Changes in the microbial flora of pork stored at 4 or 14°C were studied in 5 atm CO2, 1 atm CO2 or 1 atm air. The time needed for the total aerobic count at 4°C to reach 5 × 106 organisms/cm2 was about three times longer in 5 atm CO2 than in 1 atm CO2, and about 15 times longer in 5 atm CO2 than in air. At 14°C there was no difference in growth rate between 5 atm CO2 and 1 atm CO2. No off-odour was detected after storage in 5 atm CO2 for 14 d, but the pork in 1 atm CO2 (6 d) was organoleptically unacceptable.
The predominant organisms on the pork from the processing line were: Flavobacterium spp., Acinetobacter calcoaceticus, Pseudomonas spp., Micrococcus spp. and Moraxella spp. After aerobic storage at 4°C (8 d) or 14°C (3 d) more than 90% of the flora consisted of Pseudomonas spp. At 4°C all Pseudomonas spp. were of the non-fluorescent type, whilst at 14°C 32% were Ps. putida and Ps. fluorescens. After storage in 1 atm CO2 Lactobacillus spp. represented 66% of the flora at 14°C (6 d) and 100% at 4°C (40 d), with L. xylosus dominating. After storage in 5 atm CO2 Lactobacillus spp. constituted the total flora at both temperatures with L. lactis (14°C) and L. xylosus (4°C) dominating.
It was concluded that high partial pressures of CO2 have a considerable shelf-life prolonging effect by (i) selecting the microflora towards Lactobacillus spp. and (ii) reducing the growth rate of these Lactobacillus spp. The controlling and growth inhibitory effect of CO2 was promoted by reduced temperatures.  相似文献   

20.
Stomatal conductance ( g s) and photosynthetic rate ( A ) were measured in young beech ( Fagus sylvatica ), chestnut ( Castanea sativa ) and oak ( Quercus robur ) growing in ambient or CO2-enriched air. In oak, g s was consistently reduced in elevated CO2. However, in beech and chestnut, the stomata of trees growing in elevated CO2 failed to close normally in response to increased leaf-to-air vapour pressure deficit (LAVPD). Consequently, while g s was reduced in elevated CO2 on days with low LAVPD, on warm sunny days (with correspondingly high LAVPD) g s was unchanged or even slightly higher in elevated CO2. Furthermore, during drought, g s of beech and chestnut was unresponsive to [CO2], over a wide range of ambient LAVPD, whereas in oak g s was reduced by an average of 50% in elevated CO2. Stimulation of A by elevated CO2 in beech and chestnut was restricted to days with high irradiance, and was greatest in beech during drought. Hence, most of the additional carbon gain in elevated CO2 was made at the expense of water economy, at precisely those times (drought, high evaporative demand) when water conservation was most important. Such effects could have serious consequences for drought tolerance, growth and, ultimately, survival as atmospheric [CO2] increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号