首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbonic anhydrase in molluscs   总被引:1,自引:0,他引:1  
  相似文献   

2.
Carbonic anhydrase.   总被引:2,自引:0,他引:2  
1. The G + C content of ribosomal RNA of animals seems correlated with the length of periods required for maturation of those organisms. 2. In Protostomes of the animal kingdom, the size of the 28S rRNA molecule does not seem to correlate with the evolutionary stage of the organism. 3. Aphids and water-fleas as well as some protozoa have the 18S rRNA with mol. wt of 0.9 x 10(6) against an overwhelming pressure of evolution to conserve the rRNA molecule of 0.7 x 10(6) daltons. 4. All the Deuterostomes examined were distinguished from Protostomes by having the 28S rRNA's void of the hidden break at the central point. 5. Aphids and nematodes are exceptional Protostomes in that they have the 28S rRNA's without the hidden break. This was discussed in the light of the evolutionary stage of these organisms. 6. Molecular properties of chloroplast rRNA seem to evidence for endosymbiotic origin of this organelle. Mitochondrial rRNA differs considerably from prokaryotic rRNA with respect to molecular size and base composition.  相似文献   

3.
Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread enzymes in all organisms, catalyzing CO2 hydration to bicarbonate and protons. Their inhibition is exploited clinically for decades for various classes of diuretics and systemically acting antiglaucoma agents. In the last years novel applications of CA inhibitors (CAIs) emerged, such as topically acting antiglaucoma, anticonvulsants, antiobesity, antipain, and antitumor agents/diagnostic tools. Such CAIs target diverse isozymes of the 13 catalytically active α-CA isoforms present in mammals. CAs belonging to the α-, β-, γ-, δ-, and ζ-families are found in many organisms all over the phylogenetic tree, and their inhibition was studied ultimately for some pathogenic protozoa (Plasmodium falciparum), fungi (Cryptococcus neoformans, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae), and bacteria (Helicobacter pylori, Mycobacterium tuberculosis, and Brucella suis). Novel interesting chemotypes, in addition to the sulfonamide and sulfamate CAIs, such as coumarins, phenols, and fullerenes, were also reported recently, together with their mechanism of inhibition. This class of enzyme inhibitors shows promise for designing interesting pharmacological agents and understanding in detail protein–drug interactions at molecular level.  相似文献   

4.
Cell migration can be principally viewed as a chain of well-orchestrated morphological events that lead to dynamic reshaping of the cell body. However, behind the scene of such a “morphological theater” there are very complex, interrelated molecular and physiological processes that drive the cell movement. Among them, ion transport and pH regulation play a key role, with carbonic anhydrase IX (CA IX) emerging as one of the important “molecular actors.” CA IX is a highly active cell surface enzyme expressed in a broad range of solid tumors in response to hypoxia and explored as a clinically useful biomarker of hypoxia and as a therapeutic target. Its biological role is to protect tumor cells from hypoxia and acidosis in the tumor microenvironment. The study published recently by our group showed that CA IX actively contributes to cell migration and invasion. For the first time, we demonstrated CA IX accumulation in lamellipodia of migrating cells and its direct in situ interaction with bicarbonate transporters. Our findings indicate that tumor cells need CA IX not only as a pro-survival factor in hypoxia and acidosis, but also as a pro-migratory component of the cellular apparatus driving epithelial-mesenchymal transition.  相似文献   

5.
The distribution of carbonic anhydrase in the kidney of the cynomolgus monkey was studied by the histochemical method of Hansson. Glomeruli and Bowman's capsule were inactive. Convoluted proximal tubules showed high enzyme activity at the brush border and the basolateral membranes and the cytoplasm. Straight proximal tubules were less intensely stained. In nephrons with long loops of Henle, the descending thin limb contained weak enzyme activity, whereas the ascending thin limb was inactive. The thick limb of Henle's loop displayed most enzyme activity at the luminal cell border. In distal convoluted tubules enzyme activity was restricted to the basal part of the cells. In the late distal tubule, intercalated cells appeared among the "ordinary" distal cells and contained abundant cytoplasmic enzyme. Many intensely stained intercalated cells were also found in the cortical and outer medullary segments of the collecting duct, intermingled with more weakly stained chief cells. In the inner medullary segment of the collecting duct, enzyme activity gradually disappeared. Many capillaries were clearly stained for enzyme activity. The capillary staining apparently varied with that of the kidney tubules; virtually all capillaries in the cortex, but very few in the inner medulla, were stained. The distribution of carbonic anhydrase in the kidney tubules of the monkey is very similar to that in man and in the rat, but the primate kidney differs from the rat kidney by the presence of capillary enzyme activity. The functional importance of this difference is not clear at present.  相似文献   

6.
Lysozymes in the animal kingdom   总被引:11,自引:0,他引:11  
Lysozymes (EC 3.2.1.17) are hydrolytic enzymes, characterized by their ability to cleave the β-(1,4)-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, the major bacterial cell wall polymer. In the animal kingdom, three major distinct lysozyme types have been identified — the c-type (chicken or conventional type), the g-type (goose-type) and the i-type (invertebrate type) lysozyme. Examination of the phylogenetic distribution of these lysozymes reveals that c-type lysozymes are predominantly present in the phylum of the Chordata and in different classes of the Arthropoda. Moreover, g-type lysozymes (or at least their corresponding genes) are found in members of the Chordata, as well as in some bivalve mollusks belonging to the invertebrates. In general, the latter animals are known to produce i-type lysozymes. Although the homology in primary structure for representatives of these three lysozyme types is limited, their three-dimensional structures show striking similarities. Nevertheless, some variation exists in their catalytic mechanisms and the genomic organization of their genes. Regarding their biological role, the widely recognized function of lysozymes is their contribution to antibacterial defence but, additionally, some lysozymes (belonging to different types) are known to function as digestive enzymes.  相似文献   

7.
8.
Several of the known scaling laws in the animal kingdom are based on a so-called allometric correlation in which some physical quantity is presumed to scale as some power of the mass of the animal. Such a simple correlation, when deduced purely as an empirical result, often hides the physical balances that fix the relevant scaling law. In particular, the emphasis on a simple allometric scaling has often masked the fundamental role played by time scales associated with the physical balances being struck. In this paper I have concentrated on three different attributes to which the use of dimensional analysis, scaling arguments and some judicious guesswork have led to new results and an understanding of some balances that occur in the animal kingdom. The running speed of animals is examined and a rationale deduced for the resolution of a conundrum first posed by A.V. Hill of why it is that many animals appear to have approximately the same maximum speed. A complete dimensional analysis for scaling the basal metabolic rate for a class of animals suggests that a detailed understanding of the physical balances that fix the metabolic rate could be quite subtle. However, the use of such an analysis has led to the discovery of a new correlation for mammals, relating the metabolic rate to the mass and the pulse rate of the animal. At the heart of many scaling laws for animal motion is the provision of an estimate of how the skeletal structure depends on the mass of the animal. It has been known for some time that the assumption of isometry between the builds of animals is too constrictive to describe the observed scaling laws. It is shown here how to relax the isometric assumption and deduce scaling laws in good agreement with observation. Thus, it appears that the skeletal dimensions of many animals with exoskeletons are fixed by the need to support static rather than dynamical loads. The scaling laws associated with endoskeletons are more complex, apparently, though the analysis does suggest that it is dynamical loading which is decisive for the skeletal design of land mammals.  相似文献   

9.
10.
Nonaqueous fractionation of leaves of the cotton plant suggested that carbonic anhydrase was associated with the chloroplasts. Activity of this enzyme in aqueous extracts prepared in media containing no reductants was stable at 4°. Response to sulfhydryl reagents varied. The results indicated that thiol groups, necessary for the activity of the enzyme, were partially protected from oxidation.  相似文献   

11.
Carbonic anhydrase in human platelets.   总被引:1,自引:0,他引:1       下载免费PDF全文
The carbonic anhydrase activity of human platelets was investigated by measuring the kinetics of CO2 hydration in supernatants of platelet lysates by using a pH stopped-flow apparatus. An average carbonic anhydrase concentration of 2.1 microM was determined for pellets of human platelets. Analysis of the kinetic properties of this carbonic anhydrase yielded a Km value of 1.0 mM, a catalytic-centre activity kcat. of 130000 s-1 and an inhibition constant Ki towards ethoxzolamide of 0.3 nM. From these values, CO2 hydration inside platelets is estimated to be accelerated by a factor of 2500. When platelet lysates were subjected to affinity chromatography, only the high-activity carbonic anhydrase II could be eluted from the affinity column, whereas the carbonic anhydrase isoenzyme I, which is known to occur in high concentrations in human erythrocytes, appeared to be absent.  相似文献   

12.
Carbonic anhydrase II polymorphism in Africa   总被引:1,自引:0,他引:1  
N D Carter 《Human heredity》1972,22(5):539-541
  相似文献   

13.
14.
In this research, carbonic anhydrase enzyme, which was taken from the bones of an animal, was purified and characterized for the first time. For this, the bones of a young cow were used. The purification treatment was completed in three steps. Three different isoenzymes, such as peripheral, cystolic, and integral from the bone-cell cytozolic isoenzyme were purified and characterized. In purification of the three isoenzymes, the technique of affinity chromatography, which utilized Sepharose-4B-L-Tyrosine-Sulphanylamide, was used. In measuring the activities of enzymes, two different methods were applied. These are the esterase methods that utilize hydratase and p-nitrophenylacetate as substrate. The measurement of proteins was done with the methods of Bradford and Coomassie Brillant Blue. The optimum pH and temperature of each enzyme were measured and molecular weights were measured by gel-filtration. Its purity was examined by SDS-PAGE (3-10% alternating) electrophoresis and the inferior unit was defined. The inhibition effects of some chemicals were tested for each of the three isoenzymes.  相似文献   

15.
Carbonic anhydrase from parsley leaves   总被引:10,自引:0,他引:10  
  相似文献   

16.
Carbonic anhydrase (CA) activity was histochemically localized in the elasmobranch rectal gland at the light and electron microscopic levels. Reaction product in the secretory tubules was localized coincident with that reported for sodium-potassium activated adenosine triphosphatase (Na-K-ATPase): along the highly amplified basolateral plasma membranes of the epithelial cells. Reaction product was also localized along the plasma membrane of adjacent central canal epithelial cells. The results suggest that CA plays a role in modulating the environment of the intercellular space which in the secretory tubule is believed to be the paracellular pathway for sodium. The results also draw attention to the possible role of the central canal epithelium in modification of the secreted fluid.  相似文献   

17.
18.
19.
Neurotransmitters and modulators in the animal kingdom   总被引:5,自引:0,他引:5  
  相似文献   

20.
Carbonic anhydrase in relation to higher plants   总被引:12,自引:0,他引:12  
The review incorporates recent information on carbonic anhydrase (CA, EC: 4.2.1.1) pertaining to types, homology, regulation, purification, in vitro stability, and biological functions with special reference to higher plants. CA, a ubiquitous enzyme in prokaryotes and higher organisms represented by four distinct families, is involved in diverse biological processes, including pH regulation, CO2 transfer, ion exchange, respiration, and photosynthetic CO2 fixation. CA from higher plants traces its origin with prokaryotes and exhibits compartmentalization among their organs, tissues, and cellular organelles commensurate with specific functions. In leaves, CA represents 1–20 % of total soluble protein and abundance next only to ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) in chloroplast, facilitating CO2 supply to phosphoenol pyruvate carboxylase in C4 and CAM plants and RuBPCO in C3 plants. It confers special significance to CA as an efficient biochemical marker for carbon sequestration and environmental amelioration in the current global warming scenario linked with elevated CO2 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号