首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic cells can decorate their proteins with carbohydrate structures or glycans, significantly affecting the properties and activities of these proteins. Despite the importance of protein glycosylation in numerous biological processes, our knowledge of this modification in insects is far from complete. While N-glycosylation is the most studied, the study of O-glycans in insects is still very fragmentary and these studies are limited to a specific developmental stage or a specific tissue. In this article, matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) technology was used to analyze the O-glycan profile for the different developmental stages of egg, larva, pupa, and adult of the red flour beetle Tribolium castaneum, an important insect model and pest worldwide. The results on the O-glycan profile showed that the mucin-type glycans dominate the O-glycome of the red flour beetle. Interestingly, some of the more complex mucin-type O-glycans, such as a tetra- (O-GalNAcGalGlcAGalNAc) and pentasaccharide O-glycan (O-GalNAc(GalGlcA)GalNAcGlcA), were highly abundant during the pupa stage, the intermediate stage between larval and adult stage in holometabolous insects, demonstrating that insect metamorphosis is accompanied with a change in the insect O-glycan profile. Together with the N-glycan profile, the current data are a foundation to better understand the role of protein glycosylation in the development of insects.  相似文献   

2.
Carbohydrate moieties of salivary mucins play various roles in life processes, especially as a microbial trapping agent. While structural details of the salivary O-glycans from several mammalian sources are well studied, very little information is currently available for the corresponding N-glycans. The existence of N-glycans alongside O-glycans on mucin isolated from rat sublingual gland has previously been implicated by total glycosyl compositional analysis but the respective structural data are both lacking. The advent of facile glycomic mapping and sequencing methods by mass spectrometry (MS) has enabled a structural reinvestigation into many previously unsolved issues. For the first time, high energy collision induced dissociation (CID) MALDI-MS/MS as implemented on a TOF/TOF instrument was applied to permethyl derivatives of mucin type O-glycans and N-glycans, from which the linkage specific fragmentation pattern could be established. The predominant O-glycans carried on the rat sublingual mucin were defined as sialylated core 3 and 4 types whereas the N-glycans were determined to be non-bisected hybrid types similarly carrying a sialylated type II chain. The masking effect of terminal sialylation on the tight binding of rat sublingual mucin to Galβ1→4GlcNAc specific lectins and three oligomannose specific lectins were clearly demonstrated in this study.  相似文献   

3.
Proper N- and O-glycosylation of recombinant proteins is important for their biological function. Although the N-glycan processing pathway of different expression hosts has been successfully modified in the past, comparatively little attention has been paid to the generation of customized O-linked glycans. Plants are attractive hosts for engineering of O-glycosylation steps, as they contain no endogenous glycosyltransferases that perform mammalian-type Ser/Thr glycosylation and could interfere with the production of defined O-glycans. Here, we produced mucin-type O-GalNAc and core 1 O-linked glycan structures on recombinant human erythropoietin fused to an IgG heavy chain fragment (EPO-Fc) by transient expression in Nicotiana benthamiana plants. Furthermore, for the generation of sialylated core 1 structures constructs encoding human polypeptide:N-acetylgalactosaminyltransferase 2, Drosophila melanogaster core 1 β1,3-galactosyltransferase, human α2,3-sialyltransferase, and Mus musculus α2,6-sialyltransferase were transiently co-expressed in N. benthamiana together with EPO-Fc and the machinery for sialylation of N-glycans. The formation of significant amounts of mono- and disialylated O-linked glycans was confirmed by liquid chromatography-electrospray ionization-mass spectrometry. Analysis of the three EPO glycopeptides carrying N-glycans revealed the presence of biantennary structures with terminal sialic acid residues. Our data demonstrate that N. benthamiana plants are amenable to engineering of the O-glycosylation pathway and can produce well defined human-type O- and N-linked glycans on recombinant therapeutics.  相似文献   

4.
Baculovirus expression vector system (BEVS) is widely known as a mass-production tool to produce functional recombinant glycoproteins except that it may not be always suitable for medical practice due to the differences in the structure of N-linked glycans between insects and mammalian. Currently, various approaches have been reported to alter N-linked glycan structures of glycoproteins derived from insects into terminally sialylated complex-type N-glycans. In the light of those studies, we also proposed in vitro maturation of N-glycan with mass-produced and purified glycosyltransferases by silkworm–BEVS. β-1,4-Galactosyltransferase 1 (β4GalT1) is known as one of type II transmembrane enzymes that transfer galactose in a β-1, 4 linkage to accepter sugars, and a key enzyme for further sialylation of N-glycans. In this study, we developed a large-scale production of recombinant human β4GalT1 (rhβ4GalT1) with N- or C-terminal tags in silkworm–BEVS. We demonstrated that rhβ4GalT1 is N-glycosylated and without mucin-type glycosylation. Interestingly, we found that purified rhβ4GalT1 from silkworm serum presented higher galactosyltransferase activity than that expressed from cultured mammalian cells. We also validated the UDP-galactose transferase activity of produced rhβ4GalT1 proteins by using protein subtracts from silkworm silk gland. Taken together, rhβ4GalT1 from silkworms can become a valuable tool for producing high-quality recombinant glycoproteins with mammalian-like N-glycans.  相似文献   

5.
A simple procedure is described for the elimination ofO-linked glycans from bovine submaxillary mucin under non-reducing conditions, using triethylamine in aqueous hydrazine. The glycans were isolated as the hydrazones, which were converted to the reducing glycans by exchange with acetone in neutral aqueous solution. The glycan alditols obtained after reduction corresponded to those obtained by the reductive -elimination ofO-glycans.  相似文献   

6.
The extracellular matrix (ECM) molecules play important roles in many biological and pathological processes. During tissue remodeling, the ECM molecules that are glycosylated are different from those of normal tissue owing to changes in the expression of many proteins that are responsible for glycan synthesis. Vitronectin (VN) is a major ECM molecule that recognizes integrin on hepatic stellate cells (HSCs). The present study attempted to elucidate how changes in VN glycans modulate the survival of HSCs, which play a critical role in liver regeneration. Plasma VN was purified from partially hepatectomized (PH) and sham-operated (SH) rats at 24 h after operation and non-operated (NO) rats. Adhesion of rat HSCs (rHSCs), together with phosphorylation of focal adhesion kinase, in PH-VN was decreased to one-half of that in NO- or SH-VN. Spreading of rHSCs on desialylated NO-VN was decreased to one-half of that of control VN, indicating the importance of sialylation of VN for activation of HSCs. Liquid chromatography/multiple-stage mass spectrometry analysis of Glu-C glycopeptides of each VN determined the site-specific glycosylation. In addition to the major biantennary complex-type N-glycans, hybrid-type N-glycans were site-specifically present at Asn167. Highly sialylated O-glycans were found to be present in the Thr110–Thr124 region. In PH-VN, the disialyl O-glycans and complex-type N-glycans were decreased while core-fucosylated N-glycans were increased. In addition, immunodetection after two-dimensional PAGE indicated the presence of hyper- and hyposialylated molecules in each VN and showed that hypersialylation was markedly attenuated in PH-VN. This study proposes that the alteration of VN glycosylation modulates the substrate adhesion to rat HSCs, which is responsible for matrix restructuring.  相似文献   

7.
Alterations inN- andO-linked glycosylation affect cell surface expression and antigenicity of recombinant glycophorin A expressed in transfected Chinese hamster ovary (CHO) cells. To understand these effects further, glycophorin A was purified by immunoaffinity chromatography from transfected wild type and glycosylation deficient CHO cells. TheO-glycans were characterized both biochemically, using gel filtration and high performance anion exchange chromatography, and immunologically, using carbohydrate specific monoclonal antibodies to probe Western blots. TheO-glycans of human erythrocyte glycophorin A consist mainly of short oligosaccharides with one, two, or three sialic acid residues linked to a common disaccharide core, Gal1-3GalNAc1-Ser/Thr, with the disialylated structure being the most abundant. With the exception of the trisialylated derivative, the same structures were found on recombinant glycophorin A expressed by wild type CHO cells. However, in contrast to human crythrocyte glycophorin A, the monosialylated oligosaccharide was the most abundant structure on the recombinant protein. Furthermore, recombinant glycophorin A was shown to express a small amount of the Tn antigen (GalNAc1-Ser/Thr). Recombinant glycophorin A had the sameO-glycan composition, whether purified from clones expressing high or moderate levels of the recombinant glycoprotein. This indicates that the level of expression of the transfected glycoprotein did not affect itsO-glycan composition. Deletion of theN-linked glycosylation site at Asn26, by introducing the Mi.I mutation (Thr28 Met) by site-directed mutagenesis, did not markedly affect theO-glycan composition of the resulting recombinant glycoprotein expressed in wild type CHO cells. This demonstrates that the presence or absence of theN-glycan did not influenceO-linked glycosylation of the recombinant glycoprotein. Finally, theO-glycans on recombinant glycophorin A expressed in the Lec 2 and Lec 8 glycosylation deficient CHO cells were characterized. TheO-glycans on Lec 2 cell glycophorin A were predominantly Gal1-3GalNAc1-Ser/Thr (T antigen), while those on Lec 8 glycophorin A were exclusively GalNAc1-Ser/Thr (Tn antigen). These results will lead to a better understanding of the cell biology and immunology of this important human erythrocyte glycoprotein.  相似文献   

8.
Human interleukin 15 (IL-15) circulates in blood as a stable molecular complex with the soluble IL-15 receptor alpha (sIL-15Rα). This heterodimeric IL-15:sIL-15Rα complex (hetIL-15) shows therapeutic potential by promoting the growth, mobilization and activation of lymphocytes and is currently evaluated in clinical trials. Favorable pharmacokinetic properties are associated with the heterodimeric formation and the glycosylation of hetIL-15, which, however, remains largely uncharacterized. We report the site-specific N- and O-glycosylation of two clinically relevant large-scale preparations of HEK293-derived recombinant human hetIL-15. Intact IL-15 and sIL-15Rα and derived glycans and glycopeptides were separately profiled using multiple LC-MS/MS strategies. IL-15 Asn79 and sIL-15Rα Asn107 carried the same repertoire of biosynthetically-related N-glycans covering mostly α1-6-core-fucosylated and β-GlcNAc-terminating complex-type structures. The two potential IL-15 N-glycosylation sites (Asn71 and Asn112) located at the IL-2 receptor interface were unoccupied. Mass analysis of intact IL-15 confirmed its N-glycosylation and suggested that Asn79-glycosylation partially prevents Asn77-deamidation. IL-15 contained no O-glycans, whereas sIL-15Rα was heavily O-glycosylated with partially sialylated core 1 and 2-type mono- to hexasaccharides on Thr2, Thr81, Thr86, Thr156, Ser158, and Ser160. The sialoglycans displayed α2-3- and α2-6-NeuAc-type sialylation. Non-human, potentially immunogenic glycoepitopes (e.g. N-glycolylneuraminic acid and α-galactosylation) were not displayed by hetIL-15. Highly reproducible glycosylation of IL-15 and sIL-15Rα of two batches of hetIL-15 demonstrated consistent manufacturing and purification. In conclusion, we document the heterogeneous and reproducible N- and O-glycosylation of large-scale preparations of the therapeutic candidate hetIL-15. Site-specific mapping of these molecular features is important to evaluate the consistent large-scale production and clinical efficacy of hetIL-15.  相似文献   

9.
Although insects are among the most diverse groups of the animal kingdom and may be found in nearly all environments, one can observe an obvious lack of structural data on their glycosylation ability. Hymenoptera is the second largest of all insect orders with more than 110.000 identified species and includes the most famous examples of social insects’ species such as wasps, bees and ants. In this report, the structural variety of O-glycans has been studied in two Hymenoptera species. In a previous study, we showed that major O-glycans from common wasp (Vespula germanica) salivary mucins correspond to T and Tn antigen, eventually substituted by phosphoethanolamine or phosphate groups. More detailed structural analysis performed by mass spectrometry revealed numerous minor O-glycan structures bearing Gal, GlcNAc, GalNAc and Fuc residues. Thus, in order to investigate glycosylation diversity in insects, we used common wasp nest (V. germanica) and hornet nest (Vespa cabro) as starting materials. These materials were submitted to reductive β-elimination and the released oligosaccharide–alditols further fractionated by multidimensional HPLC. Tandem mass spectrometry analyses combined with NMR data revealed the presence of various families of complex O-glycans differing accordingly to both core structures and external motifs. Glycans from wasp were characterized by the presence of core types 1 and 2, Lewis X and internal Gal-Gal motifs. We also observed unusual O-glycans containing a reducing GalNAc unit directly substituted by a fucose residue. In contrast, hornet O-glycans appeared as a rather homogeneous family of core 1 type O-glycans extended by galactose oligomers.  相似文献   

10.
11.
BackgroundTerminal α2-3 and α2-6 sialylation of glycans precludes further chain elongation, leading to the biosynthesis of cancer relevant epitopes such as sialyl-Lewis X (SLeX). SLeX overexpression is associated with tumor aggressive phenotype and patients' poor prognosis.MethodsMKN45 gastric carcinoma cells transfected with the sialyltransferase ST3GAL4 were established as a model overexpressing sialylated terminal glycans. We have evaluated at the structural level the glycome and the sialoproteome of this gastric cancer cell line applying liquid chromatography and mass spectrometry. We further validated an identified target expression by proximity ligation assay in gastric tumors.ResultsOur results showed that ST3GAL4 overexpression leads to several glycosylation alterations, including reduced O-glycan extension and decreased bisected and increased branched N-glycans. A shift from α2-6 towards α2-3 linked sialylated N-glycans was also observed. Sialoproteomic analysis further identified 47 proteins with significantly increased sialylated N-glycans. These included integrins, insulin receptor, carcinoembryonic antigens and RON receptor tyrosine kinase, which are proteins known to be key players in malignancy. Further analysis of RON confirmed its modification with SLeX and the concomitant activation. SLeX and RON co-expression was validated in gastric tumors.ConclusionThe overexpression of ST3GAL4 interferes with the overall glycophenotype of cancer cells affecting a multitude of key proteins involved in malignancy. Aberrant glycosylation of the RON receptor was shown as an alternative mechanism of oncogenic activation.General significanceThis study provides novel targets and points to an integrative tumor glycomic/proteomic-profiling for gastric cancer patients' stratification. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.  相似文献   

12.
Identifying biological roles for mammalian glycans and the pathways by which they are synthesized has been greatly facilitated by investigations of glycosylation mutants of cultured cell lines and model organisms. Chinese hamster ovary (CHO) glycosylation mutants isolated on the basis of their lectin resistance have been particularly useful for glycosylation engineering of recombinant glycoproteins. To further enhance the application of these mutants, and to obtain insights into the effects of altering one specific glycosyltransferase or glycosylation activity on the overall expression of cellular glycans, an analysis of the N-glycans and major O-glycans of a panel of CHO mutants was performed using glycomic analyses anchored by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry. We report here the complement of the major N-glycans and O-glycans present in nine distinct CHO glycosylation mutants. Parent CHO cells grown in monolayer versus suspension culture had similar profiles of N- and O-GalNAc glycans, although the profiles of glycosylation mutants Lec1, Lec2, Lec3.2.8.1, Lec4, LEC10, LEC11, LEC12, Lec13, and LEC30 were consistent with available genetic and biochemical data. However, the complexity of the range of N-glycans observed was unexpected. Several of the complex N-glycan profiles contained structures of m/z ∼13,000 representing complex N-glycans with a total of 26 N-acetyllactosamine (Galβ1–4GlcNAc)n units. Importantly, the LEC11, LEC12, and LEC30 CHO mutants exhibited unique complements of fucosylated complex N-glycans terminating in Lewisx and sialyl-Lewisx determinants. This analysis reveals the larger-than-expected complexity of N-glycans in CHO cell mutants that may be used in a broad variety of functional glycomics studies and for making recombinant glycoproteins.  相似文献   

13.
14.
Zhang  Xin  Wang  Chen  Han  Qing  Chen  Xuan  Li  Guoyun  Yu  Guangli 《Glycoconjugate journal》2021,38(5):527-537

Mucins are the major proteins that distributed on the intestinal mucosa layer and protect the intestine from pathogens infection. The composition of intestinal mucin O-glycans can affect the health of the gastrointestinal tract in pigs. Porcine intestinal mucosa is widely used as the main raw material of heparin extraction. The heparin extraction residues rich in mucins were usually wasted. The structure of mucin derived O-glycans in porcine intestinal mucosa are currently unknown. In this study, we isolated the mucins from the heparin extraction residues and profiled the O-glycans. After heparin extraction, mucin was digested with trypsin, and separated by strong anion exchange chromatography. The mucin derived O-glycans were release by alkaline β elimination, and analyzed by ultra high performance liquid chromatography-porous graphitized carbon-Fourier transform mass spectrometry (UPLC-PGC-FTMS/MS). Thirty five kinds of O-glycans were identified, most of which were Core 3-derived glycans. In particular, the O-glycans containing sialic acid Neu5Ac accounted for 71.93% of the total O-glycans, which were different from that of other species, including mouse intestine, fish intestine, and porcine colon. The high content sialylated mucin may explain its effect in biological processes. Furthermore, the immunological activity results indicated that the porcine intestinal mucin could promote phagocytosis and proliferation without any cytotoxic effects, which may aid in the development of immunomodulators.

  相似文献   

15.
Site-specific glycosylation analysis is key to investigate structure-function relationships of glycoproteins, e.g. in the context of antigenicity and disease progression. The analysis, though, is quite challenging and time consuming, in particular for O-glycosylated proteins. In consequence, despite their clinical and biopharmaceutical importance, many human blood plasma glycoproteins have not been characterized comprehensively with respect to their O-glycosylation. Here, we report on the site-specific O-glycosylation analysis of human blood plasma glycoproteins. To this end pooled human blood plasma of healthy donors was proteolytically digested using a broad-specific enzyme (Proteinase K), followed by a precipitation step, as well as a glycopeptide enrichment and fractionation step via hydrophilic interaction liquid chromatography, the latter being optimized for intact O-glycopeptides carrying short mucin-type core-1 and -2 O-glycans, which represent the vast majority of O-glycans on human blood plasma proteins. Enriched O-glycopeptide fractions were subjected to mass spectrometric analysis using reversed-phase liquid chromatography coupled online to an ion trap mass spectrometer operated in positive-ion mode. Peptide identity and glycan composition were derived from low-energy collision-induced dissociation fragment spectra acquired in multistage mode. To pinpoint the O-glycosylation sites glycopeptides were fragmented using electron transfer dissociation. Spectra were annotated by database searches as well as manually. Overall, 31 O-glycosylation sites and regions belonging to 22 proteins were identified, the majority being acute-phase proteins. Strikingly, also 11 novel O-glycosylation sites and regions were identified. In total 23 O-glycosylation sites could be pinpointed. Interestingly, the use of Proteinase K proved to be particularly beneficial in this context. The identified O-glycan compositions most probably correspond to mono- and disialylated core-1 mucin-type O-glycans (T-antigen). The developed workflow allows the identification and characterization of the major population of the human blood plasma O-glycoproteome and our results provide new insights, which can help to unravel structure-function relationships. The data were deposited to ProteomeXchange PXD003270.Human blood plasma harbors arguably the most complex yet also the most informative proteome present in the human body (1). A significant impact on its clinical relevance and diagnostic potential is attributed to the features and functions of a plethora of proteins (60–80 mg protein per ml plasma), covering a dynamic concentration range of more than ten orders of magnitude (2). The majority, that is 99%, of these proteins are classical blood plasma proteins, like albumins, (immuno)globulins, clotting factors, and proteins of the complement system; however, also a lower abundant but—no less meaningful—fraction of nonclassical proteins is present that comprises a multitude of cytokines as well as tissue leakage proteins. Several clinical studies could show that qualitative and quantitative alterations of these proteins (and peptides)—analyzed individually or in their entirety as a proteome (or peptidome)—can directly reflect pathophysiological states, and can serve as biomarkers for the onset and progression of a number of diseases (35). In recent years the focus of in-depth analyses of the human blood plasma proteome has evolved from the identification and quantification of the entire proteome (or peptidome) (610) toward the analysis of subproteomes like the interactome (11), phosphoproteome (12, 13) or the glycoproteome (14). The latter has received particular interest in recent years, because the majority of blood plasma proteins is N- and/or O-glycosylated (2). Although the comprehensive analysis of the N-glycoproteome is already quite advanced (15), even in complex samples like human blood plasma (16, 17), similar analyses of the O-glycoproteome - though arguably equally important and relevant - are still lagging behind. The most ubiquitously found and functionally relevant form of O-glycosylation, as shown by a number of O-glycan-related (clinical) studies (1823), is the mucin-type O-glycosyation (O-GalNAc), in particular the core-1 and core-2 types (24, 25). The predominantly clustered occurrence of mucin-type O-glycans on proteins is described to confer overall stability and proteolytic protection (26). Apart from this global impact, recent studies could link the presence of O-glycans in the proximity of regulatory domains to proteolysis events involved in protein maturation (proprotein-convertase-processing) (27). To better understand these protective and regulatory capabilities and to move the mucin-type O-glycoproteome from form to function comprehensive site-specific O-glycosylation analyses are required.One of the main obstacles in site-specific mucin-type O-glycosylation analyses relates to the lack of a predictable O-glycan consensus-motif within the peptide backbone as it can be found for N-glycans (28). The initial attachment of the N-acetylgalactosamine monosaccharide to the hydroxyl group of either serine or threonine, but also to tyrosine or hydroxylysine, is governed by a family of 20 distinct polypeptide GalNAc-transferase isoenzymes (GalNAc-Ts) with different but partially overlapping peptide specificities and tissue expression patterns. This dynamic regulation, in turn, contributes to the complexity of the mucin-type O-glycoproteome. However, previous studies could show that mucin-type O-glycans are primarily attached to serine or threonine in regions with a high content of serine, threonine and proline (Ser/Thr-X-X-Pro, Ser/Thr-P and Pro-Ser/Thr) (29, 30). As O-glycosylation is a postfolding event, taking place in the Golgi apparatus, the attachment is depended on protein surface accessibility and is thus predominantly found in coil, turn, and linker regions (31). Additional confounding factors during mucin-type O-glycosylation analyses are the clustered occurrence of O-glycans and the lack of a universal endo-O-glycosidase that enables the release of intact O-glycans from the proteins; though, chemical O-glycan release methods do exist (28).Mass spectrometry has proven to be the core technique in site-specific N- and O-glycosylation analyses. A generic O-glycoproteomic workflow usually starts with the isolation, enrichment or prefractionation of a single glycoprotein or a group of glycoproteins. In subsequent steps, (glyco)peptides are generated by proteolytic digestion primarily using specific proteases like trypsin. Apart from this, also broad- and nonspecific proteases like Proteinase K or Pronase E were successfully employed in recent years (3234). Essential to nearly every glycoproteomic approach is the removal of high-abundant and interfering nonglycosylated peptides by selective enrichment of the usually lower abundant glycopeptides. The repertoire of glycopeptide enrichment and separation techniques covers different solid phase extraction and chromatography based methods such as hydrophilic liquid interaction chromatography (HILIC) (35, 36). The most frequently used setup for the measurement of enriched (glyco)peptides is liquid chromatography (LC)1 coupled online to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Recent advances in instrumentation, in particular the development of electron-transfer/electron-capture dissociation (ETD/ECD) (37, 38), and high resolution orbital mass analyzers, have paved the way for the mapping of thousands of occupied N- and O-glycosylation sites as recently shown (17, 27). Combined workflows using ETD/ECD fragmentation along with (multistage, MSn) fragmentation with high- and/or low collisional induced dissociation energy (HCD/CID) can provide compositional (structural) information on the glycan moiety as well as information on the peptide sequence and the glycosylation site (39, 40). Recent advances in mass spectrometry driven O-glycoproteomics have been reviewed in detail elsewhere (41, 42). Owing to the amount and complexity of O-glycoproteomic data a number of bioinformatic software tools for the prediction of mucin-type O-glycosylation sites (27) as well as for the database assisted interpretation and annotation of glycan and glycopeptide fragment spectra have been developed (43, 44). Moreover, reporting guidelines for collecting, sharing, integrating, and interpreting mass spectrometry based glycomics data have been specified by the MIRAGE consortium (minimum information required for a glycomics experiment) (45, 46).The aim of our study was to develop a glycoproteomic workflow that allows the explorative nontargeted analysis of O-glycosylated human blood plasma proteins, which are known to carry mainly short mono- and disialylated mucin-type core-1 and -2 O-glycans. To achieve this, we have combined O-glycopeptide selective offline-HILIC fractionation of Proteinase K digested peptides with nano-reversed-phase liquid chromatography coupled online to multistage ion-trap mass spectrometry (nanoRP-LC-ESI-IT-MS: CID-MS2/-MS3, ETD-MS2). The workflow has been applied to investigate the mucin-type O-glycoproteome of a pooled blood plasma sample derived from 20 healthy donors. Based on the mass spectrometric analysis of intact O-glycopeptides, we were able to characterize the O-glycosylation (i.e. peptide, site, and attached O-glycans) of a number of major human blood glycoproteins, including many acute phase proteins such as fibrinogen and plasminogen. Overall, the site-specific glycosylation analysis of human blood plasma glycopeptides revealed exclusively mono- and disialylated core-1 mucin-type O-glycopeptides. Interestingly, also a few novel O-glycosylation sites could be identified.  相似文献   

16.
Several glycoconjugates are involved in the immune response. Sialic acid is frequently the glycan terminal sugar and it may modulate immune interactions. Dendritic cells (DCs) are antigen-presenting cells with high endocytic capacity and a central role in immune regulation. On this basis, DCs derived from monocytes (mo-DC) are utilised in immunotherapy, though many features are ignored and their use is still limited. We analyzed the surface sialylated glycans expressed during human mo-DC generation. This was monitored by lectin binding and analysis of sialyltransferases (ST) at the mRNA level and by specific enzymatic assays. We showed that α2-3-sialylated O-glycans and α2-6- and α2-3-sialylated N-glycans are present in monocytes and their expression increases during mo-DC differentiation. Three main ST genes are committed with this rearrangement: ST6Gal1 is specifically involved in the augmented α2-6-sialylated N-glycans; ST3Gal1 contributes for the α2-3-sialylation of O-glycans, particularly T antigens; and ST3Gal4 may contribute for the increased α2-3-sialylated N-glycans. Upon mo-DC maturation, ST6Gal1 and ST3Gal4 are downregulated and ST3Gal1 is altered in a stimulus-dependent manner. We also observed that removing surface sialic acid of immature mo-DC by neuraminidase significantly decreased its endocytic capacity, while it increased in monocytes. Our results indicate the STs expression modulates the increased expression of surface sialylated structures during mo-DC generation, which is probably related with changes in cell mechanisms. The ST downregulation after mo-DC maturation probably results in a decreased sialylation or sialylated glycoconjugates involved in the endocytosis, contributing to the downregulation of one or more antigen-uptake mechanisms specific of mo-DC.  相似文献   

17.
We previously showed that a small proportion of the O-linked oligosaccharide chains of human glycophorin A (GPA) contains blood group A, B or H antigens, relevant to the ABO phenotype of the donor. The structures of these minor O-glycans have been established (Podbielska et al. (2004) [20]). By the use of immunochemical methods we obtained results indicating that ABH blood group epitopes are also present in N-glycan of human GPA (Podbielska and Krotkiewski (2000) [22]). In the present paper we report a detailed analysis of GPA N-glycans using nanoflow electrospray ionization tandem mass spectrometry. N-glycans containing A-, B- and H-related sequences were identified in GPA preparations obtained from erythrocytes of blood group A, B and O donors, respectively. The ABH blood group epitopes are present on one antenna of the N-glycan, whereas a known sialylated sequence NeuAcα2-6Galβ1-4GlcNAc- occurs on the other antenna and other details are in agreement with the known major structure of the GPA N-glycan. In the bulk of the biantennary sialylated N-glycans released from GPA preparations, the blood group ABH epitopes-containing N-glycans, similarly O-glycans, constituted only a minor part. The amount relative to other N-glycans was estimated to 2-6% of blood group H epitope-containing glycans released from GPA-O preparations and 1-2% of blood group A and B epitope-containing glycans, released from GPA-A and GPA-B, respectively.  相似文献   

18.
Despite the great significance of release and analysis of glycans from glycoproteins, the existing N-glycan release methods are undermined by some limitations and deficiencies. The traditional enzymatic protocols feature high N-glycan release specificity but are generally costly and inefficient for some types of N-glycans. The existing chemical methods require harsh reaction conditions or are accompanied by the remarkable formation of by-products. Herein, we describe a versatile chemical method for the release and analysis of N-glycans from glycoproteins. This method differs from the existing methods as only aqueous ammonia is used to catalyze the N-glycan release reactions. Optimization of reaction conditions was performed using RNase B as a model glycoprotein and the obtained results indicated a highest N-glycan yield in ammonia at 60 °C for 16 h. Comparison of this method with traditional enzymatic protocols and recently reported NaClO methods confirmed the good reliability and efficiency of the novel approach. We also successfully applied this method to some complex biological samples, such as Ginkgo seed protein, fetal bovine serum (FBS) and hen egg white, and demonstrated its great compatibility with various neutral N-glycans, core α-1,3-fucosylated N-glycans and sialylated N-glycans. This method is very simple and cost-effective, enabling convenient analysis and large-scale preparation of released reducing N-glycans from various biological samples for structural and functional glycomics studies.  相似文献   

19.
G protein-coupled receptors (GPCRs) are an important protein family of signalling receptors that govern a wide variety of physiological functions. The capacity to transmit extracellular signals and the extent of cellular response are largely determined by the amount of functional receptors at the cell surface that is subject to complex and fine-tuned regulation. Here, we demonstrate that the cell surface expression level of an inhibitory GPCR, the human δ-opioid receptor (hδOR) involved in pain and mood regulation, is modulated by site-specific N-acetylgalactosamine (GalNAc) -type O-glycosylation. Importantly, we identified one out of the 20 polypeptide GalNAc-transferase isoforms, GalNAc-T2, as the specific regulator of O-glycosylation of Ser6, Ser25 and Ser29 in the N-terminal ectodomain of the receptor. This was demonstrated by in vitro glycosylation assays using peptides corresponding to the hδOR N-terminus, Vicia villosa lectin affinity purification of receptors expressed in HEK293 SimpleCells capable of synthesizing only truncated O-glycans, GalNAc-T edited cell line model systems, and site-directed mutagenesis of the putative O-glycosylation sites. Interestingly, a single-nucleotide polymorphism, at residue 27 (F27C), was found to alter O-glycosylation of the receptor in efficiency as well as in glycosite usage. Furthermore, flow cytometry and cell surface biotinylation assays using O-glycan deficient CHO-ldlD cells revealed that the absence of O-glycans results in decreased receptor levels at the plasma membrane due to enhanced turnover. In addition, mutation of the identified O-glycosylation sites led to a decrease in the number of ligand-binding competent receptors and impaired agonist-mediated inhibition of cyclic AMP accumulation in HEK293 cells. Thus, site-specific O-glycosylation by a selected GalNAc-T isoform can increase the stability of a GPCR, in a process that modulates the constitutive turnover and steady-state levels of functional receptors at the cell surface.  相似文献   

20.
The interaction between P-selectin glycoprotein ligand-1/mouse IgG2b (PSGL-1/mIgG2b) fusion protein carrying multiple copies of the influenza hemagglutinin receptor Siaα2-3Gal on different O-glycan chains and recombinant human influenza H5N1 A/Vietnam/1203/04 hemagglutinin was investigated with a Biacore biosensor. The fusion protein was produced by stable cell lines in large scale cultures and purified with affinity- and gel filtration chromatography. The C-P55 and 293-P cell lines were established by transfecting the Chinese hamster ovary (CHO)-K1 and Human embryonic kidney (HEK)-293 cell lines with plasmids encoding the PSGL-1/mIgG2b fusion protein, while the C-PSLex cell line was engineered by transfecting CHO-K1 cells with the plasmids encoding the core 2 β1,6GnT-I and FUT-VII glycosyltransferases. Glycosylation was characterized by lectin Western blotting of the proteins and liquid chromatography - mass spectrometry of released non-derivatized O-glycans. Biacore experiments revealed that PSGL-1/mIgG2b is a good binding partner of H5. The binding curves displayed a slow dissociation indicating a multivalent binding. The H5 hemagglutinin binds with similar strength to PSGL-1/mIgG2b carrying mostly sialylated core 1 (clone C-P55), a mix of sialylated core 1 and sialylated lactosamine (clone 293-P) or mainly sialylated lactosamine (clone C-PSLex) O-glycans, indicating that this hemagglutinin is unable to discriminate between these structures. The potential use of the large, flexible PSGL-1/mIgG2b mucin-type fusion protein carrying Siaα2-3Gal as a multivalent inhibitor of influenza virus is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号