首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
The subfamily of guanine nucleotide-binding regulatory (G proteins) designated Gq has been shown to regulate the activity of phospholipase C by reconstitution. However, the role of these proteins in hormonal regulation of this activity has not been demonstrated. Two antisera were used in attempts to interrupt this pathway. Antiserum W082, developed against a peptide representing an internal sequence in alpha q, was specific for alpha q by immunoblots but did not recognize the native protein. Antiserum X384 was developed against a peptide representing the 12 amino acids of the common carboxyl termini of alpha q and alpha 11. It had a broader specificity for this subfamily of G protein alpha subunits and recognized the native proteins. Antiserum X384 specifically immunoprecipitated alpha q and its homologs from purified preparations and detergent extracts of membranes. Affinity-purified antibodies attenuated stimulation of phosphatidylinositide 4,5-bisphosphate hydrolysis by bradykinin, angiotensin, and histamine in membranes derived from NG108-15 cells, rat liver, and 1321N1 cells, respectively. Activation of the phospholipase C activity by guanosine 5'-3-O-(thio)triphosphate alone was also inhibited. Inclusion of the peptide to which the antisera were raised blocked the effect of the antibody. In contrast, affinity-purified W082, which did not recognize native proteins, did not alter regulation of phospholipase C. This indicates that the Gq family of signaling proteins can couple to several receptors and is responsible for the hormonal regulation of phospholipase C in these diverse systems. The further generality of this regulatory pathway remains to be established.  相似文献   

3.
Calcium signalling has profound implications in the fungal infection of plants and animals, during which a series of physiological and morphological transitions are required. In this article, using a model fungal pathogen, Magnaporthe oryzae , we demonstrate that the regulation of the intracellular calcium concentration ([Ca2+]int) is essential for fungal development and pathogenesis. Imaging of [Ca2+]int showed that infection-specific morphogenesis is highly correlated with the spatiotemporal regulation of calcium flux. Deletion of the fungal phospholipase C gene ( M.   oryzae phospholipase C 1, MoPLC1 ) suppressed calcium flux, resulting in a fungus defective in developmental steps, including appressorium formation and pathogenicity. Surprisingly, the PLC-δ1 gene of mouse was able to functionally substitute for MoPLC1 by restoring the calcium flux, suggesting the evolutionary conservation of the phospholipase C-mediated regulation of calcium flux. Our results reveal that MoPLC1 is a conserved modulator of calcium flux that is essential for the regulation of key steps in fungal development and pathogenesis.  相似文献   

4.
The immune modulator FTY720 is phosphorylated in vivo to FTY720 phosphate (FTY-P), which activates four sphingosine 1-phosphate (S1P) receptors including S1P3. Upon activation with S1P, S1P3 couples to Gi- and Gq-protein-dependent signalling pathways. Here we show that FTY-P selectively activates the S1P3-mediated and Gi-coupled inhibition of adenylyl cyclase. Contemporaneously, it antagonizes the S1P-induced activation of Gq via S1P3 in intracellular calcium flux measurements, GTP-binding experiments, and flow cytometric analyses of activation-induced receptor down-regulation. In contrast to S1P, pre-treatment with FTY-P did not desensitize S1P-induced calcium flux or chemotaxis via S1P3. The lack of receptor desensitization prevented S1P3-mediated migration to FTY-P. Human umbilical vein endothelial cells express S1P1 and S1P3, and respond to S1P and FTY-P by ERK1/2 phosphorylation and by intracellular calcium release in a pertussis toxin-sensitive manner. But whereas a mixture of S1P and FTY-P was not affecting ERK1/2 phosphorylation, the intracellular calcium flux was hampered with increasing amounts of FTY-P, which points to a cross-talk between S1P1 and S1P3. FTY-P is therefore one of the rare ligands which bind to a receptor that couples multiple G-proteins but selectively activates only one signalling pathway.  相似文献   

5.
Abstract: Rat striatal tyrosine hydroxylase can be isolated in both a soluble and a synaptic membrane-bound form. The membrane-bound enzyme, which exhibits lower K ms for both tyrosine (7 μ M ) and reduced pterin cofactor (110 μ M ) relative to the soluble enzyme (47 μ M and 940 μ M , respectively), can be released from the membrane fraction with mild detergent, and concomitantly its kinetic properties revert to those of the soluble enzyme. Treatment of membrane-bound tyrosine hydroxylase with C. perfringens phospholipase C increased the K m of the enzyme for tyrosine to 27 μ M and the V max by 60% without changing the K m for cofactor. In contrast, treatment of membrane-bound tyrosine hydroxylase with V. russelli phospholipase A2 increased the K m for tyrosine to 48 μ M increased the V max and increased the K m for cofactor to 560 μ M . The enzyme remained bound to the membrane fraction following both phospholipase treatments. Addition of phospholipids to treated enzyme could partially reverse the effects of phospholipase A2 treatment, but not the effects of phospholipase C treatment. The kinetic properties of phospholipase-treated, detergent-solubilized tyrosine hydroxylase were identical to those of the control solubilized enzyme. Tyrosine hydroxylase appears to interact with synaptic membrane components to produce at least two separately determined consequences for the kinetic properties of the enzyme.  相似文献   

6.
7.
All members of the inwardly rectifying potassium channels (Kir1-7) are regulated by the membrane phospholipid, phosphatidylinosital-4,5-bisphosphate (PIP2). Some are also modulated by other regulatory factors or ligands such as ATP and G-proteins, which give them their common names, such as the ATP sensitive potassium (KATP) channel and the G-protein gated potassium channel. Other more non-specific regulators include polyamines, kinases, pH and Na+ ions. Recent studies have demonstrated that PIP2 acts cooperatively with other regulatory factors to modulate Kir channels. Here we review how PIP2 and co-factors modulate channel activities in each subfamily of the Kir channels.  相似文献   

8.
Intervillous blood was collected from term placentae at delivery, and sera were tested for phospholipase A2 under various experimental conditions. Enzyme activity was found to develop upon extended storage in the cold or at 37°C. The enzyme is reversibly inhibited by dithiothreitol, requires Ca++ ions for activity, and tolerates various detergents. The apparent molecular weight is 42 kDa. In all these parameters the serum enzyme behaves similar to the 42 kDa phospholipase A2 which we recently purified to homogeneity from thoroughly washed placental tissue. Serum phospholipase A2 appears to be generated by proteolytic processing from a slightly larger inactive precursor which was detected immunochemically. Most likely this protein originates from fetal cells and may be released by membrane damage. We conclude that both placental serum and tissue harbour a novel type of phospholipase A2 which is distinct from cytosolic and secretory phospholipases A2. Preference for arachidonate containing substrate suggests a role in eicosanoid production within gestational tissues.  相似文献   

9.
Members of the canonical transient receptor potential (TRPC) subfamily of cation channels are candidates for capacitative and non-capacitative Ca2+ entry channels. When ectopically expressed in cell lines, TRPC3 can be activated by phospholipase C-mediated generation of diacylglycerol or by addition of synthetic diacylglycerols, independently of Ca2+ store depletion. Apart from this mode of regulation, little is known about other receptor-dependent signaling events that modulate TRPC3 activity. In the present study the role of tyrosine kinases in receptor- and diacylglycerol-dependent activation of TRPC3 was investigated. In HEK293 cells stably expressing TRPC3, pharmacological inhibition of tyrosine kinases, and specifically of Src kinases, abolished activation of TRPC3 by muscarinic receptor stimulation and by diacylglycerol. Channel regulation was lost following expression of a dominant-negative mutant of Src, or when TRPC3 was expressed in an Src-deficient cell line. In both instances, wild-type Src restored TRPC3 regulation. We conclude that Src plays an obligatory role in the mechanism for receptor and diacylglycerol activation of TRPC3.  相似文献   

10.
In previous studies we have demonstrated that ethanol activates hormone-sensitive phospholipase C in intact human platelets, resulting in the mobilization of intracellular Ca2+ and platelet shape change. The present study aims to localize further this effect of ethanol by examining its interaction with the regulation of phospholipase C in a permeabilized cell system. In platelets permeabilized with a minimal concentration (18 micrograms/ml) of saponin, ethanol by itself did not activate phospholipase C. However, ethanol potentiated the activation of phospholipase C in response to the non-hydrolysable GTP analogue GTP[S] (guanosine 5'-[gamma-thio]triphosphate), an effect similar to that observed with thrombin. Ethanol also potentiated the response to fluoride, which acts directly on G-proteins. Other short-chain alcohols also stimulated phospholipase C in a synergistic manner with GTP[S]. The ability of specific alcohols to stimulate phospholipase C was directly related to their respective lipid-solubilities, as determined by their partition coefficients. Moreover, the potencies of each alcohol correlated with their ability to elicit Ca2+ mobilization and shape change in intact platelets. These effects of ethanol were eliminated by a disruption of receptor-phospholipase C coupling induced by the addition of higher concentrations of saponin. These data indicate that the activation of phospholipase C by ethanol may occur by affecting protein-protein interactions in the signal-transduction complex involving GTP-binding regulatory proteins.  相似文献   

11.
Heat stress induces an array of physiological adjustments that facilitate continued homeostasis and survival during periods of elevated temperatures. Here, we report that within minutes of a sudden temperature increase, plants deploy specific phospholipids to specific intracellular locations: phospholipase D (PLD) and a phosphatidylinositolphosphate kinase (PIPK) are activated, and phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP2) rapidly accumulate, with the heat-induced PIP2 localized to the plasma membrane, nuclear envelope, nucleolus and punctate cytoplasmic structures. Increases in the steady-state levels of PA and PIP2 occur within several minutes of temperature increases from ambient levels of 20–25°C to 35°C and above. Similar patterns were observed in heat-stressed Arabidopsis seedlings and rice leaves. The PA that accumulates in response to temperature increases results in large part from the activation of PLD rather than the sequential action of phospholipase C and diacylglycerol kinase, the alternative pathway used to produce this lipid. Pulse-labelling analysis revealed that the PIP2 response is due to the activation of a PIPK rather than inhibition of a lipase or a PIP2 phosphatase. Inhibitor experiments suggest that the PIP2 response requires signalling through a G-protein, as aluminium fluoride blocks heat-induced PIP2 increases. These results are discussed in the context of the diverse cellular roles played by PIP2 and PA, including regulation of ion channels and the cytoskeleton.  相似文献   

12.
What do Src kinase, Ras-guanine nucleotide exchange factor, cytidylyltransferase, protein kinase C, phospholipase C, vinculin, and DnaA protein have in common? These proteins are amphitropic, that is, they bind weakly (reversibly) to membrane lipids, and this process regulates their function. Proteins functioning in transduction of signals generated in cell membranes are commonly regulated by amphitropism. In this review, the strategies utilized by amphitropic proteins to bind to membranes and to regulate their membrane affinity are described. The recently solved structures of binding pockets for specific lipids are described, as well as the amphipathic alpha-helix motif. Regulatory switches that control membrane affinity include modulation of the membrane lipid composition, and modification of the protein itself by ligand binding, phosphorylation, or acylation. How does membrane binding modulate the protein's function? Two mechanisms are discussed: (1) localization with the substrate, activator, or downstream target, and (2) activation of the protein by a conformational switch. This paper also addresses the issue of specificity in the cell membrane targetted for binding.  相似文献   

13.
As previously described, WRK1 plasma membrane possesses a vasopressin-sensitive phospholipase C [G. Guillon et al., FEBS Lett. 196, 155–159]. In the present study, we examined the sensitivity of this enzyme to guanylnucleotides. GTPγS induced a time- and dose-dependent stimulation of Ins(1,4,5)P3 and Ins(1,4)P2 accumulation. No accumulation of InsP1, Ins(1,3,4)P3 or Ins(1,3,4,5)P4 occured under similar conditions. Gpp(NH)p produced the same effect but was less potent. GTP and a nonhydrolyzable analogue of ATP, App(NH)p, were without effect. Calcium also stimulated the phospholipase C activity in a time- and dose-dependent manner. In the absence of calcium, the activity of GTPγS was considerably reduced. Physiological calcium concentrations (between 10−8 and 10−7M), allowed maximal GTPγS stimulation of phospholipase C activity. In this system, the presence of vasopressin alone did not generate inositol phosphate accumulation. However, this hormone: (i) reduced the lag-time observed during GTPγS stimulation, (ii) increased the sensitivity of phospholipase C to GTPγS, and (iii) did not modify the stimulation of phospholipase C induced by maximal doses of GTPγS. Unlike sodium fluoride, GTPγS elicited an irreversible activation of phospholipace C. Calcium, GTPγS and sodium fluoride stimulated the phospholipase C activity via mechanisms sharing a common step, since their maximal effects were not additive. Cholera toxin treatment, known to produce complete ADP-ribosylation of ‘s’ subunits, partially reduced the basal and the maximal GTPγS-mediated stimulation of phospholipase C activity as well as that caused by vasopressin. This inhibition was not mimicked by treatment with either forskolin or pertussi toxin.  相似文献   

14.
An egg-yolk agar diffusion assay of phospholipase C has been developed and investigated. The results demonstrate the necessity for strict control of the pH and volume of the egg-yolk agar and of the temperature and duration of incubation of the assay plates. The method has been used to monitor phospholipase C production in cultures of Clostridium welchii sparged continuously with CO2 in N2 and shows that maximal concentration occurs after ca. 6-8 h incubation at 37°C. The concentration falls slowly during subsequent anaerobic incubation supporting the opinion that Cl. welchii may elaborate a proteinase which destroys phospholipase C.  相似文献   

15.
Regulation of phosphoinositide-specific phospholipase C   总被引:7,自引:0,他引:7  
The receptors involved in the regulation of phospholipase C by hormones, neurotransmitters and other ligands have seven transmembrane-spanning hydrophobic regions (seven-helix motif) and no known enzymatic activity. Furthermore these receptors can be isolated as complexes with guanine nucleotide binding (G) proteins. Guanine nucleotides affect the binding of hormones that stimulate phospholipase C and it has been possible to see activation of GTPase activity in membranes upon addition of these ligands. Further indirect evidence for a Gp (p stands for phospholipase C activation) protein is the finding that in membranes agonist activation of phospholipase C requires the presence of GTP gamma S a non-hydrolyzable analog of GTP. Furthermore, fluoride is able to activate phospholipase C but its inhibition of phosphatidylinositol-4' kinase (PI-4' kinase) can interfere with efforts to demonstrate this in intact cells. There are four major isozymes of phospholipase C that have been cloned and sequenced. Recently it was found that phospholipase C-gamma as well as PI-3'-kinase are substrates for phosphorylation on tyrosine residues by the EGF and PDGF receptors. The PI-3' kinase is able to convert phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3) but the function of this lipid is unknown since it is not a substrate for any known phospholipase C. While much has been learned about the structure and regulation of the phosphoinositide specific kinases and phosphodiesterase enzymes this is a relatively new field in which we can expect many advances during the next few years.  相似文献   

16.
The coloned 5-HT1A receptor, stably expressed in HeLa cells, has been shown to mediate the effects of 5-hydroxytryptamine (5-HT) to inhibit cAMP formation and to stimulate the hydrolysis of phosphatidylinositol. Both responses were found to be pertussis toxin sensitive. We have examined these two responses in membranes derived from these cells and show that the 5-HT1A receptor can directly regulate the activity of adenylyl cyclase and phospholipase C in response to agonist. In order to examine whether the same or distinct guanine nucleotide-binding regulatory protein(s) (G protein) are involved in these two signal transduction pathways, we used anti-peptide antibodies recognizing the -subunits of Gi1, Gi2, Gi3 as specific tools, since these pertussis toxin substrates are expressed in HeLa cells. These antibodies have previously been shown to prevent receptor-G protein coupling by binding to the regions of G proteins which are putatively involved in interaction with receptors. Our results indicate that the Gi proteins, but preferentially G3, mediate the effects of 5-HT both to inhibit adenylyl cyclase and to stimulate phospholipase C. These findings demonstrate that the same receptor interacting with the same C protein can regulate several distinct effector molecules.  相似文献   

17.
Tomura H  Mogi C  Sato K  Okajima F 《Cellular signalling》2005,17(12):1466-1476
OGR1, GPR4, G2A, and TDAG8 share 40% to 50% homology with each other and seem to form a family of GPCRs. They have been described as receptors for lipid molecules such as sphingosylphosphorylcholine, lysophosphatidylcholine, and psychosine. Recent studies, however, have revealed that these receptors also sense extracellular protons or pH through histidine residues of receptors and stimulate a variety of intracellular signaling pathways through several species of hetero-trimeric G-proteins, including Gs, Gi, Gq, and G12/13. Thus, this family of GPCR seems to recognize both lipid molecules and protons as ligands. Although our knowledge of proton-sensing and lysolipid-sensitive GPCRs is preliminary, the receptor levels and ligand levels especially protons are both sensitively modulated in response to a variety of microenvironmental changes. These results suggest a multiple role of proton-sensing GPCRs in a variety of physiological and pathophysiological states.  相似文献   

18.
Phosphatidylinositol bisphosphate hydrolysis is an immediate response to many hormones, including growth factors. The hydrolysis of phosphatidylinositol bisphosphate is catalyzed by phosphatidylinositol-specific phospholipase C. A number of phospholipase C isozymes have been identified. Different isozymes are activated by different receptor classes. This review will summarize the different isozymes of phospholipase C, and the current knowledge of the mechanisms by which phospholipase C acitivity is modulated by growth factors.  相似文献   

19.
Reproduction is an event that requires the coordination of peripheral organs with the nervous system to ensure that the internal and external environments are optimal for successful procreation of the species. This is accomplished by the hypothalamic-pituitary-gonadal axis that coordinates reproductive behavior with ovulation. The primary signal from the central nervous system is gonadotropin-releasing hormone (GnRH), which modulates the activity of anterior pituitary gonadotropes regulating follicle stimulating hormone (FSH) and luteinizing hormone (LH) release. As ovarian follicles develop they release estradiol, which negatively regulates further release of GnRH and FSH. As estradiol concentrations peak they trigger the surge release of GnRH, which leads to LH release inducing ovulation. Release of GnRH within the central nervous system helps modulate reproductive behaviors providing a node at which control of reproduction is regulated. To address these issues, this review focuses on several critical questions. How is the HPG axis regulated in species with different reproductive strategies? What internal and external conditions modulate the synthesis and release of GnRH? How does GnRH modulate reproductive behavior within the hypothalamus? How does disease shift the activity of the HPG axis?  相似文献   

20.
ON THE PHOSPHOLIPASE A2 ACTIVITY OF HUMAN CEREBRAL CORTEX   总被引:1,自引:1,他引:0  
Abstract— Preparations of phospholipase Az have been obtained from human cerebral cortex. The enzyme was extracted from acetone-dried tissue and purified by heat-treatment and gel filtration on Sephadex.
Although heating at 65°C or 70°C destroys most of the phospholipase A1 activity that is present in crude extracts, a small proportion remains associated with the A2 activity during these procedures. The heat-treated extracts hydrolyse lecithin in preference to phosphatidyl-ethanolamine but have no action on lysolecithin or neutral lipids. The results suggest that A2 activity and the heat-stable component of A1 may both be due to a single phospholipase A that can hydrolyse diacylglycerophosphatides at either the 2-or the 1-position, to form a mixture of isomeric lysoderivatives.
A molecular weight of 55,000 was calculated for the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号