首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freshwater ecosystems support biological communities with high species richness and conservation interest. However, these ecosystems are highly altered by human intervention and threatened worldwide, making them a priority in conservation planning and biodiversity monitoring. Bryophytes, including several conservation-interest taxa, are recognized indicators of ecological status in freshwaters. We aimed to develop a framework for designing monitoring networks to detect trends in aquatic and semi-aquatic bryophyte communities, prioritizing high-conservation interest communities in different contexts of human pressure (specifically, resulting from the intersection of two criteria: (i) protection status and (ii) presence of a potential impact area).The framework consists of three steps: (1) Spatial modelling of biodiversity; (2) Spatial conservation prioritization; and (3) Model-assisted monitoring network design. Community-level modelling was used to model the distribution of the main bryophyte assemblages in the study area. A conservation prioritization software was utilized to identify areas with high conservation value. The monitoring network was designed using stratified random sampling and unequal-probability sampling techniques to target high conservation value sites distributed across different contexts of human pressure.We have identified four distinct community types, each characterized both by a small group of common and dominant species, and by small group of rarer, conservation-interest species. This typification of four species assemblages occurring in the study area, also highlighted those with potentially higher conservation-interest. The most valuable areas for the conservation of aquatic and semi-aquatic bryophyte communities coincide with specific environmental zones: mountainous areas in Lusitania, large watercourses in the Mediterranean North and some locations in the Mediterranean Mountains. Finally, we obtained a potential monitoring network consisting of 64 monitoring points, unequally distributed across different contexts of human pressure, privileging locations with higher conservation value.The framework presented here illustrates the potential of combining biodiversity modelling, spatial conservation prioritization and monitoring design in the development of monitoring networks. Namely, this framework allowed us to counter data deficiencies, to identify high priority areas to monitor and to design a monitoring network considering different scenarios of human pressure at a regional scale.This framework can also be valuable for conservation efforts as an approach to monitoring conservation-interest biodiversity features in anthropogenically modified riverscapes, which present different degrees of human pressure and the cumulative effects of these different impact elements. Moreover, this approach allows for the comprehensive monitoring of biodiversity values important for management at the national and regional levels. In addition, this framework is one of the first efforts in the development of monitoring networks that target aquatic and semi-aquatic bryophyte communities, a long-neglected plant group of high ecological and conservation importance in freshwater ecosystems.  相似文献   

2.
Properly designed monitoring networks can generate data to understand status and trends of biodiversity, and to assess progress towards conservation targets. However, biodiversity monitoring is often affected by poor sampling design. We proposed an approach to choosing optimized monitoring sites among large areas. Based on comprehensive distribution data of 34,284 vertebrates and vascular plants from 2376 counties in China, we selected 564 optimized monitoring sites (counties) through complementarity analysis and pre-existing knowledge of nature reserves. The optimized monitoring sites are complementary to each other and reasonably distributed, to ensure that maximum species are covered while the total number of sites and monitoring costs are minimized. Incongruence of optimized monitoring sites among different taxa indicates that taxa with different ecological features should be selected for large-scale monitoring programmes. The results of this study have been applied in the design and operation of China Biodiversity Observation Network.  相似文献   

3.
At the 2002 Johannesburg World Summit on Sustainable Development, 190 countries endorsed a commitment to achieve, by 2010, a significant reduction of the current rate of biodiversity loss at the global, regional and national levels. A wide range of approaches is available to the monitoring of progress towards this objective. The strengths and weaknesses of many of these approaches are considered, with special attention being given to the proposed and existing indicators described in the other papers in this issue. Recommendations are made about the development of indicators. Most existing and proposed indicators use data collected for other purposes, which may be unrepresentative. In the short term, much remains to be done in expanding the databases and improving the statistical techniques that underpin these indicators to minimize potential biases. In the longer term, indicators based on unrepresentative data should be replaced with equivalents based on carefully designed sampling programmes. Many proposed and existing indicators do not connect clearly with human welfare and they are unlikely to engage the interest of governments, businesses and the public until they do so. The extent to which the indicators already proposed by parties to the Convention on Biological Diversity are sufficient is explored by reference to the advice an imaginary scientific consultant from another planet might give. This exercise reveals that the range of taxa and biomes covered by existing indicators is incomplete compared with the knowledge we need to protect our interests. More fundamentally, our understanding of the mechanisms linking together the status of biodiversity, Earth system processes, human decisions and actions, and ecosystem services impacting human welfare is still too crude to allow us to infer reliably that actions taken to conserve biodiversity and protect ecosystem services are well chosen and effectively implemented. The involvement of social and Earth system scientists, as well as biologists, in collaborative research programmes to build and parameterize models of the Earth system to elucidate these mechanisms is a high priority.  相似文献   

4.
This paper highlights the importance of the politically agreed target to halt or significantly reduce biodiversity loss by 2010 at global, regional and national levels. Science can contribute useable knowledge through indicators and monitoring for measuring progress towards this target.  相似文献   

5.
In order to tackle the current biodiversity crisis, a plethora of tempting shortcuts, such as the surrogate species approach, have recently been used to pinpoint important areas for protection. At the same time, species-specific conservation programmes are implemented in order to ameliorate the status of target threatened species. In the cases where species-specific programmes are evaluated and found to provide no apparent benefit to the target species, it is important to evaluate whether such conservation efforts may benefit other taxa sharing the same landscape with the target species. Here we assess the surrogacy potential of white-tailed sea eagle (WTSE) nesting habitat as indicator of biodiversity richness (using vascular plants and fungi as surrogated taxa) on islands of the Archipelago Sea in South-western Finland. We compared species richness on islands with and without a WTSE nest. We found weak evidence that islands with a WTSE nest support higher richness of vascular plants than islands without a nest. Conversely, we found no evidence that WTSE nests could be valid surrogates for fungi species inhabiting old-growth forests. Within the spatio-temporal and ecological limits of the present study, we suggest that the nesting habitat of WTSE may hold some surrogate potential for taxa, such as vascular plants, that may indicate high habitat diversity. This finding however remains to be confirmed. At the same time, it appears evident that the WTSE nesting habitat has poor surrogate potential with regards to old-growth forests. Overall, our findings line up with a growing body of other studies calling for caution and careful evaluation of the surrogacy efficiency of single species.  相似文献   

6.
There has been considerable discussion in Australia about market-based initiatives with the potential to bring effective incentives and greater investment for farmers and other land managers to promote biodiversity conservation. These initiatives include biodiversity trading markets (also termed the nature repair market), stewardship schemes, certification programmes, sustainability frameworks, and natural capital accounting. We welcome these discussions and believe these initiatives would be true advances if they bring much greater investment in conservation and stronger protection and recovery of biodiversity. However, we also have major concerns about the integrity and scientific credibility of some of these initiatives. In this article, we discuss why it is critical that such initiatives both carefully define biodiversity and determine what elements of biodiversity are to be targeted in conservation efforts. We also discuss the fundamental importance of appropriate and agreed biodiversity metrics, as well as the critical need for rigorous, well designed and independent biodiversity monitoring. To ensure that initiatives like biodiversity trading markets, stewardship schemes, certification programmes, sustainability frameworks and natural capital accounting are rigorous, non-corruptible and actually deliver what they are intended to do, they will need to be underpinned by appropriate programme designs. This includes robust and transparent governance structures, high-quality monitoring and timely reporting of key metrics.  相似文献   

7.
The Convention on Biological Diversity's strategic plan lays out five goals: “(A) address the underlying causes of biodiversity loss by mainstreaming biodiversity across government and society; (B) reduce the direct pressures on biodiversity and promote sustainable use; (C) improve the status of biodiversity by safeguarding ecosystems, species and genetic diversity; (D) enhance the benefits to all from biodiversity and ecosystem services; (E) enhance implementation through participatory planning, knowledge management and capacity building.” To meet and inform on the progress towards these goals, a globally coordinated approach is needed for biodiversity monitoring that is linked to environmental data and covers all biogeographic regions. During a series of workshops and expert discussions, we identified nine requirements that we believe are necessary for developing and implementing such a global terrestrial species monitoring program. The program needs to design and implement an integrated information chain from monitoring to policy reporting, to create and implement minimal data standards and common monitoring protocols to be able to inform Essential Biodiversity Variables (EBVs), and to develop and optimize semantics and ontologies for data interoperability and modelling. In order to achieve this, the program needs to coordinate diverse but complementary local nodes and partnerships. In addition, capacities need to be built for technical tasks, and new monitoring technologies need to be integrated. Finally, a global monitoring program needs to facilitate and secure funding for the collection of long-term data and to detect and fill gaps in under-observed regions and taxa. The accomplishment of these nine requirements is essential in order to ensure data is comprehensive, to develop robust models, and to monitor biodiversity trends over large scales. A global terrestrial species monitoring program will enable researchers and policymakers to better understand the status and trends of biodiversity.  相似文献   

8.
The purpose of this review is to present the most common and emerging DNA‐based methods used to generate data for biodiversity and biomonitoring studies. As environmental assessment and monitoring programmes may require biodiversity information at multiple levels, we pay particular attention to the DNA metabarcoding method and discuss a number of bioinformatic tools and considerations for producing DNA‐based indicators using operational taxonomic units (OTUs), taxa at a variety of ranks and community composition. By developing the capacity to harness the advantages provided by the newest technologies, investigators can “scale up” by increasing the number of samples and replicates processed, the frequency of sampling over time and space, and even the depth of sampling such as by sequencing more reads per sample or more markers per sample. The ability to scale up is made possible by the reduced hands‐on time and cost per sample provided by the newest kits, platforms and software tools. Results gleaned from broad‐scale monitoring will provide opportunities to address key scientific questions linked to biodiversity and its dynamics across time and space as well as being more relevant for policymakers, enabling science‐based decision‐making, and provide a greater socio‐economic impact. As genomic approaches are continually evolving, we provide this guide to methods used in biodiversity genomics.  相似文献   

9.
The loss of a species from an ecological community can trigger a cascade of additional extinctions; the complex interactions that comprise ecological communities make the dynamics and impacts of such a cascade challenging to predict. Previous studies have typically considered global extinctions, where a species cannot re-enter a community once it is lost. However, in some cases a species only becomes locally extinct, and may be able to reinvade from surrounding communities. Here, we use a dynamic, Boolean network model of plant–pollinator community assembly to analyze the differences between global and local extinction events in mutualistic communities. As expected, we find that compared to global extinctions, communities respond to local extinctions with lower biodiversity loss, and less variation in topological network properties. We demonstrate that in the face of global extinctions, larger communities suffer greater biodiversity loss than smaller communities when similar proportions of species are lost. Conversely, smaller communities suffer greater loss in the face of local extinctions. We show that targeting species with the most interacting partners causes more biodiversity loss than random extinctions in the case of global, but not local, extinctions. These results extend our understanding of how mutualistic communities respond to species loss, with implications for community management and conservation efforts.  相似文献   

10.
Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate‐change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process‐oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large‐scale remote‐sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate‐change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation.  相似文献   

11.
The Convention on Biological Diversity (CBD) lies at the heart of biodiversity conservation initiatives. It offers opportunities to address global issues at the national level through locally grown solutions and measures. This article reviews the national challenges and opportunities in meeting requirements of the CBD by analysing twenty Third National Reports (TNRs), covering five different CBD regional clusters from the three global economic groups. While there is a plethora of challenges, the predominant ones discussed in this study include: institutional and capacity, knowledge and accessible information, economic policy and financial resources, cooperation and stakeholder involvement, and mainstreaming and integration of biodiversity. The underlying problem is that limited capacity in developing countries and transition economies undermines conservation initiatives. Lack of capacity in science, coordination, administration, legislation, and monitoring are barriers to on-ground implementation of biodiversity programmes. Opportunities to overcome these challenges embrace use of knowledge products, information-sharing mechanisms, participatory platforms, educational programmes, multi-level governance, and policy coherence. Innovative market-based instruments are also being trialled in various countries, which seek to offer incentives to local communities. The article concludes that conservation measures should be supported by multiple sectors and secure high level political support. Political, economical, and legislative sectors are more likely to show interest in CBD implementation and use it as a tool for managing biodiversity when they know the Convention processes and perceive it as a benefit. Modest investments in capacity building and training, and engaging different sectors in setting priorities would have a significant pay-off.  相似文献   

12.
环境DNA(EnvironmentalDNA,eDNA)可用于监测湖泊生物多样性,该技术对湖泊生态环境破坏性小,对于开展湖泊生态保护具有重要意义.湖泊流速较为缓慢,相对于河流更容易富集DNA,更适合于应用eDNA方法开展生物多样性研究.文章对eDNA在湖泊生物多样性上的应用进行了回顾,综述了其实验设计,分析了该技术存在...  相似文献   

13.
Responses to microhabitat are often neglected when ecologists sample animal indicator groups. Microhabitats may be particularly influential in non-passive biodiversity sampling methods, such as baited traps or light traps, and for certain taxonomic groups which respond to fine scale environmental variation, such as insects. Here we test the effects of microhabitat on measures of species diversity, guild structure and biomass of dung beetles, a widely used ecological indicator taxon. We demonstrate that choice of trap placement influences dung beetle functional guild structure and species diversity. We found that locally measured environmental variables were unable to fully explain trap-based differences in species diversity metrics or microhabitat specialism of functional guilds. To compare the effects of habitat degradation on biodiversity across multiple sites, sampling protocols must be standardized and scale-relevant. Our work highlights the importance of considering microhabitat scale responses of indicator taxa and designing robust sampling protocols which account for variation in microhabitats during trap placement. We suggest that this can be achieved either through standardization of microhabitat or through better efforts to record relevant environmental variables that can be incorporated into analyses to account for microhabitat effects. This is especially important when rapidly assessing the consequences of human activity on biodiversity loss and associated ecosystem function and services.  相似文献   

14.
Future battlegrounds for conservation under global change   总被引:2,自引:0,他引:2  
Global biodiversity is under significant threat from the combined effects of human-induced climate and land-use change. Covering 12% of the Earth's terrestrial surface, protected areas are crucial for conserving biodiversity and supporting ecological processes beneficial to human well-being, but their selection and design are usually uninformed about future global change. Here, we quantify the exposure of the global reserve network to projected climate and land-use change according to the Millennium Ecosystem Assessment and set these threats in relation to the conservation value and capacity of biogeographic and geopolitical regions. We find that geographical patterns of past human impact on the land cover only poorly predict those of forecasted change, thus revealing the inadequacy of existing global conservation prioritization templates. Projected conservation risk, measured as regional levels of land-cover change in relation to area protected, is the greatest at high latitudes (due to climate change) and tropics/subtropics (due to land-use change). Only some high-latitude nations prone to high conservation risk are also of high conservation value, but their high relative wealth may facilitate additional conservation efforts. In contrast, most low-latitude nations tend to be of high conservation value, but they often have limited capacity for conservation which may exacerbate the global biodiversity extinction crisis. While our approach will clearly benefit from improved land-cover projections and a thorough understanding of how species range will shift under climate change, our results provide a first global quantitative demonstration of the urgent need to consider future environmental change in reserve-based conservation planning. They further highlight the pressing need for new reserves in target regions and support a much extended 'north-south' transfer of conservation resources that maximizes biodiversity conservation while mitigating global climate change.  相似文献   

15.
The Klamath‐Siskiyou forests of northern California and southern Oregon are recognized as an area of globally outstanding biological distinctiveness. When evaluated at a national or global level, this region is often, necessarily, considered to be uniformly diverse. Due to large variation in biotic and abiotic variables throughout this region, however, it is unlikely that biological diversity is uniformly distributed. Furthermore, land management decisions nearly always occur at spatial scales smaller than this entire region. Therefore, we used field data from a random sampling design to map the distribution of local and regional richness of terrestrial molluscs and salamanders within northern California's portion of the Klamath‐Siskiyou region. We also evaluated the protection afforded by reserves established for varying reasons (e.g. for inspiration and recreation for people vs. species conservation) to hotspots of species richness and species representation of these taxa. No existing reserves were created with these taxa in mind, yet it was assumed that reserves established largely around considerations for the northern spotted owl (Strix occidentalis caurina) would afford adequate protection for many lesser‐known species. Species of terrestrial molluscs and salamanders share two general features: (1) they have extremely low vagility, and (2) they are often associated with moist, cool microclimates. Existing reserves disproportionately included areas of hotspots of species richness for both taxa, when hotspots included the richest c. 25% of the area, whereas non‐reserved lands contained greater than expected areas with lower species richness. However, when a more strict definition of hotspot was used (i.e. the richest c.10% of areas), local hotspots for both taxa were not disproportionately found in reserves. Reserves set aside largely for human aesthetics and recreation and those set aside for biodiversity both contributed to the protection of areas with high (greatest 25%) species richness. Existing biodiversity reserves represented 68% of mollusc species and 73% of salamander species, corresponding to the 99th and 93rd percentiles, respectively, of species representation achieved by simulating a random distribution of the same total area of reservation. Cumulatively, however, reserves set aside for inspiration and biodiversity represented 83% of mollusc species and 91% of salamander species. The existing reserves provide conservation value for terrestrial molluscs and salamanders. This reserve network, however, should not be considered optimal for either taxa.  相似文献   

16.
Fire is a key natural and anthropogenic disturbance factor across many ecosystems, and also an important conservation management tool. However, little is known about arthropod responses to fire, particularly in Mediterranean-type ecosystems, including the biodiverse Cape Floristic Region (CFR). We investigate here the relative variety of responses by different arthropod taxa to fire, and ask whether single-taxon or multi-taxa approaches better suit post-fire biomonitoring for conservation management. Sampling involved multiple techniques and was conducted before fire, 1 year after fire, and 3 years after fire, with unburned areas as controls. Before-and-after statistics were used to identify changes in arthropod populations and assemblages as a result of fire, and between treatment and control sites. However, this was against a background of the annual effects having a major influence on the arthropods, irrespective of fire. Abundance was so variable, even in control plots, that we found it an unreliable indicator of the impact of fire. Overall, arthropods were remarkably resilient to fire, with most taxa recovering in species richness and assemblage composition within 3 years of the fire. Although all taxa showed resilience to fire, there was nevertheless little congruence in temporal recovery of the various taxa. Our results highlight the shortcomings of monitoring fire impacts using only a single-taxon without prior testing for complementarity or sensitivity to fire, while emphasizing the importance of sampling a wide range of taxa to represent overall responses of compositional biodiversity. From this, we recommend, at least for the CFR, that a cross-section of taxa, such as butterflies, ants, and scarab beetles, be used for monitoring arthropods in recovery/fire management conservation programmes. We also recommend that such monitoring be considered against the background of large annual variation seen in unburned areas.  相似文献   

17.
中国森林生物多样性保护和恢复措施的制订依赖于生物多样性的监测信息。设计一个有效的生物多样性监测网络是一项复杂的系统工程。监测网络的设计框架可分为监测目标、监测对象、监测指标、取样策略、数据采集和处理、网络维护以及组织工作等几个部分。目前, 国际上已有5个得到广泛认可的生物多样性监测网络, 包括地球观测组织-生物多样性监测网络、全球森林监测网络、热带生态评估与监测网络、泛欧洲森林监测网络和亚马逊森林清查网络, 它们的监测目标、监测内容和方法、样地布局及部分监测成果各有特色。我们试图在全国生物多样性监测、森林资源清查和森林生态系统定位研究的基础上, 通过网络布局、建设和运行, 形成中国森林生物多样性监测网(Chinese Forest Biodiversity Monitoring Network, Sino BON-CForBio)及其监测规范体系。该网络的科学目标是, 在全国尺度上研究不同典型地带性森林的生物多样性维持机制、监测森林生物多样性变化并阐明其机理、研究生物多样性变化的效应。该网络布局以《中国植被区划》中的森林植被区划成果作为顶层设计和监测样地选择的核心依据, 设计了4个层级的监测系统; 其监测指标体系以生物多样性核心指标为主, 并结合我国传统森林群落调查方法进行拓展; 预期建成国家水平上的森林生物多样性监测网络, 阐明森林生物多样性维持机制和生物多样性变化的效应, 同时对重大生态保护工程的生物多样性保护效果进行有效性监测和验证型监测。  相似文献   

18.
Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a ‘Big Data’ approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence‐only or presence–absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi‐source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter‐ or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi‐source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA‐based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals.  相似文献   

19.
Red List Indices provide a method for assessing global trends in species?? conservation status, and for monitoring progress towards achieving conservation targets (for example, commitments under the Convention on Biological Diversity). Red List Indices are based on categorization of taxa in terms of their threat status using information on, for example, current and projected abundances, distributions, and threats. Global assessments have now been undertaken for a suite of well-known vertebrate taxa. However, highly diverse invertebrate taxa are currently very poorly represented in such assessments, and there is a danger that their threats and their utility as biodiversity indicators will be overlooked. Unlike most invertebrates, butterflies are relatively well-known globally. We describe ongoing efforts to incorporate butterflies into the Red List Index process. Because of high species richness (approximately 15,000 Papilionoidea globally) a comprehensive assessment is not feasible. Instead, we apply a ??Sampled Red List Index?? approach which draws on a subset of 1,500 focal taxa. We illustrate the process and the challenges (particularly taxonomic issues and issues of data deficiency) using a variety of case studies. The information provided should be relevant to other researchers seeking to apply the Red List Index approach to invertebrates and other diverse but poorly studied taxa.  相似文献   

20.
According to the Millennium Ecosystem Assessment, common indicators are needed to monitor the loss of biodiversity and the implications for the sustainable provision of ecosystem services. However, a variety of indicators are already being used resulting in many, mostly incompatible, monitoring systems. In order to synthesise the different indicator approaches and to detect gaps in the development of common indicator systems, we examined 531 indicators that have been reported in 617 peer‐reviewed journal articles between 1997 and 2007. Special emphasis was placed on comparing indicators of biodiversity and ecosystem services across ecosystems (forests, grass‐ and shrublands, wetlands, rivers, lakes, soils and agro‐ecosystems) and spatial scales (from patch to global scale). The application of biological indicators was found most often focused on regional and finer spatial scales with few indicators applied across ecosystem types. Abiotic indicators, such as physico‐chemical parameters and measures of area and fragmentation, are most frequently used at broader (regional to continental) scales. Despite its multiple dimensions, biodiversity is usually equated with species richness only. The functional, structural and genetic components of biodiversity are poorly addressed despite their potential value across habitats and scales. Ecosystem service indicators are mostly used to estimate regulating and supporting services but generally differ between ecosystem types as they reflect ecosystem‐specific services. Despite great effort to develop indicator systems over the past decade, there is still a considerable gap in the widespread use of indicators for many of the multiple components of biodiversity and ecosystem services, and a need to develop common monitoring schemes within and across habitats. Filling these gaps is a prerequisite for linking biodiversity dynamics with ecosystem service delivery and to achieving the goals of global and sub‐global initiatives to halt the loss of biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号