首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artemia uses the stored diguanosine tetraphosphate as a source of adenine and guanine nucleotides during development from the encysted gastrula to the free swimming larva. Further development of the larvae depends on a dietary source of purine rings. We have investigated the growth of Artemia in axenic cultures supplemented with 0·6 mg ml?1 of adenosine, guanosine, inosine or xanthosine. The total protein and soluble nucleotide content of Artemia grown in the presence of adenosine, guanosine or inosine was very similar, around (2 A260 units and 500 mg protein) and (4 A260 units and 1000 mg protein) after 4 and 6 days of postlarval development, respectively. The nucleotide pattern of those extracts subjected to HPLC were almost identical, the major peaks corresponding to ATP, ADP and AMP. Other nucleotides, not well characterized, were also present in those extracts. Mycophenolic acid (10 μg ml?1) inhibited the growth of Artemia (as measured by their protein and soluble nucleotide content) in the presence of adenosine and inosine as the purine source, and had no appreciable effect in the presence of guanosine. A quantitative analysis of the chromatographic peaks obtained from Artemia grown in the presence of any of the three nucleosides ± mycophenolic acid showed that the effect of the antibiotic on each one of the chromatographic peaks was very similar, suggesting that Artemia, and probably other organisms as well, tend to maintain a balance between all nucleotides and to adjust the overall level to the limiting step(s) in their rates of synthesis/interconversion. Xanthosine was not able to support the development of Artemia.  相似文献   

2.
Three species of microalgae, the freshwater Euglena gracilis and themarine Dunaliella salina and Tetraselmis suecica, were fed tothe brine shrimp Artemia salina in order to compare their suitabilityin terms of fatty acid enrichment, and their effect on the biometric parametersof the zooplankter. The fatty acid content and composition were analyzed for the post-larval and pre-adult stages of Artemia fed the algae and theresults compared to the initial content of unfed 24-hour post-hatch nauplii.Differences in the total fatty acid content occurred between the three stages,the fatty acid profile being determined by the composition of the diet. A decreasing trend for almost all the individual fatty acids occurred throughdevelopment from post-larva to pre-adult with each of the three algal diets.Biometrical differences between Artemia fed the marine algae and that fed Euglena were not consistent in the post-larval stage, but became considerable in the pre-adult stage. Artemia fed with Euglena achieved twice the weight of animals fed the marine algae and showed thehighest length. The implications for the use of on-grown Artemia as afeed in larviculture of marine and freshwater fish and crustaceans are considered.  相似文献   

3.
Synopsis The nanoflagellateTetraselmis suecica was tested both as the sole food source and as a diet complement toArtemia nauplii for grunion,Leuresthes tenuis, larvae. A total of 4800 grunion larvae, obtained through artificial insemination and incubation, were cultivated under laboratory conditions. Growth and survival rates were registered for 14 days in two experimental series. In the first series the nanoflagellateT. suecica was offered as the sole food source at five different concentrations. Survival and growth increased in agreement with the increase inT. suecica concentration. In the second series,Artemia nauplii were offered at six concentration levels. This series was divided into two groups: the nanoflagellateT. suecica was added to one group at a concentration of 5000 cells ml–1; the other group was maintained without nanoflagellates. In this series, survival and growth were directly related to nauplii concentration, but significant effects of the nanoflagellates were evident only in relation to the survival; the greatest difference (58% without nanoflagellates vs. 69% with nanoflagellates) was observed at anArtemia concentration of 1000 nauplii 1–1. The mechanism responsible for increased survival ofL. tenuis larvae in presence of phytoplankton is unclear.  相似文献   

4.
Little is known about the larviculture of the chub, Leuciscus cephalus (L.), an endangered cyprinid species endemic to European flowing waters. The use of decapsulated Artemia cysts as food for chub larviculture was investigated. After 3‐day feeding with the rotifer Brachionus calyciflorus, the larvae were fed on different diets: (i) dried decapsulated Artemia cysts, (ii) Artemia nauplii, (iii) rotifers for seven more days and then Daphnia collected from a pond, and (iv) an artificial diet. After a 24‐day rearing period, the highest survival rate was obtained with the larvae receiving decapsulated Artemia cysts. Feeding of the larvae with an artificial diet resulted in a significantly lower survival rate compared with the other groups. At the end of the experiment, the larvae fed on Artemia nauplii yielded a significantly higher mean length compared with the other groups. Feeding an artificial diet resulted in a significantly lower average weight and mean length gain compared with the other groups.  相似文献   

5.
Experiments were conducted to evaluate the efficacy of five live organisms (Artemia, Brachionus calyciflorus, Chironomus plumosus, Moina macrocopa and Tubifex sp.) and an artificial diet (40% protein) in the larval rearing of Asian catfish Clarias macrocephalus. The larvae were fed three times daily starting at the onset of exogenous feeding. Results showed that the catfish larvae utilized the live organisms more efficiently than the artificial diet. The Tubifex‐fed larvae consistently showed the highest growth rate. In trial 1, length increment (64.9 mm), weight gain (3192 mg) and specific growth rate (13.1%) after 8 weeks of feeding were significantly higher (P < 0.05) in catfish larvae given Tubifex than those in all other treatments. In trial 2, length increment after 4 weeks of feeding was highest in larvae fed Tubifex (22.9 mm) although it did not significantly differ from that of larvae given Moina (21.0 mm). However, weight gain of larvae fed Tubifex (253.0 mg) was significantly higher than that of larvae fed Moina (171.6 mg). The specific growth rate was highest for larvae fed Tubifex (15.0%) followed by larvae fed Artemia (14.5%), Moina (14.4%) and Chironomus (12.0%). Survival rates of the catfish larvae ranged from 9 to 39% after 8 weeks in trial 1 and from 26 to 83% after 4 weeks in trial 2. The present results suggest that Tubifex is an excellent food and a potential substitute for Artemia in the rearing of catfish larvae.  相似文献   

6.
The use of Panagrellus redivivus as live feed for bighead carp and Asian catfish larvae was tested. In experiment 1, carp larvae were given Artemia nauplii (control) or Panagrellus twice daily for 21 days. A third treatment consisted of unfed larvae. The same three treatments were used in experiment 2 plus another with a commercial entomopathogenic nematode (EPN). Bighead carp larvae given Panagrellus in experiment 1 had much lower growth and survival than those fed Artemia nauplii. This could be due to low nematode density (5–30 mL?1 water) during feeding. The unfed larvae had 100% mortality by days 11–13. In experiment 2, growth and survival of carp larvae given Artemia nauplii (5–10 mL?1) and Panagrellus (50 mL?1) did not differ significantly (P > 0.05). All unfed larvae had died by day 13, while larvae fed EPN were all dead by day 8. Two experiments on Asian catfish were likewise conducted. In experiment 1, the catfish larvae were fed Tubifex (ad libitum), Panagrellus (50–100 mL?1 per feeding) orArtemia (5 nauplii mL?1 per feeding) three times daily for 14 days. In experiment 2, larvae were fed Artemia alone (10 nauplii mL?1 per feeding), Panagrellus alone (100 mL?1 per feeding), or their combination with a 38% protein dry diet twice daily. For both experiments, catfish larvae fed Panagrellus had significantly lower growth and survival than those fed Tubifex or Artemia. The combination of Panagrellus and dry diet created little improvement in the growth and survival of catfish larvae.  相似文献   

7.
Larvae of the crab Chasmagnathus granulata were collected in a salt marsh located in the Lagoa dos Patos, Brazil and reared from eclosion to metamorphosis under different dietary regimes. Larvae reared individually in beakers of 40 ml and fed Tetraselmis chuii (zoea III and zoea IV), showed a supplementary stage, here designated as zoea V, with morphological characteristics intermediary between zoea IV and megalopa. No zoeae V molted to megalopa stage. To confirm the occurrence of the supplementary stage, mass cultures of larvae of C. granulata were fed Artemia sp. at high densities, we again detected the fifth zoeal instar. However, when zoeae V were individually placed in beakers and fed Artemia nauplii, they succeeded in molting into megalopae. We observed the occurrence of two types of zoeae IV — a smaller type (from which originated the zoeae V) and a larger type (which directly developed into megalopae). We conclude that stressful nutritional/environmental conditions were responsible for the occurrence of this alternative path of development.  相似文献   

8.
Aim: To evaluate nutritional and anti‐infectious characteristics of the chemically treated baker’s yeast with 2‐mercapto‐ethanol (2ME) for gnotobiotically grown Artemia. Methods and Results: A selection of isogenic yeast strains was treated with 2ME and fed to gnotobiotically grown Artemia. In the first experiment the effect of the chemical treatment on the yeast nutritional value was studied. In most cases, 2ME‐treated yeast cells were better feed for Artemia than the untreated cells. In the second experiment, a small quantity of 2ME‐treated yeast cells was fed to Vibrio campbellii (VC) challenged Artemia. The 2ME‐treatment on some yeast strains (e.g. gas1, kre6 and chs3) significantly improved Artemia resistance against VC compared with the respective untreated yeast cells. Conclusion: Simple chemical treatment with 2ME could significantly improve the nutritional and anti‐infectious properties of some baker’s yeast strains for gnotobiotically grown Artemia. Significance and Impact of the Study: The gnotobiotic Artemia test system provides a unique opportunity (because of noninterference of other microbial compounds) to investigate how the yeast cell wall composition influences macro parameters (e.g. growth and survival) in an organism. In addition, gene expression studies in these gnotobiotically grown Artemia should provide further documentation on direct effects of yeast cells on the genes involved in immune functions.  相似文献   

9.
The impact of different microalgal semicontinuous cultures on growth and biochemical composition in the next link of the food chain was tested using the filter feeder Artemia species as a model. The marine microalga Tetraselmis suecica was cultured semicontinuously with renewal rates between 10% and 50% and used to feed Artemia. Microalgal cultures maintained with a low renewal rate that had biochemical composition similar to that of the stationary-phase cultures commonly used in aquaculture produced poor growth and survival and low food-conversion efficiency compared to cultures maintained with a high renewal rate. Changes in the renewal rate in microalgal cultures also resulted in important changes in the gross biochemical composition of the filter feeder. The gross biochemical composition of the Artemia resembled that of the microalgae used as food except for total lipid content. The percentage of protein in the organic fraction of Artemia increased from 45% to 65% of the organic weight with increasing renewal rates in the microalgal cultures, while the carbohydrate percentage decreased under the same conditions. Higher renewal rates resulted in higher lipid percentages in the microalga, but in Artemia the percentage of lipids decreased from 19% of the organic weight with a renewal rate of 10%, to 13% with a renewal rate of 50%. The percentage of all polyunsaturated fatty acids in Artemia, including 20:5n-3, increased slightly with increasing renewal rates in the microalgal cultures. Results emphasize the importance of controlling microalgal nutritional value for the success of aquaculture food chains in which filter feeders are involved. Received October 15, 2000; accepted December 29, 2000.  相似文献   

10.
Although the crustacean Artemia has been commonly used as an experimental organism and served as a live bait feed for aquaculture, gene transfer system on Artemia sp. to generate stable lines is not well developed. In this study, we optimized a condition for cyst-eletroporation and generated stable lines of transgenic A. sinica. Two expression plasmids directed by the hybrid promoters of cytomegalovirus (CMV) and medaka β-actin (Mβ) were co-electroporated on decapsulated cysts: pCMV-Mβ-GFP contained GFP reporter gene and pCMV-Mβ-ypGH contained yellowfin porgy GH (ypGH) cDNA. We examined the GFP shown in the Artemia larvae and found that the expression rate was 13.3% (3,219 out of 24,054 examined). We then chose 200 G0 founders which strongly expressed GFP to generate transgenic lines. Homozygotic strains derived from F4 generation of each transgenic line, A3 and A8, were obtained. We proved that transgenic lines A3 and A8 also harbored pCMV-Mβ-ypGH and produced recombinant ypGH with a concentration of 0.089 and 0.032 μg per 50 homozygotic nauplii, respectively. Ten live Artemia nauplii were fed daily to zebrafish larvae during 25 to 35 days of post-fertilization. The average body length gain rates of zebrafish larvae fed transgenic Artemia were 16–20% greater than those of control group, indicating the exogenous ypGH produced by transgenic Artemia is functional. Therefore, we concluded that the transgenesis on Artemia is developed, and transgenic Artemia might be highly potentially useful as a new bioreactor material for application in aquaculture and biological researches.  相似文献   

11.
There is increasing evidence that insecticidal transgenic crops can indirectly cause detrimental effects on arthropod predators or parasitoids when they prey on or parasitize sublethally affected herbivores. Our studies revealed that Chrysoperla carnea is negatively affected when fed Bt-susceptible but not Cry1Ac-resistant Helicoverpa armigera larvae that had fed Bt-transgenic cotton expressing Cry1Ac. This despite the fact that the predators ingested 3.5 times more Cry1Ac when consuming the resistant caterpillars. In order to detect potential differences in the nutrient composition of prey larvae, we evaluated the glycogen and lipid content plus the sugar and free amino acid content and composition of caterpillars fed non-Bt and Bt cotton. The only change in susceptible H. armigera larvae attributable to Bt cotton feeding were changes in sugar concentration and composition. In case of the Cry1Ac-resistant H. armigera strain, feeding on Bt cotton resulted in a reduced glycogen content in the caterpillars. The predators, however, appeared to compensate for the reduced carbohydrate content of the prey by increasing biomass uptake which caused an excess intake of the other analyzed nutritional compounds. Our study clearly proves that nutritional prey-quality factors other then the Bt protein underlie the observed negative effects when C. carnea larvae are fed with Bt cotton-fed prey. Possible factors were an altered sugar composition or fitness costs associated with the excess intake of other nutrients.  相似文献   

12.
The growth of river catfish Mystus nemurus (Cuvier & Valenciennes) larvae fed four isocaloric diets (4200 kcal kg?1) with different protein levels during weaning was determined. Diets containing 45, 50, 55, and 60% protein were formulated by linear programming using amino acid profiles based on that of 2‐day‐old river catfish larvae. Artificial diets were fed to the larvae beginning at day 5 after being initially fed Artemia nauplii for 4 days. The larvae thrived solely on artificial diets from day 8 to day 16. On the other hand, the control larvae were fed Artemia nauplii from day 1 to day 16. Results of the feeding trial showed that growth and survival of M. nemurus larvae given the diet containing 60% protein were high and comparable to those of the larvae given only live food (control). Larvae fed the 55% protein diet had significantly lower growth and survival than the larvae on the control and 60% diets but significantly higher growth and survival rates than did larvae fed with 45 and 50% protein diets. Carcass moisture and total lipids after 16 days of feeding did not differ significantly (P > 0.05), but body protein increased with increasing dietary protein. Body protein of the control larvae was similar to that of larvae given the 60% protein diet.  相似文献   

13.
Two 60‐day experiments were carried out on tench (Tinca tinca L.) from day 5 post‐hatch. Density was 20 larvae L?1 and temperature 24 ± 0.5°C. In experiment 1, Artemia nauplii were the sole food, testing nauplii amounts and feeding frequency. High survival rates (between 79.5% and 95.5%) were obtained. Growth was faster as nauplii amounts were greater; the highest growth rate (11.00), weight (265.5 mg) and Fulton’s coefficient (1.40) were obtained when fish were fed in excess once a day, without significant differences from the growth obtained by feeding in excess of eight times a day. In experiment 2, a dry diet for marine fish was tested as a replacement for Artemia nauplii, following two transition protocols, one faster than the other; high survival rates (between 77.7% and 87.1%) were again obtained. The slower transition allowed a growth rate of 10.14, length of 23.1 mm, weight of 158.3 mg and a Fulton’s coefficient of 1.28, without significant differences from the faster transition. At all stages, growth values were significantly higher from feeding nauplii in excess as the sole food, but the required nauplii quantity was six times higher than the amount supplied to the animals fed the dry diet.  相似文献   

14.
Laboratory studies of the behavior of first stage zoea larvae of the sand crab Emerita analoga Stimpson have shown that while newly-hatched larvae are strongly photopositive, this response lasts only about four hours, as the larvae rapidly become photonegative. After becoming photonegative, a large proportion of the larvae remain so throughout the first four days of life if they are fed Artemia nauplii; if starved, the larvae become significantly more photopositive than when fed. Both the photopositive response of newly-hatched larvae and the reversal to photopositive behavior in response to starvation are only apparent under horizontal test conditions. Increases in hydrostatic pressure stimulate swimming activity among the larvae; responsiveness to pressure being greatest at hatching and decreasing thereafter. The pressure response is strongly oriented to light; pressure-stimulated larvae will swim towards a light source regardless of whether this involves upward, downward, or horizontal motion. Experiments suggest that the pressure response provides the primary mechanism for depth regulation among young larvae; gravity and light may augment the pressure ‘sense’ by serving as primary orientational cues. The nutritional status of an individual larva may alter its depth-regulatory capabilities, but this effect is not yet clear.  相似文献   

15.
The feeding rate effects were studied on the growth performance of gynogenetic diploid larvae of sterlet Acipenser ruthenus during the first 4 weeks of exogenous feeding. The experimental rearing was conducted from 7 to 38 days post‐hatch (dph) in a circulation system. This was set up in four groups with three replicates (440 individuals/replicate), viz: AC‐control larvae fed Artemia sp., CFC‐control larvae fed compound feed, AG‐gynogenetic larvae fed Artemia sp., and CFG‐gynogenetic larvae fed compound feed. The larvae were reared in glass tanks (44 L volume, 10 individuals/L) with the temperature maintained at 18 ± 0.5°C, photoperiod of 12L:12D and water flow regime of 1‐L/min and fed 50%, 25%, 25%, and 9% of their total biomass/day during feeding. Highest TL and WBW of gynogenetic diploid larvae (AG) were observed with 50.6 ± 1.2 mm and 607.3 ± 36.1 mg (n = 30) at 38 dph. Highest TL and WBW of control larvae (AC) were recorded with 49.5 ± 3.8 mm and 600.8 ± 88.0 mg (n = 30), respectively, with 73.1% ± 11.4% survival; the lowest survival rate was at 46.4% ± 7.1% (n = 30) for the CFG group. The results indicate that the gynogenetic and normal larvae of sterlet fed with live food (Artemia nauplii) from 7 dph can achieve higher growth and survivability compared to the larvae fed with formulated test feed. Results of this study suggest that the effective rearing of sterlet larvae from 7 to 38 dph strongly depends upon the types of feed rather than the genome manipulation performed.  相似文献   

16.
Biological activities of the salannin type of limonoids isolated fromAzadirachta indica A. Juss were assessed using the gram pod borerHelicoverpa armigera (Hubner) and the tobacco armywormSpodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Inhibition of larval growth was concomitant with reduced feeding by neonate and third instar larvae. All three compounds exhibited strong antifeedant activity in a choice leaf disc bioassay with 2.0, 2.3 and 2.8 (μ/cm2 of 3-O-acetyl salannol, salannol and salannin, respectively deterring feeding by 50% inS. litura larvae. In nutritional assays, all three comounds reduced growth and consumption when fed to larvae without any effect on efficiency of conversion of ingested food (ECI), suggesting antifeedant activity alone. No toxicity was observed nor was there any significant affect on nutritional indices following topical application, further suggesting specific action as feeding deterrents. When relative growth rates were plotted against relative consumption rates, growth efficiency of theH. armigera fed diet containing 3-O-acetyl salannol, salannol or salannin did not differ from that of starved control larvae (used as calibration curve), further confirming the specific antifeedant action of salannin type of limonoids. Where the three compounds were co-administered, no enhancement in activity was observed. Non-azadirachtin limonoids having structural similarities and explicitly similar modes of action, like feeding deterrence in the present case, have no potentiating effect in any combination.  相似文献   

17.
A sequential carbohydrate, protein, and lipid method of analysis has been used to determine the biochemical composition of freshly hatched and 48-h old larvae of two strains of the brine shrimp Artemia salina (L.). During a 48-h starvation period the percentage of carbohydrates and lipids of freshly hatched larvae decreases whereas the ash content increases by 40–100%. When fed with dried Scenedesmus or dried Spirulina for 2 days after hatching the protein level of the larvae increases significantly and the relative increase in ash content is lower than in the case of starvation.Amino acid analyses of the algal food and the unfed and fed larvae did not show any change except for the absence (below detection) of methionine in the starved nauplii.The fatty acid pattern of 48-h old Artemia larvae is different from that of freshly hatched nauplii both in unfed and fed larvae; in the latter case it seems to be determined to a large extent by the fatty acid composition of the food.  相似文献   

18.
Three species of microalga, the freshwater Euglena gracilis and the marine Dunaliella salina and Tetraselmis suecica, were compared in terms of vitamin E enrichment and survival and growth of the brine shrimp Artemia salina. The tocopherol content was investigated using HPLC for the post-larval and pre-adult stages of Artemia fed the microalgae and the results compared to the initial content of unfed newly hatched nauplii. There was a markedly higher content of tocopherols (about two-fold) in Artemia fed Euglena. Since this microalga contains other antioxidants such as -carotene, vitamin C and glutathione, bioactive molecules such as PUFA, and the immunostimulant polysaccharide -glucan, it represents a valuable alternative for enriching the diets of Artemia and increase its nutritional value as a food item.  相似文献   

19.
Summary The influence of feeding on the metabolic activity of juvenile krill was assessed from 24h experiments in which krill were incubated with various concentrations of diatoms (Chaetoceros calcitrans, Phaeodactylum tricornutum, Thalassiosira eccentrica, Fragilariopsis vanheurkii), newly hatched Artemia nauplii and latex beads. Krill fed on the larger food more efficiently, with reluctant feeding on latex beads. Feeding of krill expressed as clearance rates was poorly correlated with their oxygen uptake rates. Instead, a positive correlation was found between the oxygen uptake rates and ingestion rate (except for latex beads). The result implies that the specific dynamic action is the major cause of the increased oxygen uptake of krill. Krill fed diatoms increased both ammonia and phosphate excretion with increasing ingestion rate, but only phosphate excretion was increased in parallel with ingestion rate for those fed Artemia nauplii. Assuming the daily ration of krill in the field is 5% of the body weight, and the major food source is phytoplankton, oxygen uptake, ammonia excretion and phosphate excretion rates of wild krill are estimated to be 1.6, 4.5 and 7.8, respectively, times the rates of non-feeding krill in 24h laboratory experiments. Krill offered various kinds of food showed different metabolic quotients (O/N, N/P and O/P ratios). While no functional relationship was seen between the metabolic quotient and the ingestion rate of krill fed Artemia nauplii, those fed Fragilariopsis showed a progressive decrease in O/N, N/P, and O/P ratios as their ingestion rates increased.  相似文献   

20.
The study aimed to determine the optimum density of free‐living nematodes in feeding bighead carp, Aristichthys nobilis, larvae. In the first experiment, carp stocked at 25 larvae L?1 were fed varying levels of nematodes (50, 75, 100, 125 and 150 per ml) twice a day for 21 days from the start of exogenous feeding. Final body weight was significantly higher (P < 0.05) in larvae fed 125 and 150 nematodes per ml than in those fed 50 and 75 per ml, but survival was low (61.8 and 63.6%, respectively). Survival rate was highest in larvae fed 100 nematodes ml?1 (81.3%). Carcass analysis showed that larvae fed 125 and 150 nematodes ml?1 had significantly lower body protein and higher body lipid than those fed other nematode densities. Carcass ash was similar for larvae fed 50–100 nematodes ml?1 but it decreased significantly at the higher nematode densities. Carp larvae in a subsequent experiment were given 50, 75 and 100 nematodes ml?1 per feeding. Newly hatched Artemia was the control feed. Nematode consumption and growth of the larvae were determined. Larvae were sampled at intervals of 2–4 days and the nematodes in the gut were counted and measured. At each nematode density, the number of nematodes present in the gut of the larvae increased significantly with time. At each sampling day, the number of nematodes in the gut did not differ significantly among treatments (P > 0.05) although it tended to increase with nematode density at day 2 and day 4 but decrease at day 7 onward. The carp larvae consumed significantly shorter nematodes on day 2 and day 4 than on the succeeding sampling days regardless of nematode density. However, the length of nematodes in the gut of the larvae did not differ significantly among the nematode densities. The final body weight of larvae increased with increasing nematode density. The body weight of larvae fed 100 nematodes ml?1 did not differ significantly from that of larvae given Artemia nauplii. Results show that bighead carp larvae should be fed 100 free‐living nematodes per ml at each feeding time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号