首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Age-related changes in testosterone, progesterone and estradiol 17-beta were determined by radioimmunoassay (RIA) in the serum of 155 male buffalo calves of varying ages. The calves were classified into 17 age groups. The mean weight of calves increased from 33.6 +/- 9.6 kg at one week of age to 531 +/- 41.4 kg at 42 months. The testosterone levels were less than 100 pg/ml from birth until 15 months of age, followed by peak concentrations of 422 +/- 79 pg/ml at 24 to 30 months and 793 +/- 193 pg/ml at 42 to 48 months (corresponding to puberty and maturity, respectively). The progesterone levels were higher in newly born calves and mature bulls. Otherwise, the levels continued to be low throughout the period of growth and development. Estradiol 17-beta was significantly higher in postnatal calves up to two months of age. The testosterone revealed a positive correlation with weight and age while E2 17-beta showed a negative correlation with age. These results do not support a direct role of peripheral progesterone and estradiol 17-beta in the onset of puberty and sexual maturity of buffalo bulls.  相似文献   

2.
A transient increase in gonadotropin secretion between 6 and 20 weeks of age is critical for the onset of puberty in bull calves. To try and hasten the onset of puberty, bull calves were treated (s.c.) with 3 mg of bLH (n = 6) or 4 mg of bFSH (n = 6) once every 2 days, from 4 to 8 weeks after birth; control calves received saline (n = 6). At 4 and 8 weeks of age, mean LH concentrations were higher (P < 0.05) in bLH-treated (2.3 +/- 0.04 ng/ml and 1.20 +/- 0.04 ng/ml) as compared to control calves (0.50 +/- 0.1 ng/ml and 0.70 +/- 0.10 ng/ml). Mean serum FSH concentrations at 4 and 8 weeks of age, were higher (P < 0.05) in bFSH-treated (1.60 +/- 0.20 ng/ml and 1.10 +/- 0.2 ng/ml) as compared to control calves (0.38 +/- 0.07 ng/ml and 0.35 +/- 0.07 ng/ml). The age at which scrotal circumference (SC) first reached > or = 28 cm, occurred earlier (P < 0.05) in bFSH-treated calves as compared to saline-treated calves (39.3 +/- 1.3 and 44.8 +/- 1.3 weeks of age, respectively). Based on testicular histology at 56 weeks of age, treatment with bFSH resulted in greater (P < 0.05) numbers of Sertoli cells (5 +/- 0.2, 6 +/- 0.3 and 5 +/- 0.3 in bLH-, bFSH- and saline-treated calves, respectively); elongated spermatids (42 +/- 2, 57 +/- 8 and 38 +/- 5 in bLH-, bFSH- and saline-treated calves, respectively) and spermatocytes (31 +/- 3, 38 +/- 3 and 29 +/- 2 in bLH-, bFSH- and saline-treated calves, respectively) per seminiferous tubule. We concluded that treatment of bull calves with bFSH from 4 to 8 weeks of age increased testicular growth (SC); hastened onset of puberty (SC > or = 28 cm); and enhanced spermatogenesis.  相似文献   

3.
Groups of heifer calves received a primary immunization against androstenedione (Group A; N = 11) or oestradiol-17 beta (Group E; N = 10) at 3 months of age and booster injections on 5 occasions at 2- to 3-month intervals. Controls (Group C, N = 11) were immunized against human serum albumin alone using the same protocol. Immunity was achieved against both steroids as judged by the secondary antisteroid antibody titres in Group A (1126 +/- 261; reciprocal of titre) and Group E (10,357 +/- 4067) heifers. In Groups A and E there was a general decline in the respective peak antibody titres after successive booster injections. From 3 to 9 months of age mean plasma concentrations of LH were higher (P less than 0.05) in Group E heifers (0.89 +/- 0.08 ng/ml) than in Group C (0.46 +/- 0.03 ng/ml) and Group A (0.59 +/- 0.05 ng/ml) heifers which did not differ from one another. There were no differences between groups in plasma FSH concentrations. At 10 months of age the LH response to exogenous LHRH was of higher (P less than 0.05) amplitude for heifers in Group E (2.59 +/- 0.56 ng/ml) than for those in Groups C (0.61 +/- 0.07 ng/ml) and A (1.04 +/- 0.22 ng/ml). Elevated plasma progesterone concentrations at 5 months of age were shown by 2 heifers in Group C, 10 in Group A, and 6 in Group E. From 8 to 14 months of age a consistently higher proportion of Group A heifers exhibited elevated progesterone compared with Group C and Group E heifers. After ovarian synchronization and booster injection at 15 months of age a corpus luteum was present in 2 heifers in Group C, 7 in Group A and none in Group E. The ovaries of Group A heifers were different from those of Groups C and E and were characterized by greater numbers of 2-4 mm follicles. It is concluded that active immunization against gonadal steroids influences both LH secretion and ovarian function in prepubertal heifers. Early increases in ovarian activity in androstenedione-immunized heifers are maintained after puberty and may therefore confer some lifetime reproductive advantages.  相似文献   

4.
Serum levels of luteinizing hormone (LH), testosterone, dehydroepiandrosterone sulfate (DHAS), androstenedione and cortisol were determined in multiple samples from 86 sooty mangabeys of varying ages (0-17 years). Testosterone, androstenedione, DHAS and cortisol were measured by radioimmunoassay; LH was determined by in vitro bioassay. Serum LH concentrations were elevated in neonates (less than 6 months) and in animals older than 72 months of age. The higher LH levels were associated with increased circulating concentrations of testosterone in males but not females. The pubertal rise in serum testosterone at approximately 55-60 months of age in males was coincident with rapid body growth. No pubertal growth spurt was observed in females. Serum levels of androstenedione and DHAS were highest during early postnatal life (less than 6 months) with androstenedione exceeding 600 ng/dl in males and 250 micrograms/dl in females, but declined rapidly in both sexes to a baseline of 150 ng/dl by 19 months of age. Serum androstenedione did not fluctuate significantly in adult animals. The pattern of age-related changes in serum DHAS paralleled those of serum androstenedione, whereas serum cortisol values did not change significantly with age. Developmental changes in serum LH, testosterone and body weight suggest that the sooty mangabey matures substantially later than the rhesus monkey. The pattern of serum gonadal and adrenal steroids during sexual maturation is similar to that seen in the baboon with no evidence of an adrenarche.  相似文献   

5.
This study was designed to test the hypothesis that treatment with super-ovulatory drugs suppresses endogenous pulsatile LH secretion. Heifers (n=5/group) were superovulated with eCG (2500 IU) or FSH (equivalent to 400 mg NIH-FSH-P1), starting on Day 10 of the estrous cycle, and were injected with prostaglandin F(2alpha) on Day 12 to induce luteolysis. Control cows were injected only with prostaglandin. Frequent blood samples were taken during luteolysis (6 to 14 h after PG administration) for assay of plasma LH, estradiol, progesterone, testosterone and androstenedione. The LH pulse frequency in eCG-treated cows was significantly lower than that in control cows (2.4 +/- 0.4 & 6.4 +/- 0.4 pulses/8 h, respectively; P<0.05), and plasma progesterone (3.4 +/- 0.4 vs 1.8 +/- 0.1 ng/ml, for treated and control heifers, respectively; P<0.05) and estradiol concentrations (25.9 +/- 4.3 & 4.3 +/- 0.4 pg/ml, for treated and control heifers, respectively; P<0.05) were higher compared with those of the controls. No LH pulses were detected in FSH-treated cows, and mean LH concentrations were significantly lower than those in the controls (0.3 +/- 0.1 & 0.8 +/- 0.1, respectively; P<0.05). This suppression of LH was associated with an increase in estradiol (9.5 +/- 1.4 pg/ml; P<0.05 compared with controls) but not in progesterone concentrations (2.1 +/- 0.2 ng/ml; P>0.05 compared to controls). Both superovulatory protocols increased the ovulation rate (21.6 +/- 3.9 and 23.0 +/- 4.2, for eCG and FSH groups, respectively; P>0.05). These data demonstrate that super-ovulatory treatments decrease LH pulse frequency during the follicular phase of the treatment cycle. This could be explained by increased steroid secretion in the eCG-trated heifers but not in FSH-treated animals.  相似文献   

6.
Plasma concentrations of testosterone, androstenedione and progesterone in freemartins, and normal cyclic and non-cyclic heifers were studied. The plasma testosterone concentrations were in general less than 10 pg/ml in all animals. The mean androstenedione concentration of 28 pg/ml in 10- to 12-month-old freemartins was significantly lower than the mean of 58 to 60 pg/ml for normal 10- to 12-month-old heifers. At 24 months of age the mean androstenedione concentration in the freemartins had risen significantly to 65 pg/ml.  相似文献   

7.
The present study investigated pulsatile and circadian variations in the circulatory levels of inhibin, gonadotrophins and testosterone. Six adult buffalo bulls (6 to 7 yr of age) were fitted with indwelling jugular vein catheters, and blood samples were collected at 2-h intervals for a period of 24 h and then at 15-min interval for 5 h. Plasma concentrations of inhibin, FSH, LH and testosterone were determined by specific radioimmunoassays. Plasma inhibin levels in Murrah buffalo bulls ranged between 0.201 to 0.429 ng/mL, with a mean of 0.278 +/- 0.023 ng/mL. No inhibin pulses could be detected during the 15-min sampling interval. Plasma FSH levels ranged between 0.95 to 3.61 ng/mL, the mean concentration of FSH over 24 h was 1.66 +/- 0.25 ng/mL. A single FSH pulse was detected in 2 of 6 bulls. The LH levels in peripheral circulation ranged between 0.92 to 9.91 ng/mL, with a mean concentration of 3.33 +/- 1.02 ng/mL. Pulsatility was detected in LH secretion with an average of 0.6 pulses/h. Plasma testosterone levels in 4 buffalo bulls ranged from 0.19 to 2.99 ng/mL, the mean level over 24 h were 1.34 +/- 0.52 ng/mL. Testosterone levels in peripheral circulation followed the LH secretory pattern, with an average of 0.32 pulses/h. The results indicate parallelism in inhibin, FSH and LH, and testosterone secretory pattern. Divergence in LH and FSH secretory patterns in adult buffalo bulls might be due to the presence of appreciable amounts of peripheral inhibin.  相似文献   

8.
Effects of estradiol on serum luteinizing hormone (LH) were studied in prepubertal boars. In Exp. 1, 15-wk-old boars were given (iv) 50 mug estradiol, 1 mg testosterone or 1.5 ml ethanol. Estradiol (P<0.05) decreased LH over a 2.5-hr period, but testosterone did not. In Exp. 2, an estradiol implant reduced LH sample variance (P<0.01) while LH (547 +/- 96 vs 655 +/- 43 pg/ml) and estradiol (14.2 +/- 3.3 vs 18.4 +/- 1.0 pg/ml; control vs implant) were unchanged in 12-wk-old boars. Pulsatile LH releases (4.3 +/- 1.1 vs 3.0 +/- 0.4 pulses/pig/8 hr; control vs treated) and pulse amplitude (272 +/- 34 vs 305 +/- 40 pg/ml) were not affected. The implant tended to decrease serum testosterone (4.86 +/- 0.75 vs 7.66 +/- 1.51 ng/ml; P<0.10). In Exp. 3, LH was higher after zero implants than after four implants (279 +/- 7 vs 227 +/- 9 pg/ml; P<0.01), and LH after two implants was also higher than after four implants (263 +/- 7 pg/ml; P<0.01) in 14-wk-old boars in a Latin square design. Peak LH after 40 mug gonadotropin releasing hormone (GnRH) was less after two and four implants (1,100 +/- 126 and 960 +/- 167 pg/ml, respectively; P<0.01) than after zero implants (1,742 +/- 126 pg/ml). Slope of the first 20 min of LH response to GnRH was greater after zero implants (45.3 pg/min; P<0.05) than after either two or four implants (20.6 and 16.9 pg/min, respectively). Implant treatment decreased serum testosterone (P<0.025) but increased estradiol (P<0.10). Small changes in serum estradiol resulted in changes in LH. These changes in sample variance and mean LH were recognized by boars as different from normal because serum testosterone decreased. Changes in LH may result from estradiol's negative effect on pituitary responsiveness to endogenous GnRH because response to exogenous GnRH was depressed by estradiol.  相似文献   

9.
Basal serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) and the responsiveness of these hormones to a challenge dose of luteinizing hormone releasing hormone (LHRH), were determined in juvenile, pubertal, and adult rhesus monkeys. The monkey gonadotrophins were analyzed using RIA reagents supplied by the World Health Organization (WHO) Special Programme of Human Reproduction. The FSH levels which were near the assay sensitivity in immature monkeys (2.4 +/- 0.8 ng/ml) showed a discernible increase in pubertal animals (6.4 +/- 1.8 ng/ml). Compared to other two age groups, the serum FSH concentration was markedly higher (16.1 +/- 1.8 ng/ml) in adults. Serum LH levels were below the detectable limits of the assay in juvenile monkeys but rose to 16.2 +/- 3.1 ng/ml in pubertal animals. When compared to pubertal animals, a two-fold increase in LH levels paralleled changes in serum LH during the three developmental stages. Response of serum gonadotrophins and T levels to a challenge dose of LHRH (2.5 micrograms; i.v.) was variable in the different age groups. The present data suggest: an asynchronous rise of FSH and LH during the pubertal period and a temporal correlation between the testicular size and FSH concentrations; the challenge dose of LHRH, which induces a significant rise in serum LH and T levels, fails to elicit an FSH response in all the three age groups; and the pubertal as compared to adult monkeys release significantly larger quantities of LH in response to exogenous LHRH.  相似文献   

10.
A total of 155 male buffalo calves were classified into 17 groups according to chronological age. The body weight was recorded on a balance or computed. Sera samples were analysed for thyroxine (T(4)) and triiodothyronine (T(3)) by radioimmunoassay. Highest concentration of thyroid hormones (T(4), 87.6+/-17.6; T(3), 3.1+/-0.07 ng/ml) were seen during the first week after birth followed by a gradual decline until two months of age. Later, the mean T(4) and T(3) levels fluctuated between 30 and 40 ng/ml and at around 1.0 ng/ml, respectively, except for a mild peak at 12 to 15 months of age. T4:T3 ratio did not vary significantly among various age groups. Both T4 and T3 were negatively correlated with age.  相似文献   

11.
Two enzyme immunoassays (EIAs) were validated to determine testosterone and androstenedione levels in culture medium (Brackett's medium with or without the addition of IGF-I, hormone and serum-free), without previous extraction, from rabbit oocytes matured in vitro. Polyclonal testosterone (C917), and androstenedione (C9111) antibodies were raised in rabbits using testosterone 3-carboxymethyloxime:BSA, and androstenedione 3-carboxymethyloxime:BSA. Horseradish peroxidase was used as label, conjugated to testosterone 3-carboxymethyloxime, and to androstenedione 6-hemisuccinate. Standard dose response curves covered a range between 0 and 1 ng/well. The low detection limits of the technique were 11.43 pg/ml for testosterone, and 2.32 pg/ml for androstenedione. Intra- and inter-assay coefficient of variation percentages were < 6.4 and < 7.1 for testosterone, and < 5.1 and < 6.3 for androstenedione, respectively (n= 10). The recovery rate of known testosterone or androstenedione concentrations added to pools of culture maturation medium samples averaged 97.58 +/- 2.11%, and 95.73 +/- 1.59%, respectively. Compared with RIA, EIA values were in close agreement for testosterone (n= 15, r= 0.96, P< 0.001), and androstenedione (n= 15, r= 0.94, P< 0.001). Culture medium samples were obtained at the end of oocyte in vitro maturation (14-16 h). Mean +/- SE culture maturation medium concentrations (ng/ml) were 1.80 +/- 0.09 and 0.52 +/- 0.01 for testosterone, and 1.70 +/- 0.04 and 0.24 +/- 0.01 for androstenedione in both the oocytes with and without cumulus cells, respectively. We concluded that our EIA is a highly sensitive and specific assay that provides a rapid, simple, inexpensive and nonradiometric alternative to RIA for determining testosterone and androstenedione concentrations in oocyte maturation culture medium.  相似文献   

12.
Longitudinal serum testosterone concentrations (n=10 males) and semen production (n=2 males) in killer whales were evaluated to: (1) characterize fluctuations in serum testosterone concentrations with respect to reproductive maturity and season; (2) compare morphologic changes to estimated age of sexual maturity, based on changes in serum testosterone concentrations; and (3) evaluate seasonal changes in sperm production. Classification of reproductive status and age class was based on differences (P < 0.05) in serum testosterone concentrations according to age; juvenile males ranged from 1 to 7 years (mean+/-S.D. testosterone, 0.13+/-0.20 ng/mL), pubertal males from 8 to 12 years (2.88+/-3.20 ng/mL), and sexually mature animals were 13 years and older (5.57+/-2.90 ng/mL). For captive-born males, serum testosterone concentrations, total body length and height to width ratio of the dorsal fin were 0.7+/-0.7 ng/mL, 495.6+/-17.5 cm and 1.14+/-0.13c m, respectively, at puberty; at sexual maturity, these end points were 6.0+/-3.3 ng/mL, 548+/-20 cm and 1.36+/-0.1cm. Serum testosterone concentrations were higher (P<0.05) from March to June than from December to February in pubertal animals (4.2+/-3.4 ng/mL versus 1.4+/-2.6 ng/mL) and than from September to December in sexually mature animals (7.2+/-3.3 ng/mL versus 4.0+/-2.0 ng/mL). Ejaculates (n = 90) collected from two males had similar (P > 0.05) sperm concentrations across all months. These data represent the first comprehensive study on male testosterone concentrations during and after sexual maturation, and on reproductive seasonality in the killer whale.  相似文献   

13.
It was suggested that an early increase in gonadotrophin secretion in calves aged between 6 and 24 weeks might be critical for initiating developmental changes culminating in puberty. An early rise in luteinizing hormone (LH) release appears to be caused by an increase in LH pulse frequency in bull calves and by an increase in LH pulse amplitude in heifer calves. Previously we have found differences in the characteristics of the LH rise between prepubertal beef calves born in spring or fall; however, age at puberty was not affected by season of birth. Here we report the LH/FSH secretory patterns in prepubertal bull and heifer calves (Hereford x Charolais), born in March or April, respectively (i.e., early or late during the spring calving season; six animals of each sex born at each time). The bull calves of both groups reached puberty (defined as an attainment of scrotal circumference of >or=28 cm) at 43.2+/-1.3 weeks of age (P>0.05). Age at puberty for March- and April-born heifer calves (defined as the age at which serum progesterone concentrations first exceeded 0.4 ng/ml) averaged 56.0+/-1.4 weeks (P>0.05). Based on blood samples taken weekly from birth to 26 weeks of age, and then every other week until puberty, bull calves born in March exceeded April-born bull calves in mean serum LH concentrations at 6, 10 and 12 weeks of age (P<0.05). Mean FSH concentrations were greater (P<0.05) in March-born compared to April-born bull calves from 34 to 32 weeks before puberty. Mean serum LH (at 40, 42 and 56 weeks) and FSH concentrations (at 2, 10, 20, 22-26, 30 and 56 weeks of age) were greater (P<0.05) in heifer calves born in April than March. On the basis of frequent blood sampling (every 12 min for 10 h), heifer calves born in April exceeded March-born animals in mean LH and FSH concentrations, at 5 and 25 weeks, and LH pulse frequency, at 5, 10 and 25 weeks of age (P<0.05). None of the parameters of LH secretion (i.e., mean concentrations of LH, LH pulse frequency and amplitude based on frequent blood collection) differed between March- and April-born bull calves in this study (P>0.05). In summary, March-born bull calves had greater mean serum LH and FSH concentrations prior to 24 weeks of age than April-born calves. April-born heifer calves had greater mean serum concentrations of LH and FSH but this difference was not confined to the early postnatal period. Although there were significant differences in absolute amounts of LH secreted, there were no differences in the frequency of LH secretory pulses amongst March- and April-born bull calves and no differences in LH pulse amplitude in heifer calves born in March or April. As these particular parameters of LH secretion, as well as age at puberty, are not affected by the time or season of birth, they may be primary hormonal cues governing sexual development in bulls and heifers, respectively.  相似文献   

14.
In the present study, the pulsatile serum profiles of prolactin, LH and testosterone were investigated in eight clinically healthy fertile male beagles of one to six years of age. Serum hormone concentrations were determined in blood samples collected at 15 min intervals over a period of 6 h before (control) and six days before the end of a four weeks treatment with the dopamine agonist cabergoline (5 microg kg(-1) bodyweight/day). In addition, the effect of cabergoline administration was investigated on thyrotropin-releasing hormone (TRH)-induced changes in the serum concentrations of these hormones. In all eight dogs, the serum prolactin concentrations (mean 3.0 +/- 0.3 ng ml(-1)) were on a relatively constant level not showing any pulsatility, while the secretion patterns of LH and testosterone were characterised by several hormone pulses. Cabergoline administration caused a minor but significant reduction of the mean prolactin concentration (2.9 +/- 0.2 ng ml(-1), p < 0.05) and did not affect the secretion of LH (mean 4.6 +/- 1.3 ng ml(-1) versus 4.4 +/- 1.7 ng ml(-1)) or testosterone (2.5 +/- 0.9 ng ml(-1) versus 2.4 +/- 1.2 ng ml(-1)). Under control conditions, a significant prolactin release was induced by intravenous TRH administration (before TRH: 3.8 +/- 0.9 ng ml(-1), 20 min after TRH: 9.1 +/- 5.9 ng ml(-1)) demonstrating the role of TRH as potent prolactin releasing factor. This prolactin increase was almost completely suppressed under cabergoline medication (before TRH: 3.0 +/- 0.2 ng ml(-1), 20 min after TRH: 3.3 +/- 0.5 ng ml(-1)). The concentrations of LH and testosterone were not affected by TRH administration. The results of these studies suggest that dopamine agonists mainly affect suprabasal secretion of prolactin in the dog.  相似文献   

15.
Pituitary, gonadal and adrenal activity were compared in free-living, adult African buffalo bulls during the breeding and nonbreeding seasons. Frequent blood samples were collected for 2 h from anaesthetized bulls treated intravenously with saline, gonadotrophin-releasing hormone (GnRH, 200 micrograms), human chorionic gonadotrophin (hCG, 10,000 i.u.) or adrenocorticotrophic hormone (ACTH, 1.5 mg). Electroejaculates also were collected from anaesthetized bulls during the breeding and nonbreeding seasons. Pretreatment testosterone concentrations among bulls varied more during the breeding (0.17-23.0 ng/ml) than the nonbreeding (0.15-2.21 ng/ml) season. The variation within the breeding season was attributed to 8 of 25 bulls producing higher (P less than 0.05) serum testosterone (High-T; 16.28 +/- 2.03 ng/ml) and testicular LH receptor (1.53 +/- 0.22 fmol/mg testis) concentrations compared with their seasonal counterparts (Low-T; 0.95 +/- 0.26 ng/ml; 0.38 +/- 0.04 fmol/mg) or with all bulls during the nonbreeding season (0.90 +/- 0.27 ng/ml; 0.31 +/- 0.04 fmol/mg). The magnitude of GnRH- and hCG-induced increases in serum testosterone was similar (P greater than 0.05) between Low-T bulls and bulls during the nonbreeding season. In the High-T animals treated with GnRH or hCG, serum testosterone did not increase, suggesting that secretion was already maximal. Peak serum LH concentrations after GnRH were greater (P less than 0.05) in bulls during the nonbreeding than the breeding season; FSH responses were similar (P greater than 0.05). ACTH treatment did not increase serum cortisol concentrations above the 2-fold increase measured in bulls treated with saline, hCG and GnRH (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Groups of bull calves received a primary immunization against testosterone (Group T; N = 7) or oestradiol-17 beta (Group E; N = 9) at 3 months of age and booster injections on four occasions at approximately 2 month intervals. Controls (Group C, N = 7) were immunized against human serum albumin alone using the same protocol. Immunity was achieved against both steroids as judged by the secondary antisteroid antibody titres in Group T (730 +/- 231; reciprocal of titre) and Group E (12,205 +/- 4366) bulls; however, peak antibody titres generally declined with successive booster injections. Mean plasma concentrations of LH, FSH and testosterone during the period from 3 to 10 months of age were higher (P less than 0.05) in Group T bulls than in Groups C and E. Group T bulls had larger testes compared with controls from 6 months of age onwards. At castration at 14 months of age, testes of Group T bulls were heavier (P less than 0.05) than those of Groups C and E (179 +/- 13, 145 +/- 8 and 147 +/- 6 g, respectively). At 10 months of age, there were no differences among treatment groups in LH responses to LHRH, but the testosterone responses were greater (P less than 0.05) in bulls in Group T (26.2 +/- 4.9 ng/ml) and Group E (16.6 +/- 1.8 ng/ml) compared with those in Group C (6.9 +/- 0.6 ng/ml). Testosterone responses to hCG determined at 13 months of age were also greater (P less than 0.05) in Groups T and E relative to controls. At 14 months of age daily sperm production rates per bull (X 10(-9)) were higher (P less than 0.10) in Group T bulls (2.2 +/- 0.1) than those in Groups C (1.6 +/- 0.2) and E (1.6 +/- 0.1). These results indicate that early immunity against testosterone is associated with increased gonadotrophin secretion and accelerated growth of the testes in prepubertal bulls. Also, chronic immunity against testosterone or oestradiol-17 beta enhances the steroidogenic response of bull testes to gonadotrophic stimulation. If the above responses observed in young bulls are shown to be sustained, then immunity against gonadal steroids early in life may confer some reproductive advantage in mature animals.  相似文献   

17.
Studies were conducted to determine the 24-hour fluctuations in blood serum testosterone concentration in adult buffalo bulls, and to measure testosterone secretion before and after GnRH administration in male buffaloes of different age groups. Testosterone levels in three sexually mature bulls ranged from 0.2 to 2.7 ng/ml with a mean of 0.6 +/- 0.2 ng/ml. Samples collected in November had significantly higher (P<0.05) testosterone than those drawn in February (dry season) as did samples collected during the day as opposed to the night. Sera testosterone concentrations were lower in younger bulls with a range of 0.2 to 0.6 ng/ml. GnRH induced an increase in testosterone in 6, 12, 24 and 36-month old bulls with the greatest response being observed at 36 months. GnRH did not elicit a response in one-month old bulls. It may be concluded that baseline sera testosterone concentrations in buffalo bulls, as well as responsiveness to GnRH injection, increase with sexual maturity and are subject toseasonal and diurnal variations.  相似文献   

18.
Madgwick S  Evans AC  Beard AP 《Theriogenology》2005,63(8):2323-2333
In heifer calves, an early transient increase in circulating concentrations of LH is associated with early follicular development and is thought to regulate the timing of puberty. In an attempt to hasten the onset of sexual maturity, the early rise in LH concentration was advanced by injecting heifer calves with 120 ng/kg of GnRH (n=6) twice daily from 4 to 8 weeks of age; control calves received saline (n=6). Blood samples were collected every 15 min for 10h at 4, 8, 14, 20, 26, 32, 38, 44 and 50 weeks of age. Treatment with GnRH increased mean circulating concentrations of LH at 8 weeks of age (P<0.05), LH pulse frequency at 4 and 8 weeks of age (P<0.05), and reduced the mean age at puberty by 6 weeks (56.8+/-1.7 versus 62.8+/-2.4 weeks of age, for GnRH treated and control calves, respectively; P=0.04). Body weight gain was greater in GnRH-treated calves than control calves (P<0.05), and the rate of weight gain was shown to be a significant covariate within age at puberty. In conclusion, we suggest that the timing of the early rise in LH concentrations is a critical signal involved in the timing of puberty in heifers.  相似文献   

19.
The seasonal changes in testicular weight in the blue fox were associated with considerable variations in plasma concentrations of LH, prolactin, androstenedione and testosterone and in FSH-binding capacity of the testis. An increase in LH secretion and a 5-fold increase in FSH-binding capacity were observed during December and January, as testis weight increased rapidly. LH levels fell during March when testicular weight was maximal. Plasma androgen concentrations reached their peak values in the second half of March (androstenedione: 0.9 +/- 0.1 ng/ml: testosterone: 3.6 +/- 0.6 ng/ml). A small temporary increase in LH was seen in May and June after the breeding season as testicular weight declined rapidly before levels returned to the basal state (0.5-7 ng/ml) that lasted until December. There were clear seasonal variations in the androgenic response of the testis to LH challenge. Plasma prolactin concentrations (2-3 ng/ml) were basal from August until the end of March when levels rose steadily to reach peak values (up to 13 ng/ml) in May and June just before maximum daylength and temperature. The circannual variations in plasma prolactin after castration were indistinguishable from those in intact animals, but LH concentrations were higher than normal for at least 1 year after castration.  相似文献   

20.
Luteinizing hormone (LH) was infused continuously at a rate of 1.3 IU/min to 4 normal adult men. A 4 to 5-fold increase in serum LH was noted by 8 hours. Serum FSH declined steadily throughout the infusion period in the face of rising concentrations of gonadal steroids. Basal plasma testosterone of 4.7 +/- 0.4 ng/ml rose progressively to a peak of 11.1 +/- 0.9 ng/ml at hour 56 (p less than 0.005). A similar pattern was demonstrated by plasma androstenedione. Plasma 17 alpha-hydroxyprogesterone rose from a basal concentration of 0.81 +/- 0.14 ng/ml to a peak concentration of 2.6 +/- 0.3 ng/ml at hour 36 of the infusion and subsequently declined. A similar course was followed by serum estradiol-17 beta, which achieved a maximal concentration of 70.0 +/- 10.4 pg/ml at hour 36. Results are compared to those obtained with continuous infusion of GnRH in normal adult men. Testosterone responses were similar, whereas elevations in 17 alpha-hydroxyprogesterone and estradiol were higher following GnRH infusion. This difference may be consequent upon a direct gonadal effect of GnRH, or may be secondary to local regulation of testicular steroidogenesis by estradiol-17 beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号