首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Mitochondria are key decoding stations of the apoptotic process. In support of this view, a large body of experimental evidence has unambiguously revealed that, in addition to the well-established function of producing most of the cellular ATP, mitochondria play a fundamental role in triggering apoptotic cell death. Various apoptotic stimuli cause the release of specific mitochondrial pro-apoptotic factors into the cytosol. The molecular mechanism of this release is still controversial, but there is no doubt that mitochondrial calcium (Ca(2+)) overload is one of the pro-apoptotic ways to induce the swelling of mitochondria, with perturbation or rupture of the outer membrane, and in turn the release of mitochondrial apoptotic factors into the cytosol. Here, we review as different proteins that participate in mitochondrial Ca(2+) homeostasis and in turn modulate the effectiveness of Ca(2+)-dependent apoptotic stimuli. Strikingly, the final outcome at the cellular level is similar, albeit through completely different molecular mechanisms: a reduced mitochondrial Ca(2+) overload upon pro-apoptotic stimuli that dramatically blunts the apoptotic response.  相似文献   

2.
IP3-mediated Ca(2+) release plays a fundamental role in many cell signaling processes and has been the subject of numerous modeling studies. Only recently has the important role that mitochondria play in the dynamics of intracellular Ca(2+) signaling begun to be considered in experimental work and in computational models. Mitochondria sequester large amounts of Ca(2+) and thus have a modulatory effect on intracellular Ca(2+) signaling, and mitochondrial uptake of Ca(2+), in turn, has a regulatory effect on mitochondrial function. Here we integrate a well-established model of IP3-mediated Ca(2+) signaling with a detailed model of mitochondrial Ca(2+) handling and metabolic function. The incorporation of mitochondria results in oscillations in a bistable formulation of the IP3 model, and increasing metabolic substrate decreases the frequency of these oscillations consistent with the literature. Ca(2+) spikes from the cytosol are communicated into mitochondria and are shown to induce realistic metabolic changes. The model has been formulated using a modular approach that is easy to modify and should serve as a useful basis for the investigation of questions regarding the interaction of these two systems.  相似文献   

3.
Phospholipase C produces two second messengers - diacylglycerol (DAG), which remains in the membrane, and inositol triphosphate (IP(3)), which triggers the release of calcium ions (Ca(2+)) from intracellular stores. Genetically encoded sensors based on a single circularly permuted fluorescent protein (FP) are robust tools for studying intracellular Ca(2+) dynamics. We have developed a robust sensor for DAG based on a circularly permuted green FP that can be co-imaged with the red fluorescent Ca(2+) sensor R-GECO for simultaneous measurement of both second messengers.  相似文献   

4.
Rasola A  Bernardi P 《Cell calcium》2011,50(3):222-233
A variety of stimuli utilize an increase of cytosolic free Ca2+ concentration as a second messenger to transmit signals, through Ca2+ release from the endoplasmic reticulum or opening of plasma membrane Ca2+ channels. Mitochondria contribute to the tight spatiotemporal control of this process by accumulating Ca2+, thus shaping the return of cytosolic Ca2+ to resting levels. The rise of mitochondrial matrix free Ca2+ concentration stimulates oxidative metabolism; yet, in the presence of a variety of sensitizing factors of pathophysiological relevance, the matrix Ca2+ increase can also lead to opening of the permeability transition pore (PTP), a high conductance inner membrane channel. While transient openings may serve the purpose of providing a fast Ca2+ release mechanism, persistent PTP opening is followed by deregulated release of matrix Ca2+, termination of oxidative phosphorylation, matrix swelling with inner membrane unfolding and eventually outer membrane rupture with release of apoptogenic proteins and cell death. Thus, a rise in mitochondrial Ca2+ can convey both apoptotic and necrotic death signals by inducing opening of the PTP. Understanding the signalling networks that govern changes in mitochondrial free Ca2+ concentration, their interplay with Ca2+ signalling in other subcellular compartments, and regulation of PTP has important implications in the fine comprehension of the main biological routines of the cell and in disease pathogenesis.  相似文献   

5.
We recently reported translocation and activation of Akt in cardiac mitochondria. This study was to determine whether activation of Akt in mitochondria could inhibit apoptosis of cardiac muscle cells. Insulin stimulation induced translocation of phosphorylated Akt to the mitochondria in primary cardiomyocytes. A mitochondria-targeted constitutively active Akt was overexpressed via adenoviral vector and inhibited efflux of cytochrome c and apoptosis-inducing factor from mitochondria to cytosol and partially prevented loss of mitochondria cross-membrane electrochemical gradient. Activation of caspase 3 was suppressed in the cardiomyocytes transduced with mitochondria-targeted active Akt, whereas a mitochondria-targeted dominant negative Akt enhanced activation of caspase 3. Terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay showed that mitochondrial activation of Akt significantly reduced the number of apoptotic cells. When the endogenous Akt was abolished by LY294002, the antiapoptotic actions of mitochondrial Akt remained effective. These experiments suggested that mitochondrial Akt suppressed apoptosis signaling independent of cytosolic Akt in cardiac muscle cells.  相似文献   

6.
A whole range of cell functions are regulated by the free cytosolic Ca(2+)concentration. Activator Ca(2+)from the extracellular space enters the cell through various types of Ca(2+)channels and sometimes the Na(+)/Ca(2+)-exchanger, and is actively extruded from the cell by Ca(2+)pumps and Na(+)/Ca(2+)-exchangers. Activator Ca(2+)can also be released from internal Ca(2+)stores through inositol trisphosphate or ryanodine receptors and is taken up into these organelles by means of Ca(2+)pumps. The resulting Ca(2+)signal is highly organized in space, frequency and amplitude because the localization and the integrated free cytosolic Ca(2+)concentration over time contain specific information. Mutations or functional abnormalities in the various Ca(2+)transporters, which in vitro seem to induce trivial functional alterations, therefore, often lead to a plethora of diseases. Skeletal-muscle pathology can be caused by mutations in ryanodine receptors (malignant hyperthermia, porcine stress syndrome, central-core disease), dihydropyridine receptors (familial hypokalemic periodic paralysis, malignant hyperthermia, muscular dysgenesis) or Ca(2+)pumps (Brody disease). Ca(2+)-pump mutations in cutaneous epidermal keratinocytes and cochlear hair cells lead to, skin diseases (Darier and Hailey-Hailey) and hearing/vestibular problems respectively. Mutated Ca(2+)channels in the photoreceptor plasma membrane cause vision problems. Hemiplegic migraine, spinocerebellar ataxia type-6, one form of episodic ataxia and some forms of epilepsy can be due to mutations in plasma-membrane Ca(2+)channels, while antibodies against these channels play a pathogenic role in all patients with the Lambert-Eaton myasthenic syndrome and may be of significance in sporadic amyotrophic lateral sclerosis. Brain inositol trisphosphate receptors have been hypothesized to contribute to the pathology in opisthotonos mice, manic-depressive illness and perhaps Alzheimer's disease. Various abnormalities in Ca(2+)-handling proteins have been described in heart during aging, hypertrophy, heart failure and during treatment with immunosuppressive drugs and in diabetes mellitus. In some instances, disease-causing mutations or abnormalities provide us with new insights into the cell biology of the various Ca(2+)transporters.  相似文献   

7.
Kinetics of force development and relaxation after rapid application and removal of Ca(2+) were measured by atomic force cantilevers on subcellular bundles of myofibrils prepared from guinea pig left ventricles. Changes in the structure of individual sarcomeres were simultaneously recorded by video microscopy. Upon Ca(2+) application, force developed with an exponential rate constant k(ACT) almost identical to k(TR), the rate constant of force redevelopment measured during steady-state Ca(2+) activation; this indicates that k(ACT) reflects isometric cross-bridge turnover kinetics. The kinetics of force relaxation after sudden Ca(2+) removal were markedly biphasic. An initial slow linear decline (rate constant k(LIN)) lasting for a time t(LIN) was abruptly followed by an ~20 times faster exponential decay (rate constant k(REL)). k(LIN) is similar to k(TR) measured at low activating [Ca(2+)], indicating that k(LIN) reflects isometric cross-bridge turnover kinetics under relaxed-like conditions (see also. Biophys. J. 83:2142-2151). Video microscopy revealed the following: invariably at t(LIN) a single sarcomere suddenly lengthened and returned to a relaxed-type structure. Originating from this sarcomere, structural relaxation propagated from one sarcomere to the next. Propagated sarcomeric relaxation, along with effects of stretch and P(i) on relaxation kinetics, supports an intersarcomeric chemomechanical coupling mechanism for rapid striated muscle relaxation in which cross-bridges conserve chemical energy by strain-induced rebinding of P(i).  相似文献   

8.
Mitochondrial Ca(2+) and neurodegeneration   总被引:1,自引:0,他引:1  
Mitochondria are essential for ensuring numerous fundamental physiological processes such as cellular energy, redox balance, modulation of Ca(2+) signaling and important biosynthetic pathways. They also govern the cell fate by participating in the apoptosis pathway. The mitochondrial shape, volume, number and distribution within the cells are strictly controlled. The regulation of these parameters has an impact on mitochondrial function, especially in the central nervous system, where trafficking of mitochondria is critical to their strategic intracellular distribution, presumably according to local energy demands. Thus, the maintenance of a healthy mitochondrial population is essential to avoid the impairment of the processes they regulate: for this purpose, cells have developed mechanisms involving a complex system of quality control to remove damaged mitochondria, or to renew them. Defects of these processes impair mitochondrial function and lead to disordered cell function, i.e., to a disease condition. Given the standard role of mitochondria in all cells, it might be expected that their dysfunction would give rise to similar defects in all tissues. However, damaged mitochondrial function has pleiotropic effects in multicellular organisms, resulting in diverse pathological conditions, ranging from cardiac and brain ischemia, to skeletal muscle myopathies to neurodegenerative diseases. In this review, we will focus on the relationship between mitochondrial (and cellular) derangements and Ca(2+) dysregulation in neurodegenerative diseases, emphasizing the evidence obtained in genetic models. Common patterns, that recognize the derangement of Ca(2+) and energy control as a causative factor, have been identified: advances in the understanding of the molecular regulation of Ca(2+) homeostasis, and on the ways in which it could become perturbed in neurological disorders, may lead to the development of therapeutic strategies that modulate neuronal Ca(2+) signaling.  相似文献   

9.
The coupling between Ca(2+) pools and store-operated Ca(2+) entry channels (SOCs) remains an unresolved question. Recently, we revealed that Ca(2+) entry could be activated in response to S-nitrosylation and that this process was stimulated by Ca(2+) pool emptying (Favre, C. J., Ufret-Vincenty, C. A., Stone, M. R., Ma, H-T. , and Gill, D. L. (1998) J. Biol. Chem. 273, 30855-30858). In DDT(1)MF-2 smooth muscle cells and DC-3F fibroblasts, Ca(2+) entry activated by the lipophilic NO donor, GEA3162 (5-amino-3-(3, 4-dichlorophenyl)1,2,3,4-oxatriazolium), or the alkylator, N-ethylmaleimide, was observed to be strongly activated by transient external Ca(2+) removal, closely resembling activation of SOC activity in the same cells. The nonadditivity of SOC and NO donor-activated Ca(2+) entry suggested a single entry mechanism. Calyculin A-induced reorganization of the actin cytoskeleton prevented SOC but had no effect on GEA3162-induced Ca(2+) entry. However, a single entry mechanism could account for both SOC and NO donor-activated entry if the latter reflected direct modification of the entry channel by S-nitrosylation, bypassing the normal coupling process between channels and pools. Small differences between SOC and GEA3162-activated Ba(2+) entry and sensitivity to blockade by La(3+) were observed, and in HEK293 cells SOC activity was observed without a response to thiol modification. It is concluded that in some cells, S-nitrosylation modifies an entry mechanism closely related to SOC and/or part of the regulatory machinery for SOC-mediated Ca(2+) entry.  相似文献   

10.
We have reported that a population of chromaffin cell mitochondria takes up large amounts of Ca(2+) during cell stimulation. The present study focuses on the pathways for mitochondrial Ca(2+) efflux. Treatment with protonophores before cell stimulation abolished mitochondrial Ca(2+) uptake and increased the cytosolic [Ca(2+)] ([Ca(2+)](c)) peak induced by the stimulus. Instead, when protonophores were added after cell stimulation, they did not modify [Ca(2+)](c) kinetics and inhibited Ca(2+) release from Ca(2+)-loaded mitochondria. This effect was due to inhibition of mitochondrial Na(+)/Ca(2+) exchange, because blocking this system with CGP37157 produced no further effect. Increasing extramitochondrial [Ca(2+)](c) triggered fast Ca(2+) release from these depolarized Ca(2+)-loaded mitochondria, both in intact or permeabilized cells. These effects of protonophores were mimicked by valinomycin, but not by nigericin. The observed mitochondrial Ca(2+)-induced Ca(2+) release response was insensitive to cyclosporin A and CGP37157 but fully blocked by ruthenium red, suggesting that it may be mediated by reversal of the Ca(2+) uniporter. This novel kind of mitochondrial Ca(2+)-induced Ca(2+) release might contribute to Ca(2+) clearance from mitochondria that become depolarized during Ca(2+) overload.  相似文献   

11.
Mitochondria play a central role in cell homeostasis. Amongst others, one of the important functions of mitochondria is to integrate its metabolic response with one of the major signaling pathways - the Ca2+ signaling. Mitochondria are capable to sense the levels of cytosolic Ca2+ and generate mitochondrial Ca2+ responses. Specific mechanisms for both Ca2+ uptake and Ca2+ release exist in the mitochondrial membranes. In turn, the mitochondrial Ca2+ signals are able to produce changes in the mitochondrial function and metabolism, which provide the required level of functional integration. This essay reviews briefly the current available information regarding the mitochondrial Ca2+ transport systems and some of the functional consequences of mitochondrial Ca2+ uptake  相似文献   

12.
Macroautophagy (autophagy) is a lysosomal degradation pathway that is conserved from yeast to humans that plays an important role in recycling cellular constituents in all cells. A number of protein complexes and signaling pathways impinge on the regulation of autophagy, with the mammalian target of rapamycin (mTOR) as the central player in the canonical pathway. Cytoplasmic Ca(2+) signaling also regulates autophagy, with both activating and inhibitory effects, mediated by the canonical as well as non-canonical pathways. Here we review this regulation, with a focus on the role of an mTOR-independent pathway that involves the inositol trisphosphate receptor (InsP(3)R) Ca(2+) release channel and Ca(2+) signaling to mitochondria. Constitutive InsP(3)R Ca(2+) transfer to mitochondria is required for autophagy suppression in cells in nutrient-replete media. In its absence, cells become metabolically compromised due to insufficient production of reducing equivalents to support oxidative phosphorylation. Absence of this Ca(2+) transfer to mitochondria results in activation of AMPK, which activates mTOR-independent pro-survival autophagy. Constitutive InsP(3)R Ca(2+) release to mitochondria is an essential cellular process that is required for efficient mitochondrial respiration, maintenance of normal cell bioenergetics and suppression of autophagy.  相似文献   

13.
In cardiac muscle, junctin forms a quaternary protein complex with the ryanodine receptor (RyR), calsequestrin, and triadin 1 at the luminal face of the junctional sarcoplasmic reticulum (jSR). By binding directly the RyR and calsequestrin, junctin may mediate the Ca(2+)-dependent regulatory interactions between both proteins. To gain more insight into the underlying mechanisms of impaired contractile relaxation in transgenic mice with cardiac-specific overexpression of junctin (TG), we studied cellular Ca(2+) handling in these mice. We found that the SR Ca(2+) load was reduced by 22% in cardiomyocytes from TG mice. Consistent with this, the frequency of Ca(2+) sparks was diminished by 32%. The decay of spontaneous Ca(2+) sparks was prolonged by 117% in TG. This finding was associated with a lower Na(+)-Ca(2+) exchanger (NCX) protein expression (by 67%) and a higher basal RyR phosphorylation at Ser(2809) (by 64%) in TG. The shortening- and Delta[Ca](i)-frequency relationships (0.5-4 Hz) were flat in TG compared to wild-type (WT) which exhibited a positive staircase for both parameters. Furthermore, increasing stimulation frequencies hastened the time of relaxation and the decay of [Ca](i) by a higher percentage in TG. We conclude that the impaired relaxation in TG may result from a reduced NCX expression and/or a higher SR Ca(2+) leak. The altered shortening-frequency relationship in TG seems to be a consequence of an impaired excitation-contraction coupling with depressed SR Ca(2+) release at higher rates of stimulation. Our data suggest that the more prominent frequency-dependent hastening of relaxation in TG results from a stimulation of SR Ca(2+) transport reflected by corresponding changes of [Ca](i).  相似文献   

14.
Recent studies have revealed that Ca(2+) signals evoked by action potentials or by synaptic activity within individual dendritic spines are regulated at multiple levels. Ca(2+) influx through glutamate receptors and voltage-sensitive Ca(2+) channels located on spines depends on the channel subunit composition, the activity of kinases and phosphatases, the local membrane potential and past patterns of activity. Furthermore, sources of spine Ca(2+) interact nonlinearly such that activation of one Ca(2+) channel can enhance or depress the activity of others. These studies have revealed that each spine is a complex and partitioned Ca(2+) signaling domain capable of autonomously regulating the electrical and biochemical consequences of synaptic activity.  相似文献   

15.
Dendritic spines are cellular microcompartments that are isolated from their parent dendrites and neighboring spines. Recently, imaging studies of spine Ca(2+) dynamics have revealed that Ca(2+) can enter spines through voltage-sensitive and ligand-activated channels, as well as through Ca(2+) release from intracellular stores. Relationships between spine Ca(2+) signals and induction of various forms of synaptic plasticity are beginning to be elucidated. Measurements of spine Ca(2+) concentration are also being used to probe the properties of single synapses and even individual calcium channels in their native environment.  相似文献   

16.
Focal mechanical stimulation of single neonatal mouse cardiac myocytes in culture induced intercellular Ca(2+) waves that propagated with mean velocities of approximately 14 micrometer/s, reaching approximately 80% of the cells in the field. Deletion of connexin43 (Cx43), the main cardiac gap junction channel protein, did not prevent communication of mechanically induced Ca(2+) waves, although the velocity and number of cells communicated by the Ca(2+) signal were significantly reduced. Similar effects were observed in wild-type cardiac myocytes treated with heptanol, a gap junction channel blocker. Fewer cells were involved in intercellular Ca(2+) signaling in both wild-type and Cx43-null cultures in the presence of suramin, a P(2)-receptor blocker; blockage was more effective in Cx43-null than in wild-type cells. Thus gap junction channels provide the main pathway for communication of slow intercellular Ca(2+) signals in wild-type neonatal mouse cardiac myocytes. Activation of P(2)-receptors induced by ATP release contributes a secondary, extracellular pathway for transmission of Ca(2+) signals. The importance of such ATP-mediated Ca(2+) signaling would be expected to be enhanced under ischemic conditions, when release of ATP is increased and gap junction channels conductance is significantly reduced.  相似文献   

17.
Using confocal imaging of Rhod-2-loaded HeLa cells, we examined the ability of mitochondria to sequester Ca(2+) signals arising from different sources. Mitochondrial Ca(2+) (Ca(2+)mit) uptake was stimulated by inositol 1,4,5-trisphosphate (InsP(3))-evoked Ca(2+) release, capacitative Ca(2+) entry, and Ca(2+) leaking from the endoplasmic reticulum. For each Ca(2+) source, the relationship between cytosolic Ca(2+) (Ca(2+)cyt) concentration and Ca(2+)mit was complex. With Ca(2+)cyt < 300 nm, a slow and persistent Ca(2+)mit uptake was observed. If Ca(2+)cyt increased above approximately 400 nm, Ca(2+)mit uptake accelerated sharply. For equivalent Ca(2+)cyt increases, the rate of Ca(2+)mit rise was greater with InsP(3)-evoked Ca(2+) signals than any other source. Spatial variation of the Ca(2+)mit response was observed within individual cells. Both the fraction of responsive mitochondria and the amplitude of the Ca(2+)mit response were graded in direct proportion to stimulus concentration. Trains of repetitive Ca(2+) oscillations did not maintain elevated Ca(2+)mit levels. Only low frequency Ca(2+) transients (<1/15 min) evoked repetitive Ca(2+)mit signals. Our data indicate that there is a lag between Ca(2+)cyt and Ca(2+)mit increases but that mitochondria will accumulate calcium when it is elevated over basal levels regardless of its source. Furthermore, in addition to the characteristics of Ca(2+) signals, Ca(2+) uniporter desensitization and proximity of mitochondria to InsP(3) receptors modulate mitochondrial Ca(2+) responses.  相似文献   

18.
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) play key roles in physiological and pathological responses in cardiac myocytes. The mechanisms whereby H(2)O(2)-modulated phosphorylation pathways regulate the endothelial isoform of nitric oxide synthase (eNOS) in these cells are incompletely understood. We show here that H(2)O(2) treatment of adult mouse cardiac myocytes leads to increases in intracellular Ca(2+) ([Ca(2+)](i)), and document that activity of the L-type Ca(2+) channel is necessary for the H(2)O(2)-promoted increase in sarcomere shortening and of [Ca(2+)](i). Using the chemical NO sensor Cu(2)(FL2E), we discovered that the H(2)O(2)-promoted increase in cardiac myocyte NO synthesis requires activation of the L-type Ca(2+) channel, as well as phosphorylation of the AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase kinase 1/2 (MEK1/2). Moreover, H(2)O(2)-stimulated phosphorylations of eNOS, AMPK, MEK1/2, and ERK1/2 all depend on both an increase in [Ca(2+)](i) as well as the activation of protein kinase C (PKC). We also found that H(2)O(2)-promoted cardiac myocyte eNOS translocation from peripheral membranes to internal sites is abrogated by the L-type Ca(2+) channel blocker nifedipine. We have previously shown that kinase Akt is also involved in H(2)O(2)-promoted eNOS phosphorylation. Here we present evidence documenting that H(2)O(2)-promoted Akt phosphorylation is dependent on activation of the L-type Ca(2+) channel, but is independent of PKC. These studies establish key roles for Ca(2+)- and PKC-dependent signaling pathways in the modulation of cardiac myocyte eNOS activation by H(2)O(2).  相似文献   

19.
M K Manion  Z Su  M Villain  J E Blalock 《FASEB journal》2000,14(10):1297-1306
Calmodulin (CaM), as well as other Ca(2+) binding motifs (i.e., EF hands), have been demonstrated to be Ca(2+) sensors for several ion channel types, usually resulting in an inactivation in a negative feedback manner. This provides a novel target for the regulation of such channels. We have designed peptides that interact with EF hands of CaM in a specific and productive manner. Here we have examined whether these peptides block certain Ca(2+)-permeant channels and inhibit biological activity that is dependent on the influx of Ca(2+). We found that these peptides are able to enter the cell and directly, as well as indirectly (through CaM), block the activity of glutamate receptor channels in cultured neocortical neurons and a nonselective cation channel in Jurkat T cells that is activated by HIV-1 gp120. As a consequence, apoptosis mediated by an influx of Ca(2+) through these channels was also dose-dependently inhibited by these novel peptides. Thus, this new type of Ca(2+) channel blocker may have utility in controlling apoptosis due to HIV infection or neuronal loss due to ischemia.  相似文献   

20.
Connexin36 (Cx36) plays an important role in insulin secretion by controlling the intercellular synchronization of Ca(2+) transients induced during stimulation. The lack of drugs acting on Cx36 channels is a major limitation in further unraveling the molecular mechanism underlying this effect. To screen for such drugs, we have developed an assay allowing for a semi-automatic, fluorimetric quantification of Ca(2+) transients in large populations of MIN6 cells. Here, we show that (1) compared to control cells, MIN6 cells with reduced Cx36 expression or function showed decreased synchrony of glucose-induced Ca(2+) oscillations; (2) glibenclamide, a sulphonylurea which promotes Cx36 junctions and coupling, increased the number of synchronous MIN6 cells, whereas quinine, an antimalarial drug which inhibits Cx36-dependent coupling, decreased this proportion; (3) several drugs were identified that altered the intercellular Ca(2+) synchronization, cell coupling and distribution of Cx36; (4) some of them also affected insulin content. The data indicate that the intercellular synchronization of Ca(2+) oscillations provides a reliable and non-invasive measurement of Cx36-dependent coupling, which is useful to identify novel drugs affecting the function of β-cells, neurons, and neuron-related cells that express Cx36.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号