共查询到20条相似文献,搜索用时 15 毫秒
1.
The hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs, has been implicated in intracellular trafficking and signal transduction. Hrs contains a phosphatidylinositol 3-phosphate-binding FYVE domain that contributes to its endosomal targeting. Here we show that Hrs and EEA1, a FYVE domain protein involved in endocytic membrane fusion, are localized to different regions of early endosomes. We demonstrate that Hrs co-localizes with clathrin, and that the C-terminus of Hrs contains a functional clathrin box motif that interacts directly with the terminal beta-propeller domain of clathrin heavy chain. A massive recruitment of clathrin to early endosomes was observed in cells transfected with Hrs, but not with Hrs lacking the C-terminus. Furthermore, the phosphatidylinositol 3-kinase inhibitor wortmannin caused the dissociation of both Hrs and clathrin from endosomes. While overexpression of Hrs did not affect endocytosis and recycling of transferrin, endocytosed epidermal growth factor and dextran were retained in early endosomes. These results provide a molecular mechanism for the recruitment of clathrin onto early endosomes and suggest a function for Hrs in trafficking from early to late endosomes. 相似文献
2.
Cilia are endowed with membrane receptors, channels, and signaling components whose localization and function must be tightly controlled. In primary cilia of mammalian kidney epithelia and sensory cilia of Caenorhabditis elegans neurons, polycystin-1 (PC1) and transient receptor polycystin-2 channel (TRPP2 or PC2), function together as a mechanosensory receptor-channel complex. Despite the importance of the polycystins in sensory transduction, the mechanisms that regulate polycystin activity and localization, or ciliary membrane receptors in general, remain poorly understood. We demonstrate that signal transduction adaptor molecule STAM-1A interacts with C. elegans LOV-1 (PC1), and that STAM functions with hepatocyte growth factor–regulated tyrosine kinase substrate (Hrs) on early endosomes to direct the LOV-1-PKD-2 complex for lysosomal degradation. In a stam-1 mutant, both LOV-1 and PKD-2 improperly accumulate at the ciliary base. Conversely, overexpression of STAM or Hrs promotes the removal of PKD-2 from cilia, culminating in sensory behavioral defects. These data reveal that the STAM-Hrs complex, which down-regulates ligand-activated growth factor receptors from the cell surface of yeast and mammalian cells, also regulates the localization and signaling of a ciliary PC1 receptor-TRPP2 complex. 相似文献
3.
Cell surface receptor proteins that have undergone endocytosis are transported to the endosome. From the endosome, ligand-activated receptor tyrosine kinases are further transported to the lysosome for degradation, a process called "receptor downregulation." By contrast, nutrient receptors, such as those for low-density lipoprotein and transferrin, are recycled back to the plasma membrane. Sorting of these two types of receptors occurs at the endosome, where ubiquitination of receptor proteins serves as the sorting signal. Namely, ubiquitinated receptors are incorporated into the lysosomal degradation pathway, whereas those that are not ubiquitinated are returned to the cell surface. Hrs and STAM are proteins that form a complex on the endosomal membrane. Recent studies have shown that the Hrs/STAM complex binds ubiquitin moieties and acts as sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes. 相似文献
4.
After endocytosis, some membrane proteins recycle from early endosomes to the plasma membrane whereas others are transported to late endosomes and lysosomes for degradation. Conjugation with the small polypeptide ubiquitin is a signal for lysosomal sorting. Here we show that the hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs, is involved in the endosomal sorting of ubiquitinated membrane proteins. Hrs contains a clathrin-binding domain, and by electron microscopy we show that Hrs localizes to flat clathrin lattices on early endosomes. We demonstrate that Hrs binds directly to ubiquitin by way of a ubiquitin-interacting motif (UIM), and that ubiquitinated proteins localize specifically to Hrs- and clathrin-containing microdomains. Whereas endocytosed transferrin receptors fail to colocalize with Hrs and rapidly recycle to the cell surface, transferrin receptors that are fused to ubiquitin interact with Hrs, localize to Hrs- and clathrin-containing microdomains and are sorted to the degradative pathway. Overexpression of Hrs strongly and specifically inhibits recycling of ubiquitinated transferrin receptors by a mechanism that requires a functional UIM. We conclude that Hrs sorts ubiquitinated membrane proteins into clathrin-coated microdomains of early endosomes, thereby preventing their recycling to the cell surface. 相似文献
5.
6.
The turnover of integral membrane proteins requires a specialized transport pathway mediated by components of the endosomal sorting complex required for transport (ESCRT) machinery. In most cases, entry into this pathway requires that cargoes undergo ubiquitin-modification, thereby facilitating their sequestration on endosomal membranes by specific, ubiquitin-binding ESCRT subunits. However, requirements underlying initial cargo recognition of mono-ubiquitinated cargos remain poorly defined. In this study, we determine the capability of each ESCRT complex that harbors a ubiquitin-binding domain to bind a reconstituted integral membrane cargo (VAMP2), which has been covalently linked to mono-ubiquitin. We demonstrate that ESCRT-0, but not ESCRT-I or ESCRT-II, is able to associate stably with the mono-ubiquitinated cargo within a lipid bilayer. Moreover, we show that the ubiquitin-binding domains in both Hrs and STAM must be intact to enable cargo binding. These results indicate that the two subunits of ESCRT-0 function together to bind and sequester cargoes for downstream sorting into intralumenal vesicles. 相似文献
7.
Members of the STAM family of proteins, STAM1 and STAM2, are associated with Hrs through their coiled-coil regions. Both Hrs and STAM bind ubiquitin and are involved in endosomal sorting of ubiquitinated cargo proteins for trafficking to the lysosome. Here we examined the biological significance of STAM binding to Hrs. Endogenous STAM1 and STAM2 were mostly localized on the early endosome, suggesting that they are resident endosomal proteins. A STAM2 mutant that lacks the coiled-coil region and does not bind Hrs, in contrast, mislocalized to the cytoplasm. Deletion of a region located N-terminal to the coiled-coil region and conserved among STAM proteins also severely affected Hrs binding and the endosomal localization of STAM2, suggesting that this region is also involved in these activities. Depletion of endogenous Hrs by RNA interference similarly caused the mislocalization of exogenously expressed STAM2 to the cytoplasm. These results indicate that STAM is localized to the early endosome by binding to Hrs on the target membrane. In addition, the expression level of endogenous STAM proteins was drastically reduced in Hrs-depleted cells, suggesting that STAM is stabilized by binding to Hrs. Finally, STAM2 mutants lacking the Hrs-binding activity were defective in causing the enlargement of early endosomes, accumulating ubiquitinated proteins on this aberrant organelle, and inhibiting the degradation of ligand-activated epidermal growth factor receptors, suggesting that the association with Hrs is a prerequisite for STAM function. 相似文献
8.
POSH (plenty of SH3s) acts as a scaffold that links activated Rac1 and downstream c-Jun N-terminal kinase (JNK) signaling modules. However, it is unknown whether it's functional domain-mediated roles including the interesting RING-finger domain or its cellular function. Here, we provide evidence that subcellular localization of POSH is regulated by a particular domain of the protein and POSH was colocalized with hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) on early endosomes via interaction of Hrs with POSH's two rear SH3 domains. Moreover, the RING domain of POSH specifically regulates the stability of Hrs, but not of JNK1, via a ubiquitin-proteasomal degradation pathway. Finally, we demonstrate that JNK1 does not interact with Hrs under the conditions of POSH interacted with Hrs, but instead reduces the POSH-catalyzed ubiquitination of Hrs and their reciprocal interaction. Together, these data suggest that POSH has a distinct role as a specific E3 ubiquitin ligase for Hrs on early endosomes, and there exists a relationship between its separate activities as a scaffold and as an E3. 相似文献
9.
Ubiquitin functions as a signal for sorting cargo at multiple steps of the endocytic pathway and controls the activity of trans-acting components of the endocytic machinery (reviewed in refs 1, and 2). By contrast to proteasome degradation, which generally requires a polyubiquitin chain that is at least four subunits long, internalization and sorting of endocytic cargo at the late endosome are mediated by mono-ubiquitination. Here, we demonstrate that ubiquitin-interacting motifs (UIMs) found in epsins and Vps27p (ref. 9) from Saccharomyces cerevisiae are required for ubiquitin binding and protein transport. Epsin UIMs are important for the internalization of receptors into vesicles at the plasma membrane. Vps27p UIMs are necessary to sort biosynthetic and endocytic cargo into vesicles that bud into the lumen of a late endosomal compartment, the multivesicular body. We propose that mono-ubiquitin regulates internalization and endosomal sorting by interacting with modular ubiquitin-binding domains in core components of the protein transport machinery. UIM domains are found in a broad spectrum of proteins, consistent with the idea that mono-ubiquitin can function as a regulatory signal to control diverse biological activities. 相似文献
10.
Katoh Y Shiba Y Mitsuhashi H Yanagida Y Takatsu H Nakayama K 《The Journal of biological chemistry》2004,279(23):24435-24443
Tom1 (target of Myb1) is a protein of unknown function. Tom1 and its relative Tom1L1 have an N-terminal VHS (Vps27p/Hrs/Stam) domain followed by a GAT (GGA and Tom1) domain, both of which are also found in the GGA (Golgi-localizing, gamma-adaptin ear domain homology, ADP-ribosylation factor-binding protein) family of proteins. Although the VHS and GAT domains of GGA proteins bind to transmembrane cargo proteins and the small GTPase ADP-ribosylation factor, respectively, the VHS and GAT domains of Tom1 are unable to interact with these proteins. In this study, we show that the GAT domains of Tom1 and Tom1L1 interact with ubiquitin and Tollip (Toll-interacting protein). Ubiquitin bound the GAT domains of Tom1, Tom1L1, and GGA proteins, whereas Tollip interacted specifically with Tom1 and Tom1L1. Ubiquitin and Tollip bound to an overlapping region of the Tom1-GAT domain in a mutually exclusive manner. Tom1 was predominantly cytosolic when expressed in cells. On the other hand, Tollip was localized on early endosomes and recruited Tom1 and ubiquitinated proteins. These observations suggest that Tollip and Tom1 form a complex and regulate endosomal trafficking of ubiquitinated proteins. 相似文献
11.
Movement through the endocytic pathway occurs principally via a series of membrane fusion and fission reactions that allow sorting of molecules to be recycled from those to be degraded. Endosome fusion is dependent on SNARE proteins, although the nature of the proteins involved and their regulation has not been fully elucidated. We found that the endosome-associated hepatocyte responsive serum phosphoprotein (Hrs) inhibited the homotypic fusion of early endosomes. A region of Hrs predicted to form a coiled coil required for binding the Q-SNARE, SNAP-25, mimicked the inhibition of endosome fusion produced by full-length Hrs, and was sufficient for endosome binding. SNAP-25, syntaxin 13, and VAMP2 were bound from rat brain membranes to the Hrs coiled-coil domain. Syntaxin 13 inhibited early endosomal fusion and botulinum toxin/E inhibition of early endosomal fusion was reversed by addition of SNAP-25(150-206), confirming a role for syntaxin 13, and establishing a role for SNAP-25 in endosomal fusion. Hrs inhibited formation of the syntaxin 13-SNAP-25-VAMP2 complex by displacing VAMP2 from the complex. These data suggest that SNAP-25 is a receptor for Hrs on early endosomal membranes and that the binding of Hrs to SNAP-25 on endosomal membranes inhibits formation of a SNARE complex required for homotypic endosome fusion. 相似文献
12.
Signal-transducing adaptor molecules STAM1 and STAM2 are required for T-cell development and survival 下载免费PDF全文
Yamada M Ishii N Asao H Murata K Kanazawa C Sasaki H Sugamura K 《Molecular and cellular biology》2002,22(24):8648-8658
We previously reported that the STAM family members STAM1 and STAM2 are phosphorylated on tyrosine upon stimulation with cytokines through the gammac-Jak3 signaling pathway, which is essential for T-cell development. Mice with targeted mutations in either STAM1 or STAM2 show no abnormality in T-cell development, and mice with double mutations for STAM1 and STAM2 are embryonically lethal; therefore, here we generated mice with T-cell-specific double mutations for STAM1 and STAM2 using the Cre/loxP system. These STAM1(-/-) STAM2(-/-) mice showed a significant reduction in thymocytes and a profound reduction in peripheral mature T cells. In proliferation assays, thymocytes derived from the double mutant mice showed a defective response to T-cell-receptor (TCR) stimulation by antibodies and/or cytokines, interleukin-2 (IL-2) and IL-7. However, signaling events downstream of receptors for IL-2 and IL-7, such as activations of STAT5, extracellular signal-regulated kinase (ERK), and protein kinase B (PKB)/Akt, and c-myc induction, were normal in the double mutant thymocytes. Upon TCR-mediated stimulation, prolonged activations of p38 mitogen-activated protein kinase and Jun N-terminal protein kinase were seen, but activations of ERK, PKB/Akt, and intracellular calcium flux were normal in the double mutant thymocytes. When the cell viability of cultured thymocytes was assessed, the double mutant thymocytes died more quickly than controls. These results demonstrate that the STAMs are indispensably involved in T-cell development and survival in the thymus through the prevention of apoptosis but are dispensable for the proximal signaling of TCR and cytokine receptors. 相似文献
13.
Garner TP Strachan J Shedden EC Long JE Cavey JR Shaw B Layfield R Searle MS 《Biochemistry》2011,50(42):9076-9087
Ubiquitin (Ub) modifications are transduced by receptor proteins that use Ub-binding domains (UBDs) to recognize distinct interaction faces on the Ub surface. We report the nuclear magnetic resonance (NMR) solution structures of the A20-like zinc finger (A20 Znf) UBD of the Ub receptor ZNF216, and its complex with Ub, and show that the binding surface on Ub centered on Asp58 leaves the canonical hydrophobic Ile44 patch free to participate in additional interactions. We have modeled ternary complexes of the different families of UBDs and show that while many are expected to bind competitively to the same Ile44 surface or show steric incompatibility, other combinations (in particular, those involving the A20 Znf domain) are consistent with a single Ub moiety simultaneously participating in multiple interactions with different UBDs. We subsequently demonstrate by NMR that the A20 Znf domain of ZNF216 and the UBA domain of the p62 protein (an Ile44-binding UBD), which function in the same biological pathways, are able to form such a Ub-mediated ternary complex through independent interactions with a single Ub. This work supports an emerging concept of Ub acting as a scaffold to mediate multiprotein complex assembly. 相似文献
14.
Plasma membrane-derived vesicles containing receptor-ligand complexes are fusogenic with early endosomes in a cell-free system 总被引:6,自引:0,他引:6
Receptor-mediated endocytosis involves the transport of receptor-ligand complexes from the cell surface to an intracellular endocytic compartment. This study shows that plasma membrane-derived vesicles containing receptor-bound ligands (e.g. aggregated anti-dinitrophenol (DNP) IgG bound to Fc receptors) fuse with early endosomes containing DNP-beta-glucuronidase in a cell-free system. Plasma membrane vesicles were generated by homogenization of cells that had been allowed to bind ligands at 4 degrees C. Fusion between vesicles containing the two probes was assessed by (i) the formation of anti-DNP IgG-DNP-beta-glucuronidase complexes and (ii) the colocalization within closed vesicles of two different sizes of colloidal gold coated with ligands. Fusion required ATP, cytosol, and KCl. The requirements were similar to those described for endosome-endosome fusion in in vitro systems. Mild trypsinization of vesicles prior to their addition to the assay inhibited fusion. When DNP-beta-glucuronidase was chased into more mature endocytic compartments, fusion was not observed. The results indicate that cell surface regions involved in receptor-mediated endocytosis are capable of fusing to early endosomes. This fusion event may constitute the first step in the transport of ligands to an intracellular endocytic compartment. 相似文献
15.
Major histocompatibility complex (MHC) class II molecules are targeted together with their invariant chain (Ii) chaperone from the secretory pathway to the endocytic pathway. Within the endosome/lysosome system, Ii must be degraded to enable peptide capture by MHC class II molecules. It remains controversial exactly which route or routes MHC class II/Ii complexes take to reach the sites of Ii processing and peptide loading. We have asked whether early endosomes are required for successful maturation of MHC class II molecules by using an in situ peroxidase/diaminobenzidine compartment ablation technique. Cells whose early endosomes were selectively ablated using transferrin-horseradish peroxidase conjugates fail to mature their newly synthesized MHC class II molecules. We show that whereas transport of secretory Ig through the secretory pathway is virtually normal in the ablated cells, newly synthesized MHC class II/Ii complexes never reach compartments capable of processing Ii. These results strongly suggest that the transport of the bulk of newly synthesized MHC class II molecules through early endosomes is obligatory and that direct input into later endosomes/lysosomes does not take place. 相似文献
16.
Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. 总被引:30,自引:0,他引:30 下载免费PDF全文
The success of Mycobacterium as a pathogen hinges on its ability to modulate its intracellular environment. Mycobacterium avium reside in vacuoles with limited proteolytic activity, maintain cathepsin D in an immature form and remain accessible to internalized transferrin. Artificial acidification of isolated phagosomes facilitated processing of cathepsin D, demonstrating that pH alone limits proteolysis in these vacuoles. Moreover, analysis of IgG-bead phagosomes at early time points during their formation indicates that these phagosomes also acquire LAMP 1 and cathepsin D prior to the accumulation of proton-ATPases, and are transiently accessible to sorting endosomes. This suggests that the anomolous distribution of endosomal proteins in M. avium-containing vacuoles results from their arrested differentiation in an early transitional stage through which all phagosomes pass. 相似文献
17.
18.
Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes 总被引:24,自引:0,他引:24
Cells rely on the correct sorting of endocytic ligands and receptors for proper function. Early endosomes have been considered as the initial sorting station where cargos for degradation separate from those for recycling. Using live-cell imaging to monitor individual endosomes and ligand particles in real time, we have discovered a sorting mechanism that takes place prior to early endosome entry. We show that early endosomes are in fact comprised of two distinct populations: a dynamic population that is highly mobile on microtubules and matures rapidly toward late endosomes and a static population that matures much more slowly. Several cargos destined for degradation are preferentially targeted to the dynamic endosomes, whereas the recycling ligand transferrin is nonselectively delivered to all early endosomes and effectively enriched in the larger, static population. This pre-early endosome sorting process begins at clathrin-coated vesicles, depends on microtubule-dependent motility, and appears to involve endocytic adaptors. 相似文献
19.
A large-scale method for the isolation of von Willebrand factor (vWF) from human factor VIII concentrates was developed in order to study the structure of this protein and its platelet binding activity. vWF is composed of a number of glycoprotein subunits that are linked together by disulfide bonds to form a series of multimers. These multimers appear to contain an even number of subunits of 270K. Two minor components of Mr 140K and 120K were also identified, but these chains appear to result from minor proteolysis. The smallest multimer of vWF contained nearly equimolar amounts of the 270K, 140K, and 120K subunits, while the largest multimers contained less than 20% of the two minor components. Amino acid sequence analysis, amino acid composition, and cleavage by cyanogen bromide indicate that the 270K subunits are identical and each is a single polypeptide chain with an amino-terminal sequence of Ser-Leu-Ser-Cys-Arg-Pro-Pro-Met-Val-Lys and a carboxyl-terminal sequence of Glu-Cys-Lys-Cys-Ser-Pro-Arg-Lys-Cys-Ser-Lys. Platelet binding in the presence of ristocetin was 8-fold greater with multimers larger than five (i.e., containing more than 10 subunits of 270K) as compared to multimers less than three (containing less than six subunits of 270K). However, partially reduced vWF (Mr 500K), regardless of whether it was prepared from large or small molecular weight multimers, gave platelet binding similar to that of the smallest multimers. Likewise, partial proteolysis by elastase, thermolysin, trypsin, or chymotrypsin produced small "multimer-like" proteins with platelet binding properties similar to either partially reduced vWF or to the smallest multimers. We conclude that human vWF contains identical 270K subunits assembled into a multivalent structure. Disassembly by either partial reduction or partial proteolysis produces essentially monovalent protein with platelet binding properties similar to that of the smallest multimers. Multivalency is likely the primary factor responsible for the increase in biological activity with multimer size. 相似文献