首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A post-embedding technique for immunocytochemical analysis at the ultrastructural level was used to detect and localize HIV antigens on ultrathin sections of Lowicryl-embedded HIV-infected cells. A genomic probe containing ribosomal sequences and labeled with biotin was used to hybridize rRNA molecules in sections of animal cells embedded in Lowicryl. The method presently described offers the possibility to detect rapidly and precisely ribosomal gene expression and viral proteins at the ultrastructural level.  相似文献   

2.
The N-myc gene is expressed specifically in the early developmental stages of numerous cell lineages. To assay for sequences that could potentially regulate N-myc expression, we transfected constructs that contained murine N-myc genomic sequences linked to a reporter gene and genomic clones that contained the complete human or murine N-myc genes into cell lines that either express or do not express the endogenous N-myc gene. Following either transient or stable transfection, the introduced N-myc sequences were expressed regardless of the expression status of the endogenous gene. In contrast, when the clones containing the complete human N-myc gene were introduced into the germline of transgenic mice, expression in some transgenic lines paralleled the tissue- and stage-specific expression of the endogenous murine gene. These findings demonstrate differences in the regulation of N-myc genes in recipient cells following in vitro versus in vivo introduction, suggesting that early developmental events may play a role in the regulation of N-myc expression.  相似文献   

3.
4.
5.
Targeted gene modification for gene therapy of stem cells   总被引:1,自引:0,他引:1  
Ideally, gene therapy would correct the specific gene defect without adding potentially harmful extraneous DNA sequences. Such correction can be obtained with homologous recombination between input DNA sequences and identical (homologous) sequences in the genomic target gene. The development of techniques for obtaining virtually pure populations of hematopoietic stem cells should permit the use of the highly efficient nuclear microinjection methods for transfer of DNA. These techniques combined with new highly sensitive methods for detecting cells with the specified genetic modification of nonexpressed genes would make homologous recombination-mediated gene therapy feasible for hematopoietic stem cells. These advances are reviewed with particular emphasis on approaches to targeted gene modification of hematopoietic stem cells and speculation on directions for future research.  相似文献   

6.
The complete nucleotide sequence of the 16.7-kb human gene that encodes the peptide core (serglycin) of a secretory granule proteoglycan was determined, thus representing the first proteoglycan peptide core gene to be sequenced in its entirety. The exons, intron 1, and intron 2 comprised 7, 53, and 40% of the gene, respectively. Nineteen Alu-repetitive DNA sequences were interspersed in the gene, accounting for 28% of the total nucleotides in intron 1 and 40% of the nucleotides in intron 2. The nucleotide sequence was then used in an examination of the methylation pattern of the human serglycin gene in human promyelocytic leukemia HL-60 cells that contain serglycin mRNA and in T-lymphoblast Molt-4 cells that do not. With polymerase chain reaction methodology, 13 DNA probes of 250-880 base pairs in length were generated that corresponded to unique, non-Alu sequences spaced throughout the entire human serglycin gene. When blots containing genomic DNA digested with HpaII or MspI were examined with these genomic probes, it was discovered that the 5'-flanking region and intron 1 of the serglycin gene in HL-60 cells were both substantially less methylated than intron 2. In contrast, the entire serglycin gene in Molt-4 cells was highly methylated. Because hypomethylated genes generally are transcribed more efficiently than hypermethylated genes, the high level of serglycin mRNA in HL-60 cells probably is a consequence of the low level of methylation of intron 1 and the 5'-flanking region of the serglycin gene in these cells.  相似文献   

7.
The tagging of genomic loci in living cells provides visual evidence for the study of genomic spatial organization and gene interaction. CRISPR/dCas9(clustered regularly interspaced short palindromic repeats/deactivated Cas9) labeling system labels genes through binding of the dCas9/sgRNA/fluorescent protein complex to repeat sequences in the target genomic loci.However, the existence of numerous fluorescent proteins in the nucleus usually causes a high background fluorescent readout.This study aims to limit the number of fluorescent modules entering the nucleus by redesigning the current CRISPR/dCas9-SunTag labeling system consisting of dCas9-SunTag-NLS(target module) and scFv-sfGFP-NLS(signal module). We removed the nuclear location sequence(NLS) of the signal module and inserted two copies of EGFP into the signal module. The ratio of the fluorescent intensity of the nucleus to that of the cytoplasm(N/C ratio) was decreased by 71%, and the ratio of the signal to the background(S/B ratio) was increased by 1.6 times. The system can stably label randomly selected genomic loci with as few as 9 repeat sequences.  相似文献   

8.
9.
A clone of about 14 kb containing the metallothionein MT-I gene and three repetitive sequences, was isolated from a genomic library of mouse LMTK DNA. The MT-I gene was functional. Transfected cells became cadmium resistant. Two of the three repetitive sequences were moderately repetitive while the other was closely related to the R family.  相似文献   

10.
11.
刘改改  李爽  韦余达  张永贤  丁秋蓉 《遗传》2015,37(11):1167-1173
CRISPR/Cas9技术提供了一个全新的基因组编辑体系。本文利用CRISPR/Cas9平台,在人胚胎干细胞株中对选取的一段特定基因组区域进行了多种基因组编辑:通过在基因编码框中引入移码突变进行基因敲除;通过单链DNA提供外源模板经由同源重组定点敲入FLAG序列;通过同时靶向多个位点诱导基因组大片段删除。研究结果表明CRISPR/Cas9可以对多能干细胞进行高效基因编辑,获得的突变干细胞株有助于对基因和基因组区域的功能进行分析和干细胞疾病模型的建立。  相似文献   

12.
Gene targeting in mouse embryonic stem (ES) cells generally includes the analysis of numerous colonies to identify a few with mutations resulting from homologous recombination with a targeting vector. Thus, simple and efficient screening methods are needed to identify targeted clones. Optimal screening approaches require probes from outside of the region included in the targeting vector to avoid detection of the more common random insertions. However, the use of large genomic fragments in targeting vectors can limit the availability of cloned DNA, thus necessitating a strategy to obtain unique flanking sequences. We describe a rapid method to identify sequences adjacent to cloned DNA using long-range polymerase chain reaction (PCR) amplification from a genomic DNA library, followed by direct nucleotide sequencing of the amplified fragment. We have used this technique in two independent gene targeting experiments to obtain genomic DNA sequences flanking the mouse cholecystokinin (CCK) and gastrin genes. The sequences were then used to design primers to characterize ES cell lines with CCK or gastrin targeted gene mutations, employing a second long-range PCR approach. Our results show that these two long-range PCR methods are generally useful to rapidly and accurately characterize allele structures in ES cells  相似文献   

13.
14.
L929TK- cells were cotransfected with DNA mixtures containing tk gene of HSV-1, plasmids carrying LTR of MoMLV or RSV and carrier DNA of salmon sperm or chromosomal DNA of recipient cells. Selection of TK+ transformants was conducted in DMEM supplemented with HAT. Plasmids carrying LTR sequences of MoMLV or RSV retroviruses showed enhancing effect on the frequency of TK+ transformation. Southern blot analysis of chromosomal DNA of TK+ transformants demonstrated in clones deriving from cotransfections of tk gene and carrier DNA of L929TK- cells multiple copies of tk gene integrated into several genomic sites of host. Single copies of tk gene integrated into different sites of host genome occurred in chromosomal DNA of TK+ clones deriving from cotransfections of tk gene and carrier DNA of salmon sperm. Cells cotransfected with tk gene and plasmids carrying LTR sequences of MoMLV or RSV formed three dimensional colonies in semisolid agar medium. No effect of carrier DNA on the morphology of TK+ transformant clones was noticed.  相似文献   

15.
The ability to introduce precise genomic modifications in human cells has profound implications for both basic and applied research in stem cells, ranging from identification of genes regulating stem cell self-renewal and multilineage differentiation to therapeutic gene correction and creation of in vitro models of human diseases. However, the overall efficiency of this process is challenged by several factors including inefficient gene delivery into stem cells and low rates of homology directed site-specific targeting. Recent studies report the development of novel techniques to improve gene targeting efficiencies in human stem cells; these methods include molecular engineering of viral vectors to efficiently deliver episomal genetic sequences that can participate in homology directed targeting, as well as the design of synthetic proteins that can introduce double-stranded breaks in DNA to initiate such recombination events. This review focuses on the potential of these new technologies to precisely alter the human stem cell genome and also highlights the possibilities offered by the combination of these complementary strategies.  相似文献   

16.
17.
18.
19.
20.
Lim KI 《Molecules and cells》2012,33(5):525-531
Retroviral integration provides us with a powerful tool to realize prolonged gene expressions that are often critical to gene therapy. However, the perturbation of gene regulations in host cells by viral genome integration can lead to detrimental effects, yielding cancer. The oncogenic potential of retroviruses is linked to the preference of retroviruses to integrate into genomic regions that are enriched in gene regulatory elements. To better navigate the double-edged sword of retroviral integration we need to understand how retroviruses select their favored genomic loci during infections. In this study I showed that in addition to host proteins that tether retroviral pre-integration complexes to specific genomic regions, the epigenetic architecture of host genome might strongly affect retroviral integration patterns. Specifically, retroviruses showed their characteristic integration preference in differentiated somatic cells. In contrast, retroviral infections of hES cells, which are known to display decondensed chromatin, produced random-like integration patterns lacking of strong preference for regulatory-element-rich genomic regions. Better identification of the cellular and viral factors that determine retroviral integration patterns will facilitate the design of retroviral vectors for safer use in gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号