首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The total number of planktonic bacteria in the upper mixed layerof the Bering Sea during the late spring-early summer periodranged between 1 and {small tilde}4 x 106 ml–1 (biomass10–40mg C m–3). In the northern Pacific, along 47–526N,the corresponding characteristics of the bacterioplankton densityin the upper mixed water layer were: total number 1–2x 106 cells ml–1 and biomass 15–46mg C m–3Below the thermocline at 50–100 m, the density of bacterioplanktonrapidly decreased. At 300 m depth, it stabilized at 0.1–0.2x 106 cells ml–1. The integrated biomass of bacterioplanktonin the open Bering Sea ranged between 1.2 and 3.6 g C m–2(wet biomass 6–18 g m–2) Its production per dayvaried from 2 to 23 mg C m–3 days–1 in the upper0–100 m. The numerical abundance of planktonic ciliatesin this layer was estimated to be from 3 to l0 x 103 cells l–1,and in the northern Pacific from 0.4 to 4.5 x 103 l–2.Their populations were dominated by naked forms of Strombidium,Strombilidium and Tontonia. In some shelf areas, up to 40% ofthe total ciliate population was represented by the symbioticciliate Mesodinium rubrum. The data on the integrated biomassof basic groups of planktonic microheterotrophs are also presented,and their importance in the trophic relationships in pelagiccommunities of subarctic seas is discussed.  相似文献   

2.
Interannual changes in the biomass of the Black Sea gelatinous zooplankton   总被引:3,自引:0,他引:3  
The 15 year changes in the total gelatinous biomass consistof a general trend to increase, from 250 gm–2 in 1980to 2500 g m–2 in 1995, and fluctuations with a periodof –4 years performed against the background of this trendin the upper 150 m layer. Different species occupying distincttrophic niches form these peaks. When represented as the percentageof the total zooplankton biomass, Aurelia aurita and Mnemiopsisleidyi exhibit the contra-phase fluctuations where a sharp increasein M.leidyi is accompanied by a decrease in the A.aurita biornass.  相似文献   

3.
In situ growth and development of Neocalanus flemingeri/plumchrusstage C1–C4 copepodites were estimated by both the artificial-cohortand the single-stage incubation methods in March, April andMay of 2001–2005 at 5–6°C. Results from thesetwo methods were comparable and consistent. In the field, C1–C4stage durations ranged from 7 to >100 days, dependent ontemperature and chlorophyll a (Chl a) concentration. Averagestage durations were 12.4–14.1 days, yielding an averageof 56 days to reach C5, but under optimal conditions stage durationswere closer to 10 days, shortening the time to reach C5 (fromC1) to 46 days. Generally, growth rates decreased with increasingstage, ranging from 0.28 day–1 to close to zero but weretypically between 0.20 and 0.05 day–1, averaging 0.110± 0.006 day–1 (mean ± SE) for single-stageand 0.107 ± 0.005 day–1 (mean ± SE) forartificial-cohort methods. Growth was well described by equationsof Michaelis–Menten form, with maximum growth rates (Gmax)of 0.17–0.18 day–1 and half saturation Chl a concentrations(Kchl) of 0.45–0.46 mg m–3 for combined C1–3,while Gmax dropped to 0.08–0.09 day–1 but Kchl remainedat 0.38–0.93 mg m–3 for C4. In this study, in situgrowth of N. flemingeri/plumchrus was frequently food limitedto some degree, particularly during March. A comparison withglobal models of copepod growth rates suggests that these modelsstill require considerable refinement. We suggest that the artificial-cohortmethod is the most practical approach to generating the multispeciesdata required to address these deficiencies.  相似文献   

4.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

5.
The present study deals with structure and functioning of threeareas of Himalayan oak forest. Low- and mid-altitude oaks, namelyQuercus leucotrichophora, and Quercus floribunda, form predominantevergreen forests in Central and Western Himalaya. The totaltree basal cover ranged between 33·89 m2 ha–1 (Q.floribunda site) to 36·83 m2 ha–1 (Q. leucotrichophorasite). The density ranged between 570 and 760 individuals ha–1.Allometric equations relating biomass of different tree componentsto GBH (girth at breast height) were significant with the exceptionof leaf biomass in Q. leucotrichophora and Rhododendron arboreum.Total vegetation biomass (29·40–467·0 tha–1) was distributed as 377·1 t ha–1 intrees, 5·40 t ha–1 in shrubs and 1·23 tha–1 in herbs. Total forest floor biomass ranged between4·6 and 6·2 t ha–1. Of the total annuallitter fall (4·7–4·8 t ha–1), 77·5% was contributed by leaf litter, 17·8 % by wood litterand 4·7 % by miscellaneous litter. Turnover rate of treelitter varied from 0·66 to 0·70. Net primary productionof total vegetation ranged between 15·9 and 20·6t ha–1 yr–1, of which the contribution of trees,shrubs and herbs was 81·2 %, 8·6 % and 10·2%, respectively. A compartment model of dry matter on the basisof mean data across sites was developed to show dry matter storageand flow of dry matter within the system. Quercus leucotrichophora forest, Q. floribunda forest, Q. lanuginosa forest, biomass, litter fall, net primary production, compartmental transfer  相似文献   

6.
The biomass and net primary productivity (NPP) of 2- to 8-year-oldplantations of Eucalyptus tereticornis Sm. (= E. hybrid) growingin the tarai (a level area of superabundant water) region ofCentral Himalaya were estimated. Allometric equations for allthe above-ground and below-ground components of trees and shrubswere developed for each stand. Understorey, forest floor biomassand litter fall were also estimated from stands. Shrubs appearedfirst at 5-year-old plantation. The biomass of vegetation, forestfloor littermass, tree litter fall and net primary productivity(NPP) of trees and shrubs increased with the increase in plantationage, whereas herb biomass and NPP significantly (P < 0·01)decreased with the increase in plantation age. The total plantationbiomass increased from 7·7 t ha–1 in the 2-year-oldto 126·7 t ha–1 in the 8-year-old plantation andNPP from 8·6 t ha–1 year–1 in the 2-year-oldto 23·4 t ha–1 year–1 in the 8-year-old plantation.The biomass accumulation ratio ranged from 0·81 to 5·93. Eucalyptus tereticornis Sm, plantation, biomass, forest floor, litter fall, net primary productivity, biomass accumulation ratio  相似文献   

7.
The abundance and biomass of marine planktonic ciliates in BorgeBay, Signy Island, were determined at monthly intervals betweenApril 1990 and June 1991. At least 24 different ciliate taxawere recorded from samples preserved in Lugol's iodine, includingthe tintinnids Codonellopsis balechi, Cymalocylis convallaria,Laackmaniella naviculaefera and Salpingella sp., and the aloricatetaxa Didinium sp. and Mesodinium rubrum. Ciliate abundance andbiomass exhibited a clear seasonal cycle with high values duringthe austral summer and low values in the austral winter. Abundanceranged from 0.3 103l–1 in September to 2.3 103l–1in January, while biomass ranged from 0.5 µg C l–1in October to 12.6 µg C l–1 in December. Small ciliatesdominated abundance throughout the year, and biomass duringwinter. Larger ciliates contributed most to biomass during summer.Aloricate ciliates were common throughout the year, while tintinnidscontributed substantially to abundance and biomass only duringsummer. Salpingella sp. was the commonest tintinnid, but C.convallariacontributed most to tintinnid biomass. The seasonal patternof ciliate abundance and biomass matched that of chlorophylla concentration and bacterial biomass, suggesting tight trophiccoupling between ciliates and other components of the pelagicmicrobial community. 1Present address: Scott Polar Research Institute, Universityof Cambridge, Lensfield Road, Cambridge CB2 1ER, UK  相似文献   

8.
The population dynamics of the scyphomedusa Aurelia aurita inSouthampton Water is characterized. Strobilation, indicatedby the presence of 1 mm ephyrae, occurred from the end of Januaryto the middle of March. Maximum abundances of up to 8.71 m–3occurred soon after ephyrae release, after which numbers declinedsteadily until the end of June, when the population was absentfrom Southampton Water. The residence time of 3–4 monthsis somewhat less than that reported in many other areas, includingKiel Bight and Gullmarfjord. The carbon biomass of A.auritaaccounted for 92–97% of the predominant gelatinous biomass(A.aurita, Pleurobrachia pileus and Phialidium hemisphericum)in the upper estuary, and this reached a maximum of 30.2 mgC m–3 in May 1990 and 27.6 mg C m–3 in June 1991.Coincident with increased water temperature and mesozooplanktonabundance during May, growth rates increased from 0.02–0.30mm day–1 to a peak of 4.8 mm day–1, with a maximumbell diameter of 120–140 mm reached in late May/earlyJune. Size to maturity was variable, although the smallest medusaobserved to be ‘ripe’, i.e. containing dividingeggs and planula larvae in the brood sacs on the oral arms,were 64–71 mm. Aurelia aurita is believed to be endemicto Southampton Water, but because of the double high water inthe area, short flushing rates of between 4.5 and 20 days maybe responsible for such short residence times of Aurelia medusae.The effects of strong NE winds were considered as factors governingthe distribution of medusae in years of atypical temporal abundance.  相似文献   

9.
In nature, large concentrations of the toxic bloom-forming dinoflagellate,Gonyaulax tamarensis, are frequently observed in the vicinityof the pycnocline. In the absence of a pycnocline the organismis usually recorded near the surface, where light levels aremore advantageous for photosynthesis. In this paper we examinethe swimming behaviour of G.tamarensis when exposed to varyingdegrees of stratification and investigate whether the maintenanceof a subsurface (pycnocline) population is the result of retentionof the algae by a physical barrier or active accumulation ofthe organisms at a density interface. The study indicates thatG.tamarensis cells presented with a halocline of S<{smalltilde}6–7 (occurring over a few centimeters) cross thissalinity barrier and accumulate at the highest available photonflux density ({small tilde}100 µmol m–2 s–1).Cells exposed to a gradient of S>{small tilde}7remain atthe halocline (pfd={small tilde}40 µmol m–2 s–1).However, when light above the pycnocline is attenuated by theaddition of food colour to the medium, the cells cross a haloclineof S=10 and accumulate at the highest available photon fluxdensity. In the absence of added nutrients (inorganic N andP) the organism fails to exhibit a phototactic response. Thus,the presence of a strong halocline does not represent an inpenetrablephysical barrier for G.tamarensis and the development of pycnoclinepopulations of this organism is a function of density, lightand nutrient climate.  相似文献   

10.
The vertical distribution and migration patterns of chaetognathswere studied at a sampling station off northern Namibia (18°00'S,10°30'E during a 48 h sampling cycle. The sampling areawas characterized by mixing of the Angola current with the northernmostwaters of the Benguela current in the surface region. The continuousflow of the Angola current during the study period gave riseto a thermocline and a halocline at a depth of 40 m. The samplingintervals used to study the behaviour of epipelagic chaetognathspecies under these conditions were 200–100, 100–60,60–40, 40–20 and 20–0 m. A total of 10 differentchaetognath species were captured. Sagitia enflata was the predominantspecies, with a mean density of 4400 individuals per 1000 m3in daytime hauls, accounting for 54.1% of all individuals collectedin the samples. Sagitia minima was the next most predominantspecies, with a mean density of 2400 individuals per 1000 m3in daytime hauls, accounting for 16.6% of the chaetognath communitysampled. Three maturity stages were considered in analysingpossible ontogenetic migrations. Nearly all the species wereaggregated above the pycnocline, and stages I and II of manyspecies carried out short migrations in the surface layers.The limited migration pattern, together with a staggered distributionof the different species and stages above the pycnocline, hasbeen interpreted as a space partitioning mechanism to preventintra- and interspecific competition.  相似文献   

11.
Results are presented of size-fractionated primary productionstudies conducted in the vicinity of the Subtropical Front (STF),an adjacent warm-core eddy, and in Sub-antarctic waters duringthe third South African Antarctic Marine Ecosystem Study (SAAMESIII) in austral winter (June/July) 1993. Throughout the investigation,total chlorophyll (Chl a) biomass and production were dominatedby small nano- and picophytoplankton. No distinct patterns intotal Chl a were evident. At stations (n = 7) occupied in thevicinity of the STF, total integrated biomass values rangedfrom 31 to 53 mg Chl a m–2. In the vicinity of the eddy,integrated biomass at the eddy edge (n = 3) ranged from 24 to54 mg Chl a m–2 and from 32 to 43 mg Chl a m–2 inthe eddy (n = 2). At the station occupied in the Sub-antarcticwaters, total integrated biomass was 43 mg Chl a m–2.Total daily integrated production was highest at stations occupiedin the vicinity of the STF and at the eddy edge. Here, totalintegrated production ranged from 150 to 423 mg C m–2day–1 and from 244 to 326mg C m–2 day–1, respectively.In the eddy centre, total integrated production varied between134 and 156 mg C m–2 day–1. At the station occupiedin the Sub-antarctic waters, the lowest integrated production(141 mg C m–2 day–1) during the entire survey wasrecorded. Availability of macronutrients did not appear to limittotal production. However, the low silicate concentrations duringthe survey may account for the predominance of small nano- andpicophytoplankton. Differences in production rates between theeddy edge and eddy core were related to water column stability.In contrast, at stations occupied in the vicinity of the STF,the control of phytoplankton production appears to be relatedto several processes, including water column stability and,possibly, iron availability.  相似文献   

12.
The layer of daytime concentration of Calanus ponticus (VC andVI C) performing daily vertical migrations and the layer of‘winter stock’ aggregation are confined to the depthof maximal gradient of the main pycnocline under an unusuallysharp oxycline. The concentration layer thickness ranges from2 to 20–30 m and the Calanus concentration in it is >250ind. m–3, sometimes being 3500 ind. m–3 and evenmore. The population in the concentration layer is divided intotwo ecological groups: I, feeding and migrating specimens ofcopepodite stages V and VI, their body lipid contents being25–60 µg min.–1; and II, non-feeding and non-migratingspecimens of copepodite stage V, their body lipid contents being100–150 µg ind.–1. The relationship with oxygenconcentration was studied in both ecogroups. The experimentsshow that specimens of ecogroup II can exit at an oxygen concentrationof 0.06 ml 1–1, but at such concentration falling intoanabiosis. They die at 0.04 ml O2 1–1. Estimates of respirationof the group II specimens (‘winter stock’) showthat lipids they store are sufficient for 7 months' survival.Depth of Calanus concentration is determined by water densityrather than concentration of oxygen.  相似文献   

13.
In situ light measurements were used to obtain information oninherent and apparent optical properties. The average verticalattenuation coefficient Kd(ave) varied from 1.1 to 4.6 In unitsm–1 During three periods the variation in Kd(ave) correlatedwith changes in chlorophyll a concentration and specific attenuationcoefficients Ks, of 0.013, 0.014 and 0.022 m2 mg Chl a–1were calculated. Chlorophyll-specific diffuse absorption coefficients(A,) for these periods were 0.012. 0.013 and 0.017 m2 mg Chla–1 and only varied significantly from estimates of Ksin the period when scattering was intense. Absorption coefficientsa(zmid) and scattering coefficients b(zmid) calculated for themid-point of the euphotic zone ranged between 0.45 and 2.9 mand 3.5–52.0 m respectively. Chlorophyll-specific absorptioncoefficients Ka, of 0.005, 0.006 and 0.007 m2 mg Chl a–1and scattering coefficients Kb of 0.05. 0.09 and 0.191 m2 mgChl a–1 were measured during the three periods. The highKb value occurred when gas-vacuolate cyanobactena were dominant.Algal photosynthesis and light absorption were related throughthe maximum quantum yield m which varied between 0.019 and 0.11mol C Einstein–1 while average quantum yields a, variedbetween 0.006 and 0.024 with a mean of 0.013 mol C Einstein–1A comparison of changes in the mean irradiance of the mixedzone and chlorophyll concentration indicated that growth waslight limited below 0.04–0.05 Einsteins absorbed mg Chla–1 day–1.  相似文献   

14.
The fecundity and somatic growth rates of Calanus agulhensisand Calanoides carinatus, the dominant large calanoid copepodsin the southern Benguela upwelling system, as well as the fecundityof several other common copepods, were measured between Septemberand March of 1993/94 and 1994/95. Mean egg production of mostcopepods was low at >30 eggs female-1 day-1 {Calanoides carinatus23.7, Calanus agulhensis 19.0, Neocalanus tonsus 16.1 and Rhincalanusnasutus 26.1), whereas the mean fecundity of Centropages brachiatuswas significantly greater (83.6 eggs female–1 day-1).This study also presents the first comprehensive field estimatesof the fecundity of Nanno-calanus minor (mean: 26.1 eggs female–1day–1, range: 0.0–96.2 eggs female–1 day–1)and of somatic growth of N6 and all copepodite stages of Calanoidescarinatus (decreasing from 0.58 day–1 for N6 to 0.04 day–1for C5). Somatic growth rates of Calanus agulhensis also declinedwith age: from 0.57 day1 for N6 to 0.09 day1 for C5. Data ongrowth rates were used to assess the relative importance offood [as measured by total chlorophyll (Chi) a concentration],phytoplankton cell size (proportion of cells >10 µm)and temperature to the growth of copepods. Multiple regressionresults suggested that fecundity and somatic growth rates werepositively related to both Chi a concentration and phytoplanktoncell size, but not to temperature. Although it was not possibleto separate the effects of Chi a concentration and phytoplanktoncell size, data from previous laboratory experiments suggestthat copepod growth is not limited by small cells per se, butby the low Chi a concentrations that are associated with theseparticles in the field. Despite growth not being directly relatedto temperature, a dome-shaped relationship was evident in somespecies, with slower growth rates at cool (<13°C) andwarm (>18°C) temperatures. The shape of this relationshipmirrors that of Chi a versus temperature, where poor Chi a concentrationsare associated with cool and warm temperatures. It is concludedthat the effect of food limitation on growth of copepods outweighsthat of temperature in the southern Benguela region. Sourcesof variability in relationships between growth and Chi a concentrationare discussed.  相似文献   

15.
Phytoplankton and zooplankton development in a lowland, temperate river   总被引:5,自引:0,他引:5  
The longitudinal and seasonal patterns of plankton developmentwere examined over 2 years in a lowland, temperate river: theRideau River (Ontario, Canada). Following an initial decreasein phytoplankton and zooplankton biomass as water flowed fromthe headwaters into the Rideau River proper, there was an increasein chlorophyll a (chl a) and zooplankton biomass with downstreamtravel. At approximately river km 60, both phytoplankton andzooplankton reached their maximum biomass of 27 µg l–1(chl a) and 470 µg l–1 (dry mass), respectively.Downstream of river km 60, the biomass of both planktonic communitiesdeclined significantly despite increasing nutrient concentrationsand favorable light conditions. These downstream declines maybe due to the feeding activity of the exotic zebra mussel (Dreissenapolymorpha) which was at high density in downstream reaches(>1000 individuals m–2). There was no evidence forlongitudinal phasing of phytoplankton and zooplankton, as increasesand decreases in chl a and zooplankton biomass appeared to coincide.Overall, chl a was best predicted by total phosphorus (R2=0.43),whereas zooplankton biomass was best predicted by chl a (R2=0.20).There was no evidence for significant grazing effects of zooplanktonon phytoplankton biomass.  相似文献   

16.
Phytoplankton biomass, primary production rates and inorganicnutrients were measured in the uppermost layer of the ice-edgeregion and in open water and compared with environmental factorsduring a three-week cruise in September – October 1979.Biomass and production values were low (maximum 2.2 µgchl a l–1, 2.5 mg C m–3 h–1). A post-bloomcommunity of diatoms, consisting mainly of representatives ofChaetoceros, Leptocylindrus, Nitzschia and Thalassiosira, waspredominant. Concentrations of phosphate were quite low (maximum0.55 µM I–1). Nitrate and silicate ranged from nomeasurable quantities to 5.7 µM l–1 and 3.8 µMl–1, respectively. The possibility of light and nutrientlimitation on phytoplankton growth is discussed.  相似文献   

17.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

18.
Published data on the biomass and specific respiration ratesof mesozooplankton in the oceans across all latitudes were combinedto assess their community respiration on a global basis. Mesozooplanktonbiomass was higher in boreal/anti-boreal and polar waters, intermediatein equatorial waters and lowest in the subtropical gyres. Specificrespiration rates were the highest in equatorial waters anddecreased rapidly poleward. Global community respiration ofmesozooplankton in the upper 200 m of the oceans integratedover all latitudes was 10.4 ± 3.7 (SE) Gt C year–1(n = 838). Below the epipelagic zone, mesozooplankton respirationliving in the mesopelagic (200–1000 m) and bathypelagic(below 1000 m) zones was estimated as 2.2 ± 0.4 (n =57) and 0.40 ± 0.2 (n = 12) Gt C year–1, respectively.Thus, global depth-integrated mesozooplankton respiration was13.0 ± 4.2 Gt C year–1 (17–32% of globalprimary production), which is 3–8-fold higher than thevalues assigned to mesozooplankton respiration in recent estimatesof total respiration in the ocean. Thus, it appears that mesozooplanktonrepresent a major, but neglected component of the carbon cyclein the ocean.  相似文献   

19.
Production of Penilia avirostris in Kingston Harbour, Jamaica   总被引:2,自引:0,他引:2  
The cladoceran Penilia avirostris is one of the more abundantand widespread members of the crustacean zooplankton in nearshoretropical and subtropical waters. Its abundance, biomass, fecundity,development rate and production were estimated in Kingston Harbour,Jamaica, during an 18 month period. Mean annual abundance ofPenilia was 1821 m–3, while biomass (excluding eggs/embryos)was 2.87 mg ash-free dry-weight (AFDW) m–3 (43.1 mg AFDWm–2), accounting for 13% of the copepod community biomass.Fecundity increased with body size. There was no clear seasonalpattern of abundance, size or fecundity, nor were physical orbiological variables correlated to these variations. Developmenttime averaged 20.5 h for juveniles and 41.4 h for adult femalesduring incubations; there was no clear evidence of a diel patternto molting. Growth rate appeared to be exponential, with correspondingsomatic growth rates, averaging 0.27 day–1 for juveniles,and 0.34 day–1 for somatic plus reproductive growth inadult females. Annual production was estimated as 173 kJ m–2year–1,  相似文献   

20.
Seasonal and vertical fluctuations of zooplankton species composition,biomass, and production were monitored by weekly sampling duringa two year period in one eutrophic pond in Central Finland.The study was one part of a more comprehensive study programto investigate the effects of warm water effluents from onesmall thermal power plant (35 MW) on the pond ecosystem. Becauseof the circulation of the pond water through the pumps in thepower plant the crustacean populations were very sparse in planktonduring the seasons the power plant was in operation (late Augustto May). During that time rotifers were dominant and some speciesreached very high densities (e.g., Keratella cochlearis s.l.ca. 15 000 ind. l–1 in sping). In summer months Asplanchnapriodonta, Ceriodaphnia quadrangula, Bosmina longirostris, Mesocyclopsleuckarti and Thermocyclops oithonoides were dominant. A totalof 96 planktonic and meroplanktonic taxa were identified (26ciliates, 46 rotifers, 21 cladocerans and 3 copepods). The dryweight biomass of total zooplankton was 10 mg m–3 in wintermonths, 10–100 mg m–3 in spring and 300–1000mg m–3 in summer. The total yearly production of zooplanktonwas 8552 mg dry wt m–3 a–1 in 1979 and 8440 mg drywt m–3 a–1 in 1980, from which the proportion ofrotifers was 33–39%, cladocerans 52–58% and copepods8.6 –9.4%. The winter production was 0.2–0.5% ofthe total yearly production, that of spring and autumn togetherwas 8.1–10.4% and the remainder (89–91%) was summerproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号