首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The capacity of various ATPase preparations from beef heart mitochondria to catalyze exchange of phosphate oxygens with water has been evaluated. Oligomycin-sensitive ATPase preparations retain a capacity for considerable intermediate Pi equilibrium HOH exchange per Pi formed during ATP hydrolysis at relatively high ATP concentration (5 mM). Submitochondrial particles prepared by an ammonia-Sephadex procedure with 5 mM ATP showed more rapid ATPase, less oligomycin sensitivity, and less capacity for intermediate exchange. With these particles, intermediate Pi equilibrium HOH exchange per Pi formed was increased as ATP concentration was decreased. The purified, soluble ATPase from mitochondria catalyzed little or no intermediate Pi equilibrium HOH exchange at 5 mM ATP but showed pronounced increase in capacity for such exchange as ATP concentration was lowered. The ATPase also showed a weak catalysis of an ADP-stimulated medium Pi equilibrium HOH exchange. The results support the alternating catalytic site model for ATP synthesis or cleavage. They also demonstrate that a transmembrane protonmotive force is not necessary for oxygen exchange reactions. At lower ATP concentrations, ADP and Pi formed at a catalytic site appear to remain bound and continue to allow exchange of Pi oxygens until ATP binds at another site on the enzyme.  相似文献   

2.
Recent results suggest consideration of a new concept for oxidative phosphorylation in which a prime function of energy is to bring about release of ATP formed at the catalytic site by reversal of hydrolysis. Data with submitochondrial particles include properties of an uncoupler insensitive Pi=HOH exchange, a rapid reversible formation of bound ATP in presence of uncouplers, and predictable patterns of 32-Pi incorporation into ATP in rapid mixing experiments. ADP is confirmed as the primary Pi acceptor in mitochondrial ATP synthesis, but with chloroplasts ADP is also rapidly labeled. Other findings with pyrophosphatase and with transport ATPase harmonize with the new concept. Measurements of the reversal of ATP cleavage and binding by myosin suggest that oxygen exchanges result from reversible cleavage of ATP to ADP and Pi at the catalytic site and that the principal free energy change in ATP cleavage occurs in ATP binding. Reversal of conformational changes accompanying ATP binding and cleavage is proposed to drive the actin filament in contraction. Thus energy transductions linked to ATP in both mitochondria and muscle may occur primarily through protein conformational change.  相似文献   

3.
R L Cross  P D Boyer 《Biochemistry》1975,14(2):392-398
Evidence is presented that extends and amplifies the concept that in oxidative phosphorylation energy input serves to bring about release of ATP formed at a catalytic site by reversal of hydrolysis. The evidence with beef heart submitochondrial particles includes additional demonstration of uncoupler insensitive Pi leads to HOH exhchange, demonstration that this exchange is sensitive to the specific phosphorylation inhibitor, oligomycin, and demonstration that the small burst of uncoupler-insensitive ATP, rapidly labeled after addition of a tracer of 32Pi, behaves in a manner consistent with its participation as a membrane-bound intermediate in the Pi leads to HOH exchange. In addition, data are presented showing that addition of hexokinase plus glucose to submitochondrial particles in presence of ADP and Pi considerably lowers the Pi leads to HOH exchange but that further addition of cyanide or 2,4-dinitrophenol or both has little additional effect. Such data are compatible with no energy requirement for formation of bound ATP. However, with a large excess of hexokinase, the rate of the Pi leads to HOH exchange is further depressed. This could reflect some use of energy to promote formation of ATP at the catalytic site or to maintain the integrity of the phosphorylation system. Relationships of these findings to related information in the field are discussed.  相似文献   

4.
The ATP synthase from Escherichia coli was reconstituted into liposomes from phosphatidylcholine/phosphatidic acid. The proteoliposomes were energized by an acid-base transition and a K(+)/valinomycin diffusion potential, and one second after energization, the electrochemical proton gradient was dissipated by uncouplers, and the ATP hydrolysis measurement was started. In the presence of ADP and P(i), the initial rate of ATP hydrolysis was up to 9-fold higher with pre-energized proteoliposomes than with proteoliposomes that had not seen an electrochemical proton gradient. After dissipating the electrochemical proton gradient, the high rate of ATP hydrolysis decayed to the rate without pre-energization within about 15 s. During this decay the enzyme carried out approximately 100 turnovers. In the absence of ADP and P(i), the rate of ATP hydrolysis was already high and could not be significantly increased by pre-energization. It is concluded that ATP hydrolysis is inhibited when ADP and P(i) are bound to the enzyme and that a high Delta mu(H(+)) is required to release ADP and P(i) and to convert the enzyme into a high activity state. This high activity state is metastable and decays slowly when Delta mu(H(+)) is abolished. Thus, the proton motive force does not only supply energy for ATP synthesis but also regulates the fraction of active enzymes.  相似文献   

5.
Under steady state photophosphorylating conditions, each ATP synthase complex from spinach thylakoids contains, at a catalytic site, about one tightly bound ATP molecule that is rapidly labeled from medium 32Pi. The level of this bound [32P]ATP is markedly reduced upon de-energization of the spinach thylakoids. The reduction is biphasic, a rapid phase in which the [32P] ATP/synthase complex drops about 2-fold within 10 s, followed by a slow phase, kobs = 0.01/min. A decrease in the concentration of medium 32Pi to well below its apparent Km for photophosphorylation is required to decrease the amount of tightly bound ATP/synthase found just after de-energization and before the rapid phase of bound ATP disappearance. The [32P]ATP that remains bound after the rapid phase appears to be mostly at a catalytic site as demonstrated by a continued exchange of the oxygens of the bound ATP with water oxygens. This bound [32P]ATP does not exchange with medium Pi and is not removed by the presence of unlabeled ATP. The levels of tightly bound ADP and ATP arising from medium ADP were measured by a novel method based on use of [beta-32P]ADP. After photophosphorylation and within minutes after the rapid phase of bound ATP loss, the measured ratio of bound ADP to ATP was about 1.4 and the sum of bound ADP plus ATP was about 1/synthase. This ratio is smaller than that found about 1 h after de-energization. Hence, while ATP bound at catalytic sites disappears, bound ADP appears. The results suggest that during and after de-energization the bound ATP disappears from the catalytic site by hydrolysis to bound ADP and Pi with subsequent preferential release of Pi. These and related observations can be accommodated by the binding change mechanism for ATP synthase with participation of alternating catalytic sites and are consistent with a deactivated state arising from occupancy of one catalytic site on the synthase complex by an inhibitory ADP without presence of Pi.  相似文献   

6.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

7.
Bicarbonate, an activating anion of ATP hydrolysis, inhibited ATP synthesis coupled to succinate oxidation in beef heart submitochondrial particles but diminished the lag time and increased the steady-state velocity of the (32)Pi-ATP exchange reaction. The latter effects exclude the possibility that bicarbonate is inducing an intrinsic uncoupling between ATP hydrolysis and proton translocation at the level of F(1)F(o) ATPase. The inhibition of ATP synthesis was competitive with respect to ADP at low fixed [Pi], mixed at high [Pi] and non-competitive towards Pi at any fixed [ADP]. From these results we can conclude that (i) bicarbonate does not bind to a Pi site in the mitochondrial F(1); (ii) it competes with the binding of ADP to a low-affinity site, likely the low-affinity non-catalytic nucleotide binding site. It is postulated that bicarbonate stimulates ATP hydrolysis and inhibits ATP synthesis by modulating the relative affinities of the catalytic site for ATP and ADP.  相似文献   

8.
Zharova TV  Vinogradov AD 《Biochemistry》2006,45(48):14552-14558
The presence of medium Pi (half-maximal concentration of 20 microM at pH 8.0) was found to be required for the prevention of the rapid decline in the rate of proton-motive force (pmf)-induced ATP hydrolysis by Fo.F1 ATP synthase in coupled vesicles derived from Paracoccus denitrificans. The initial rate of the reaction was independent of Pi. The apparent affinity of Pi for its "ATPase-protecting" site was strongly decreased with partial uncoupling of the vesicles. Pi did not reactivate ATPase when added after complete time-dependent deactivation during the enzyme turnover. Arsenate and sulfate, which was shown to compete with Pi when Fo.F1 catalyzed oxidative phosphorylation, substituted for Pi as the protectors of ATPase against the turnover-dependent deactivation. Under conditions where the enzyme turnover was not permitted (no ATP was present), Pi was not required for the pmf-induced activation of ATPase, whereas the presence of medium Pi (or sulfate) delayed the spontaneous deactivation of the enzyme which was induced by the membrane de-energization. The data are interpreted to suggest that coupled and uncoupled ATP hydrolysis catalyzed by Fo.F1 ATP synthases proceeds via different intermediates. Pi dissociates after ADP if the coupling membrane is energized (no E.ADP intermediate exists). Pi dissociates before ADP during uncoupled ATP hydrolysis, leaving the E.ADP intermediate which is transformed into the inactive ADP(Mg2+)-inhibited form of the enzyme (latent ATPase).  相似文献   

9.
The regulation of the membrane-bound H(+)-ATPase from the photosynthetic bacterium Rhodobacter capsulatus was investigated. In the presence of uncouplers the rate of ATP hydrolysis was about 40 mM ATP/M bacteriochlorophyll (Bchl)/s. Without uncouplers this rate increased and if, additionally, the chromatophores were illuminated, it was almost doubled. If uncouplers were added shortly after illumination, the rate increased to 300-350 mM ATP/M Bchl/s. Obviously, energization of the membrane leads to the formation of a metastable, active state of the H(+)-ATPase. The maximal rate of ATP hydrolysis can be measured only when first all H(+)-ATPases are activated by delta mu H+ and when the delta mu H+ is abolished in order to release its back pressure on the hydrolysis rate. The half-life time of the metastable state in the absence of delta mu H+ is about 30 s. It is increased by 3 mM Pi to about 80 s and it is decreased by 1 mM ADP to about 15 s. Quantitatively, the fraction of active H(+)-ATPases shows a sigmoidal dependence on pHin (at constant pHout) and the magnitude of delta psi determines the maximal fraction of enzymes which can be activated: delta pH and delta psi are not equivalent for the activation process.  相似文献   

10.
Inactivation of the isolated ATPase portion of ATP synthase from beef-heart mitochondria (F1) by its natural inhibitor protein (IP) during steady-state ATP hydrolysis is accompanied by a trapping of 1 mol nucleotide/mol F1 in one of the catalytic sites. The trapped nucleotide is not released during incubation of IP-inhibited F1 in the presence of MgATP at pH 8.0 for at least 20 min, indicating a very low turnover rate of the IP.F1 complex. The ATP/ADP ratio of the trapped nucleotides is higher than that found for transitorily bound nucleotides under the same conditions but in the absence of IP. The IP impairs the acceleration of ATP hydrolysis and product release steps that results from the binding of ATP to an alternate catalytic site. It also inhibits ATP hydrolysis by a single catalytic site or shifts the equilibrium toward ATP formation from bound ADP and Pi. At high pH, an active acidic form of the free IP is transformed to the inactive basic one with a half-time of 3-4 s. This process seems to be prevented by IP binding to F1. The inactive basic form of IP does not compete with the active acidic IP for the binding to F1. The data do not favor the existence of a long-lived catalytically active IP.F1 intermediate during IP action on F1. The reactivation of IP-inhibited membrane-bound F1 by energization may be due to a conformational change in the IP.F1 complex allowing the transformation of IP into an inactive basic state that rapidly dissociates.  相似文献   

11.
A Labahn  P Gr?ber 《FEBS letters》1992,313(2):177-180
The H(+)-ATPase from chloroplasts CFoF1, was brought into the active, reduced state by illumination of thylakoids in the presence of thioredoxin and dithiothreitol. Uni-site ATP synthesis was initiated by the addition of 20 nM [alpha-32P]ADP, and enzyme-bound and free nucleotides were separated by a pressure column. The ratio of enzyme-bound ADP to ATP was 0.55 +/- 0.05. In a second experiment, uni-site ATP hydrolysis under energized conditions was initiated by the addition of 36 nM [alpha-32P]ATP; enzyme-bound and free nucleotides were separated by a pressure column. Both procedures were carried out under continuous illumination. The ratio of enzyme-bound ADP to ATP was 0.46 +/- 0.04. In a third experiment, uni-site ATP hydrolysis under de-energized conditions was initiated by the addition of 39 nM [alpha-32P]ATP and NH4Cl/valinomycin in the absence of illumination. Free and enzyme-bound nucleotides were separated also by a pressure column. The ratio of enzyme-bound ADP to ATP was 0.43 +/- 0.02. This ratio was always the same irrespective of whether the reaction runs in the synthesis or the hydrolysis direction. Furthermore, the ratio does not depend on the membrane energization. We conclude, therefore, that the protons are not directly involved in the reaction at the catalytic site.  相似文献   

12.
On the soluble part of the coupling factor (CF1), extracted from spinach chloroplasts, three nucleotide-binding sites are identified. Three ADP are bound per CF1 when the enzyme is incubated with ADP either with or without Mg2+. Two ADP and one ATP are bound per CF1 when the enzyme is incubated with a limiting concentration of ATP, in the presence of Mg2+. At high ATP concentration, in the presence of Mg2+, one free ATP exchanges with one bound ADP and two ATP and one ADP remain bound per CF1. When Mg2+ is omitted from the incubation medium of ATP and CF1, only two ADP and around 0.5 ATP are bound per CF1. The three nucleotide binding sites of CF1 fall into two different and independent categories according to the ability of the bound nucleotides to be exchanged with free nucleotides. On one site the bound ADP is difficult to exchange. On the other two sites, the bound nucleotides. ADP or ATP, are readily exchangable. We propose that the two exchangeable sites form the catalytic part of the enzyme where ATP is hydrolyzed. When ATP concentration is high enough, in the presence of Mg2+, one ATP displaces one bound ADP and allows the ATP hydrolysis to proceed. We propose too that the site where ADP is difficult to exchange may represent the 'tight' ADP-binding site, different from the catalytic ones, which becomes exchangeable on the CF1 in vivo when the thylakoid membranes are energized by light, as stressed by Bickel-Sandk?tter and Strotman [(1976) FEBS Lett. 65, 102-106].  相似文献   

13.
The relation between the intramitochondrial and extramitochondrial ratio ATP/ADP, the transmembrane potential and pH gradient is investigated in the present communication. For this purpose mitochondria are equilibrated with added [14C]ATP in the presence of substrate and oligomycin for eliminating phosphate transfer by ATPase. The membrane potential was measured by the distribution of 86Rb+ in the presence of valinomycin, the deltapH by the distribution of [14C]acetate. In the energized state by varying deltapsi between 60 and 160 mV, the internal (ATP/ADP)i is decreased 30-fold, the external (ATP/ADP)e remains largely constant. As a result, the deltalog (ATP/ADP)e/(ATP/ADP)i = deltalogphi is increased linerly with deltapsi according to the following relation: deltalogphi = 0.85 deltapsi - 0.35. The deltapH was changed between 0.1 and 0.8 by increasing the Pi concentration causing only a minor decrease of deltalogphi would be expected if the ATP-ADP exchange has a significant electroneutral portion. Also in the uncoupled and respiration-inhibited state the same function between deltalogphi and deltapsi is found as in the energized states. It is concluded that under these conditions the ATP-ADP exchange is largely electrical.  相似文献   

14.
Addition of dimethyl sulfoxide promotes the formation of enzyme-bound ATP from medium Pi by mitochondrial F1 adenosinetriphosphatase that has tightly bound ADP present. Measurements are reported of medium Pi in equilibrium H18OH exchange and of the dependence of formation of enzyme-bound ATP on Pi concentration. Attainment of an apparent equilibrium between medium Pi and bound ATP requires longer than 30 min, even though the rates of Pi binding and release after apparent equilibrium is reached would suffice for a faster approach to equilibrium. Slow protein conformational changes or other unknown modulating factors may be responsible for the slow rate of bound ATP formation. After apparent equilibrium is reached, each Pi that binds to the enzyme reversibly forms ATP about 50 times before being released to the medium. The rate of interconversion of bound ATP to bound ADP and Pi is much slower than that in the absence of dimethyl sulfoxide as measured with sufficiently low ATP concentrations so that single-site catalysis is favored. Although the interconversion rate is slowed, the equilibrium constant for bound ATP formation from bound ADP and Pi is not far from unity. Dimethyl sulfoxide favors the formation of enzyme-bound ATP by promoting the competent binding of Pi to enzyme with ADP bound at a catalytic site rather than by promoting formation of bound ATP from bound ADP and Pi.  相似文献   

15.
During net nucleoside triphosphate synthesis by chloroplast ATP synthase the extent of water oxygen incorporation into each nucleoside triphosphate released increases with decrease in ADP, GDP or IDP concentration. Likewise, during net ATP hydrolysis by the Mg2+-activated chloroplast ATPase, the extent of water oxygen incorporation into each Pi released increases as the ATP, GTP, or ITP concentration is decreased. However, the concentration ranges in which substrate modulation occurs differs with each nucleotide. Modulation of oxygen exchange during synthesis and hydrolysis of adenine nucleotides, as measured by variation in the extent of water oxygen incorporation into products, occurs below 250 microM. In contrast, guanosine and inosine nucleotides alter the extent of exchange at higher and much wider concentration ranges. Activation of the chloroplast ATPase by either heat or trypsin results in similar catalytic behavior as monitored by ATP modulation of oxygen exchanges during hydrolysis in the presence of Mg2+. More exchange capacity is evident with octylglucoside-activated enzyme at all ATP concentrations. High levels of tentoxin were also found to alter the catalytic exchange parameters resulting in continued water oxygen exchange into Pi released during hydrolysis at high ATP concentrations. Little or no oxygen exchange accompanies ATP hydrolysis in the presence of Ca2+. The [18O]Pi species formed from highly gamma-18O-labeled ATP at lower ATP concentrations gives a distribution as expected if only one catalytic pathway is operative at a given ATP concentration. This and other results support the concept of catalytic cooperativity between alternating sites as explanation for the modulation of oxygen exchange by nucleotide concentration.  相似文献   

16.
The oxygen exchange parameters for the hydrolysis of ATP by the F1-ATPase have been determined over a 140,000-fold range of ATP concentrations and a 5,000-fold range of reaction velocity. The average number of water oxygens incorporated into each Pi product ranges from a limit of about 1.02 at saturating ATP concentrations to a limit of about 3.97 at very low ATP concentrations. The latter value represents 400 reversals of hydrolysis of bound ATP prior to Pi dissociation. In accord with the binding change mechanism, this means that ATP binding at one catalytic site increases the off constant of Pi and ADP from another catalytic site by at least 20,000-fold, equivalent to the use of 6 kcal mol-1 of ATP binding energy to promote product release. The estimated rate of reversal of hydrolysis of F1-ATPase-bound ATP to bound ADP + Pi varies only about 5-fold with ATP concentration. The rate is similar that observed previously for reversal of bound ATP hydrolysis or synthesis with the membrane-bound enzyme and is greater than the rate of net ATP formation during oxidative phosphorylation. This adds to evidence that energy input or membrane components are not required for bound ATP synthesis.  相似文献   

17.
ABC transporters are a superfamily of enzyme pumps that hydrolyse ATP in exchange for translocation of substrates across cellular membranes. Architecturally, ABC transporters are a dimer of transmembrane domains coupled to a dimer of nucleotide binding domains (NBDs): the NBD dimer contains two ATP-binding sites at the intersubunit interface. A current controversy is whether the protomers of the NBD dimer separate during ATP hydrolysis cycling, or remain in constant contact. In order to investigate the ABC ATPase catalytic mechanism, MD simulations using the recent structure of the ADP+Pi-bound MJ0796 isolated NBD dimer were performed. In three independent simulations of the ADP+Pi/apo state, comprising a total of >0.5 µs, significant opening of the apo (empty) active site was observed; occurring by way of intrasubunit rotations between the core and helical subdomains within both NBD monomers. In contrast, in three equivalent simulations of the ATP/apo state, the NBD dimer remained close to the crystal structure, and no opening of either active site occurred. The results thus showed allosteric coupling between the active sites, mediated by intrasubunit conformational changes. Opening of the apo site is exquisitely tuned to the nature of the ligand, and thus to the stage of the reaction cycle, in the opposite site. In addition to this, in also showing how one active site can open, sufficient to bind nucleotide, while the opposite site remains occluded and bound to the hydrolysis products ADP+Pi, the results are consistent with a Constant Contact Model. Conversely, they show how there may be no requirement for the NBD protomers to separate to complete the catalytic cycle.  相似文献   

18.
Oxygen exchange between (18O4)Pi in the medium and water accompanies ATP hydrolysis catalyzed by the calcium-regulated MgATPase of vertebrate skeletal muscle. Exchange was observed in chemically skinned fibers from rabbit psoas muscle held isometrically and activated by 30 microM free Ca2+. The rate of exchange was approximately proportional to Pi concentration (up to 10 mM) and was characterized by an apparent second order rate constant greater than or equal to 475 M-1 S-1 (pH 7.1, ionic strength 0.2 M, 22 degrees C). Much less exchange occurred in the absence of Ca2+ or when ATP was replaced by ADP. It has been inferred from mechanical experiments that Pi can bind to a force-generating ADP-bound state of actomyosin with resultant suppression of force (Hibberd, M. G., Dantzig, J. A., Trentham, D. R., and Goldman, Y. E. (1985) Science 228, 1317-1319). The oxygen exchange results support this inference by providing direct evidence that Pi in the medium binds at the ATPase catalytic site in activated isometric fibers. The inter-relationship of these two effects involving Pi on mechanochemical coupling in muscle is discussed.  相似文献   

19.
Oligomycin-sensitive ATPase activity was studied in isolated yeast mitochondria. The protonophore CCCP, at a concentration which completely inhibited ATP synthesis, induced only a low rate of hydrolysis of externally added ATP, and the extent of hydrolysis was dependent upon phosphate (Pi) concentration. CCCP promoted hydrolysis of intramitochondrial ATP. However, hydrolysis of externally added ATP was total in a medium containing potassium phosphate plus valinomycin. Without ionophores, ATPase activity was only observed at high external pH or with detergent-treated mitochondria. Under state 4 conditions, external ATP had access to the catalytic nucleotide site of ATPase as shown by 32Pi-ATP exchange experiments. These results are discussed in terms of a limitation of the translocase-mediated ATP/ADP exchange in uncoupled mitochondria.  相似文献   

20.
We have investigated here the pre-steady state kinetics of sarcoplasmic reticulum ATPase incubated under conditions where significant amounts of Mg.ATP and Ca.ATP coexist, both of them being substrates for the ATPase. We confirmed that these two substrates are independently hydrolyzed by the ATPase, which thus apparently catalyzes Pi production by two simultaneous and separate pathways. External calcium (or the Ca2+/Mg2+ ratio) determines the extent to which Ca2+ or Mg2+ is bound at the phosphorylation site, while internal calcium controls the rate of processing of both the slow, calcium-containing and the fast, magnesium-containing phosphoenzyme. Time-dependent binding of calcium at the catalytic site is correlated with the observed burst of Pi liberation, which therefore results from reequilibration during pre-steady state of magnesium- and calcium-containing phosphoenzyme pools. Independently of direct exchange of metal at the catalytic site, ADP produced by the hydrolysis reaction contributes to reequilibration of these pools through reversal of phosphorylation by the ATP-ADP exchange pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号