首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of tyrosinase is an established strategy for treating hyperpigmentation. Our previous findings demonstrated that cinnamic acid and benzoic acid scaffolds can be effective tyrosinase inhibitors with low toxicity. The hydroxyl substituted benzoic and cinnamic acid moieties of these precursors were incorporated into new chemotypes that displayed in vitro inhibitory effect against mushroom tyrosinase. The most active compound, (2-(3-methoxyphenoxy)-2-oxoethyl (E)-3-(4-hydroxyphenyl) acrylate) 6c, inhibited tyrosinase with an IC50 of 5.7 µM, while (2-(3-methoxyphenoxy)-2-oxoethyl 2, 4-dihydroxybenzoate) 4d had an IC50 of 23.8 µM. In comparison, the positive control, kojic acid showed tyrosinase inhibition with an IC50 = 16.7 µM. Analysis of enzyme kinetics revealed that 6c and 4d displayed noncompetitive reversible inhibition of the second tyrosinase enzymatic reaction with Ki values of 11 µM and 130 µM respectively. In silico docking studies with mushroom tyrosinase (PDB ID 2Y9X) predicted possible binding modes in the catalytic site for these active compounds. The phenolic para-hydroxy group of the most active compound 6c is predicted to interact with the catalytic site Cu++ ion. The methoxy part of this compound is predicted to form a hydrogen bond with Arg 268. Compound 6c had no observable toxic effects on cell morphology or cell viability at the highest tested concentration of 91.4 µM. When dosed at 91.4 µM onto B16F10 melanoma cells in vitro 6c showed anti-melanogenic effects equivalent to kojic acid at 880 µM. 6c displayed no PAINS (pan-assay interference compounds) alerts. Our results show that compound 6c is a more potent tyrosinase inhibitor than kojic acid and is a candidate for further development. Our exposition of the details of the interactions between 6c and the catalytic pocket of tyrosinase provides a basis for rational design of additional potent inhibitors of tyrosinase, built on the cinnamic acid scaffold.  相似文献   

2.
Rabbit brain purine nucleoside phosphorylase used in this study was purified 6000-fold to apparent homogeneity and a specific activity or 50 μmol min?1 mg ?1 protein. A molecular weight of 70.000 daltons was determined for the native enzyme by gel filtration on Sephadex. Electrophoresis on polyacrylamide gel, in presence of sodium dodecyl sulfate, gave a subunit molecular weight of 34,500 daltons, suggesting that the enzyme is dimeric with, probably, identical subunits. The relationship of the structure of certain biologically active substances to their inhibitory action on the enzyme was examined. Folic acid and the compound d,l-6-methyl 5,6,7,8-tetrahydropterine, with similar substituents on their primary ring structure, were competitive inhibitors of the enzyme. The inhibition constants calculated were 3.37 × 10?5M for folic acid and 3.80 × 10?5m for d,l-6-methyl 5,6,7,8-tetrahydropterine. Aminopterin and the purine analog 8-aza-2,6-diaminopurine, with similar substituents on their primary ring structure, were noncompetitive inhibitors of the enzyme. Their respective inhibition constants were 1.50 × 10?4 and 1.95 × 10?4m. Erythro-9-(2-hydroxy-3-nonyl) adenine, an adenosine deaminase inhibitor, was also examined for inhibitory potency with mammalian purine nucleoside phosphorylase, and was observed to be a competitive inhibitor of this enzyme, with an inhibition constant of 1.90 × 10?4m. The Michaelis constant for the substrate guanosine was near 6.0 × 10?5m. Physical probe of the nature of the functional groups which participate in enzymic catalysis implicated both histidine and cysteine as the essential catalytic species. Photooxidation studies suggested a pH-dependent sensitivity of an essential catalytic group, and its probable location at the active site.  相似文献   

3.
A series of 5-imino-4-thioxo-2-imidazolidinone derivatives with different substituents at N1 and N3 was synthesized with high yield and excellent purity by the reaction of different N-arylcyanothioformamide derivatives with isocyanate derivatives. Treatment 5-imino-4-thioxo-2-imidazolidinone derivatives with acidic medium afforded 4-thioxoimidazolidin-2,5-dione derivatives. The structures of the obtained products were established based on spectroscopic IR, 1H NMR, 13C NMR, 1H, 1H-COSY, HSQC and elemental analyses. The anti-inflammatory activity of the synthesized compounds through the carrageenan-paw edema model as well as in vitro COX-1 and COX-2 inhibition assay were evaluated where most of the synthesized compounds showed significant anti-inflammatory activity. Mostly, all of our synthesized compounds have greater activity more than celecoxib toward both cyclooxygenase enzymes. All of the tested compounds (except one compound) exhibited IC50 valves for COX-2 ranged from 0.001 × 10−3 to 0.827 × 10−3 µM while the reference drug has IC50 40.0 × 10−3 µM. Furthermore, the analgesic activity of such compounds was also determined. Molecular modeling study was also conducted to rationalize the potential as anti-inflammatory agents of our synthesized compounds by predicting their binding modes, binding affinities and optimal orientation at the active site of the COX enzymes.  相似文献   

4.
Abnormal melanogenesis results in excessive production of melanin, leading to pigmentation disorders. As a key and rate-limiting enzyme for melanogenesis, tyrosinase has been considered an important target for developing therapeutic agents of pigment disorders. Despite having an (E)-β-phenyl-α,β-unsaturated carbonyl scaffold, which plays an important role in the potent inhibition of tyrosinase activity, cinnamic acids have not attracted attention as potential tyrosinase inhibitors, due to their low tyrosinase inhibitory activity and relatively high hydrophilicity. Given that cinnamic acids’ structure intrinsically features this (E)-scaffold and following our experience that minute changes in the chemical structure can powerfully affect tyrosinase activity, twenty less hydrophilic cinnamamide derivatives were designed as potential tyrosinase inhibitors and synthesised using a Horner-Wadsworth-Emmons reaction. Four of these cinnmamides (4, 9, 14, and 19) exhibited much stronger mushroom tyrosinase inhibition (over 90% inhibition) at 25 µM compared to kojic acid (20.57% inhibition); crucially, all four have a 2,4-dihydroxy group on the β-phenyl ring of the scaffold. A docking simulation using tyrosinase indicated that the four cinnamamides exceeded the binding affinity of kojic acid, and bound more strongly to the active site of tyrosinase. Based on the strength of their tyrosinase inhibition, these four cinnamamides were further evaluated in B16F10 melanoma cells. All four cinnamamides, without cytotoxicity, exhibited higher tyrosinase inhibitory activity (67.33 – 79.67% inhibition) at 25 μM than kojic acid (38.11% inhibition), with the following increasing inhibitory order: morpholino (9) = cyclopentylamino (14) < cyclohexylamino (19) < N-methylpiperazino (4) cinnamamides. Analysis of tyrosinase activity and melanin content in B16F10 cells showed that the four cinnamamides dose-dependently inhibited both cellular tyrosinase activity and melanin content and that their inhibitory activity at 25 μM was much better than that of kojic acid. The results of melanin content analysis well matched those of the cellular tyrosinase activity analysis, indicating that tyrosinase inhibition by the four cinnamamides is a major factor in the reduction of melanin production. These results imply that these four cinnamamides with a 2,4-dihydroxyphenyl group can act as excellent anti-melanogenic agents in the treatment of pigmentation disorders.  相似文献   

5.
An enzymatic oxidation of kojic acid to comenic aldehyde was found in the decomposition process of kojic acid by Arthrobacter ureafaciens strain (K-l), a kojic acid decomposing bacteria.

This enzyme was (probable a new type of non-heme iron protein) is assumed to catalyze the dehydrogenation of kojic acid, while the ferric ion contained in the enzyme is considered to serve as an acceptor of hydrogen released from kojic acid. The resulted ferrous ions are oxidized either by molecular oxygen under aerobic conditions or by NAD under anaerobic conditions, accompanying hydrogen peroxide in the former and reduced NAD in the latter. The enzyme was partially purified by using ammonium sulfate precipitation, gel filtration on Sephadex G-200 column and column chromatography with DEAE-Sephadex A-50. The activity increased to 85 fold, compared with crude extracts and the recovery of the activity was 33.9%. The optimum pH of the reaction was 7.75. The enzyme was inactivated by PCMB, and unstable upon heat treatment. A loss of about 50% of the activity was caused by heating at 35%C for 5 min, but some reducing agents protected the enzyme from PCMB inhibition and the heat inactivation. Not only kojic acid, but also benzyl kojic acid or 5-methoxy kojic acid may be substrates. Km value for kojic acid was 1.43 × 10?5m. The molecular weight of the enzyme was estimated to be about 55,000 and the enzyme contained about two atoms of iron in one molecule. The reaction mechanism for kojic acid oxidase is discussed.  相似文献   

6.
Tyrosinase inhibitors have become increasingly important as whitening agents and for the treatment of pigmentary disorders. In this study, the synthesis of kojic acid derivatives having 2-substituted-3-hydroxy-6-hyroxymethyl/chloromethyl/methyl/morpholinomethylpiperidinyl- methyl/pyrrolidinylmethyl-4H-pyran-4-one structure (compounds 130) with inhibitory effects on tyrosinase enzyme were described. One-pot Mannich reaction was carried out by using kojic acid/chlorokojic acid/allomaltol and substituted benzylpiperazine derivatives in presence of formaline. Subsequently, cyclic amine (morpholine, piperidine and pyrrolidine) derivatives of the 6th-position of chlorokojic acid were obtained with nucleophilic substitutions in basic medium. The structures of new compounds were identified by FT-IR, 1H- and 13C NMR, ESI-MS and elemental analysis data. The potential mushroom tyrosinase inhibitory activity of the compounds were evaluated by the spectrophotometric method using l-DOPA as a substrate and kojic acid as the control agent. The potential inhibitory activity was also investigated in silico using molecular docking simulation method. Tyrosinase inhibitory action was significantly more efficacious for several compounds (IC50: 86.2–362.1 µM) than kojic acid (IC50: 418.2). Compound 3 bearing 3,4-dichlorobenzyl piperazine moiety was proven to have the highest inhibitory activity. The results of docking studies showed that according to the predicted conformation of compound 3 in the enzyme binding site, hydroxymethyl group provides a metal complex with copper ions and enzyme. Thus, this interaction explain the high inhibitory activities of the compounds 1, 3 and 4 possessing hydroxymethyl substituent supporting the mushroom assay results with docking studies. In accordance with the results, it is suggested that Mannich bases of kojic acid bearing substituted benzyl piperazine groups (compounds 1, 3, 4, 11, 13, 14, 23, 24, 28, and 29) could be promising antityrosinase agents. Additionally, considering the relationship between tyrosinase inhibitory activity results and molecular docking, a new tyrosinase inhibition mechanism can be proposed.  相似文献   

7.
Thirteen (Z)-4-(substituted benzylidene)-3-phenylisoxazol-5(4H)-ones were designed to confirm the geometric effect of the double bond of the β-phenyl-α, β-unsaturated carbonyl scaffold on tyrosinase inhibitory activity. Compounds 1a1m, which all possessed the (Z)-β-phenyl-α, β-unsaturated carbonyl scaffold, were synthesized using a tandem reaction consisting of an isoxazolone ring formation and a Knoevenagel condensation, and three starting materials, ethyl benzoylacetate, hydroxylamine and benzaldehydes. Some of the compounds showed inhibitory activity against mushroom tyrosinase as potent as compounds containing the “(E)”-β-phenyl-α, β-unsaturated carbonyl scaffold. Compounds 1c and 1m showed greater inhibitory activity than kojic acid: IC50?=?32.08?±?2.25?μM for 1c; IC50?=?14.62?±?1.38?μM for 1m; and IC50?=?37.86?±?2.21?μM for kojic acid. A kinetic study indicated that 1m inhibited tyrosinase in a competitive manner and that it probably binds to the enzyme’s active site. In silico docking simulation supported binding of 1m (?7.6?kcal/mol) to the active site of tyrosinase with stronger affinity than kojic acid (?5.7?kcal/mol). Similar results were obtained using cell-based assays, and in B16F10 cells, compound 1m dose-dependently inhibited tyrosinase activity and melanogenesis. These results indicate the anti-melanogenic effect of compound 1m is due to the inhibition of tyrosinase and (Z)-isomer of the β-phenyl-α, β-unsaturated carbonyl scaffold can, like its congener the (E)-isomer, act as an excellent scaffold for tyrosinase inhibition.  相似文献   

8.
Tropolone inhibits both mono- and o-dihydroxyphenolase activity of mushroom tyrosinase. Most of the inhibition exerted by tropolone was reversed by dialysis or by excess CU2+. The data indicate that tropolone and o-dihydroxyphenols compete for binding to the copper at the active site of the enzyme. Comparison between the effectiveness of various copper chelators showed that tropolone is one of the most potent inhibitors of mushroom tyrosinase; 50% inhibition was observed with 0.4 × 10?6 M tropolone.  相似文献   

9.
Pigmentation disorders are attributed to excessive melanin which can be produced by tyrosinase. Therefore, tyrosinase is supposed to be a vital target for the treatment of disorders associated with overpigmentation. Based on our previous findings that an (E)-β-phenyl-α,β-unsaturated carbonyl scaffold can play a key role in the inhibition of tyrosinase activity, and the fact that cinnamic acid is a safe natural substance with a scaffolded structure, it was speculated that appropriate cinnamic acid derivatives may exhibit potent tyrosinase inhibitory activity. Thus, ten cinnamamides were designed, and synthesized by using a Horner-Emmons olefination as the key step. Cinnamamides 4 (93.72% inhibition), 9 (78.97% inhibition), and 10 (59.09% inhibition) with either a 2,4-dihydroxyphenyl, or 4-hydroxy-3-methoxyphenyl substituent showed much higher mushroom tyrosinase inhibition at 25?µM than kojic acid (18.81% inhibition), used as a positive control. Especially, the two cinnamamides 4 and 9 having a 2,4-dihydroxyphenyl group showed the strongest inhibition. Docking simulation with tyrosinase revealed that these three cinnamamides, 4, 9, and 10, bind to the active site of tyrosinase more strongly than kojic acid. Cell-based experiments carried out using B16F10 murine skin melanoma cells demonstrated that all three cinnamamides effectively inhibited cellular tyrosinase activity and melanin production in the cells without cytotoxicity. There was a close correlation between cellular tyrosinase activity and melanin content, indicating that the inhibitory effect of the three cinnamamides on melanin production is mainly attributed to their capability for cellular tyrosinase inhibition. These results imply that cinnamamides having the (E)-β-phenyl-α,β-unsaturated carbonyl scaffolds are promising candidates for skin-lighting agents.  相似文献   

10.
The activity of concentrated exsheathing fluid of Haemonchus contortus against isolated sheaths was not inhibited by ethylenediamine tetra-acetic acid (EDTA), 10?2 M, even when the concentrations of Mg and Mn were < 4 × 10?4 M and < 0·9 × 10?6 M respectively. Purified or diluted solutions of exsheathing fluid, even in the presence of Mg2+, 10?3 M, were inhibited. Leucine aminopeptidase (LAP) in exsheathing fluid was active even at concentrations of Mg < 1·3 × 10?5M. Concentrated solutions were partially inhibited by EDTA, 10?2 M, at low concentrations of Mg; inhibition was increased in diluted and purified preparations.1,10-phenanthroline (Ophen) strongly inhibited exsheathing activity (Zn < 1 × 10?6 M). When Zn2+, 10?3 M was added, the inhibition was abolished. The hydrolysis of l-leucinamide was greatly increased in the presence of Ophen, 10?4 M; this effect was abolished by adding Zn2+, 10?3 M.It is suggested that exsheathing fluid from at least some ‘strains’ of H. contortus contains a Zn metallo-enzyme, probably LAP, which is involved in the process of exsheathment.  相似文献   

11.
The interactions of chymotrypsin, subtilisin and trypsin with a low MW proteinase inhibitor from potatoes were investigated. The Ki value calculated for the binding of inhibitor to chymotrypsin was 1.6 ± 0.9 × 10?10M, while the second-order rate constant for association was 6 × 105 M?1/sec. Although binding was not observed to chymotrypsin which had been treated with diisopropyl fluorophosphate or with l-tosylamide-2-phenylethyl chloromethyl ketone, the 3-methylhistidine-57 derivative bound inhibitor with a Ki value of 9.6 × 10?9 M. The inhibitor also exhibited a tight association with subtilisin (Ki < 4 × 10?9 M). In contrast, little inhibition of trypsin was observed, and this was believed to be due to low levels of a contaminant in our preparations. No evidence for reactive site cleavage was observed after incubation of the inhibitor with catalytic amounts of chymotrypsin or subtilisin at acid pH.  相似文献   

12.
Targeting of tyrosinase has proven to be the best means of identifying safe, efficacious, and potent tyrosinase inhibitors for whitening skin. We designed and synthesized ten NAB (N-(acryloyl)benzamide) derivatives (1a–1j) using the Horner-Wadsworth-Emmons olefination of diethyl (2-benzamido-2-oxoethyl)phosphonate and appropriate benzaldehydes. A mushroom tyrosinase inhibitory assay showed compounds 1a (36.71 ± 2.14% inhibition) and 1j (25.99 ± 2.77% inhibition) inhibited tyrosinase more than the other eight NAB derivatives and kojic acid (21.56 ± 2.93% inhibition), and docking studies indicated 1a (−6.9 kcal/mole) and 1j (−7.5 kcal/mole) had stronger binding affinities for tyrosinase than kojic acid (−5.7 kcal/mole). At a concentration of 25 μM, 1a and 1j were nontoxic in B16F10 melanoma cells and exhibited stronger tyrosinase inhibition (59.70% and 76.77%, respectively) than kojic acid (50.30% inhibition) or arbutin (41.78% inhibition at 400 μM). Similarly, in B16F10 melanoma cells, compounds 1a and 1j at 25 μM decreased total melanin content by 47.97% and 61.77%, respectively (kojic acid; 38.98%). Similarities between inhibitions of tyrosinase activity and melanin contents suggested the anti-melanogenic effects of 1a and 1j were due to tyrosinase inhibition. The excellent DPPH scavenging activity of 1j suggests it might enhance in vivo effect on melanin contents. The study suggests compound 1j offers a potential starting point for the development of safe, potent tyrosinase inhibitors.  相似文献   

13.
A trypsin inhibitor was isolated from grains of two row barley (cv. Proctor). The purified protein was identical with the corresponding inhibitor of a six row barley (cv. Pirkka); both proteins showed, a Pi of 7.4. The N-terminal amino acid was phenylalanine and an arginine residue was involved in the active site. Effects of substrate concentration showed that the inhibition was noncompetitive with a Ki of about 0.9 × 10?7M. An enzyme-inhibitor complex was demonstrated by disc electrophoresis.  相似文献   

14.
Abstract

Pyrostatins A and B, new inhibitors of N-acetyl-β-D-glucosaminidase(G1cNAc-ase), have been purified from the culture broth of Streptomyces sp. SA-3501 isolated from a marine environment. They were purified by chromatography on Dowex 50W, silica gel and Capcell Pak C18(HPLC) followed treatment with active carbon and then isolated as white powders. The structures of pyrostatins A and B were determined by NMR studies to be 4-hydroxy-2-imino-l-methylpyrrolidine-5-carboxylic acid and 2-imino-l-methylpyrrolidine-5-carboxylic acid, respectively. They were competitive with the substrate, and the inhibition constants(Ki) of pyrostatins A and B were 1.7 × 10-6 M and 2.0 × 10-6 M respectively.  相似文献   

15.
The plant growth retardant paclobutrazol, (PP333) (2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol, inhibits specifically the three steps in the oxidation of the gibberellin-precursorent-kaurene toent-kaurenoic acid in a cell-free system fromCucurbita maxima endosperm. The KI50 for this inhibition is 2×10?8 M. The KI50 values for the separated2S, 3S, and2R, 3R enantiomers of paclobutrazol in this system are 2×10?8 M and 7×10?7 M, respectively. A cell-free preparation from immatureMalus pumila embryos convertsent-kaurene to gibberellin A9, whereas no conversion occurs in a similar preparation fromMalus endosperm. The conversion ofent-kaurene by the embryo preparation is inhibited by paclobutrazol with KI50 values for the2S,3S and2R,3R enantiomers of 2×10?8 M and 6×10?8 M, respectively.  相似文献   

16.
Two l-lactate dehydrogenase isoenzymes and one dl-lactate dehydrogenase could be separated from potato tubers by polyacrylamide-gel electrophoresis. The enzymes are specific for lactate, while β-hydroxybutyric acid, glycolic acid, and glyoxylic acid are not oxidized. Their pH optima are pH 6.9 for the oxidation and 8.0 for the reduction reaction.The Km values for l-lactate for the two isoenzymes are 2.00 × 10?2 and 1.82 × 10?2, m. In the reverse reaction the affinities for pyruvate are 3.24 × 10?4 and 3.34 × 10?4, m. Both enzymes have similar affinities for NAD and NADH (3.00 × 10?4; 4.00 × 10?4, and 8.35 × 10?4; 5.25 × 10?4, m).The dl-lactate oxidoreductase may transfer electrons either to NAD or N-methyl-phenazinemethosulfate. The Km values of this enzyme for l-lactate are 4.5 × 10?2, m and for d-lactate 3.34 × 10?2, m. Its affinity for pyruvate is 4.75 × 10?4, m. The enzyme is inhibited by excess NAD (Km = 1.54 × 10?4, M) and has an affinity toward NADH (Km = 5.00 × 10?3, M) which is about one tenth of that of the two isoenzymes of l-lactate dehydrogenase.  相似文献   

17.
The fungicide triarimol was tested for its effect on abscisic acid (ABA) accumulation in growing culturesof Cercospora rosicola. ABA accumulation was reduced by approximately 50% with 10?8 M triarimol. Growth ofC. rosicola, as measured by dry weight accumulation, was inhibited by triarimol concentrations at or greater than 10?7 M. These results are compared with those obtained with clomazone, ancymidol, and paclobutrazol, which inhibit ABA accumulation by 50% at concentrations of 5 × 10?5, 5 × 10?6, and 5 × 10?7 M, respectively. Triarimol, therefore, is among the most potent inhibitors of ABA biosynthesis reported to date. Feeding studies with [14C]mevalonic acid confirmed the inhibition of ABA biosynthesis by 5 × 10?8 M triarimol. These results support previous suggestions that one or more of the steps in the ABA biosynthetic pathway from mevalonic acid is catalyzed by cytochrome P-450. Feeding studies with 1′-deoxy-[2H]-ABA in resuspended cultures ofC. rosicola show that the conversion of this substrate is not inhibited by triarimol.  相似文献   

18.
Magnetic resonance and kinetic studies of the catalytic subunit of a Type II cAMP-dependent protein kinase from bovine heart have established the active complex to be an enzyme-ATP-metal bridge. The metal ion is β,γ coordinated with Δ chirality at the β-phosphorous atom. The binding of a second metal ion at the active site which bridges the enzyme to the three phosphoryl groups of ATP, partially inhibits the reaction. Binding of the metal-ATP substrate to the enzyme occurs in a diffusion-controlled reaction followed by a 40 ° change in the glycosidic torsional angle. This conformational change results from strong interaction of the nucleotide base with the enzyme. NMR studies of four ATP-utilizing enzymes show a correlation between such conformational changes and high nucleotide base specificity. Heptapeptide substrates and substrate analogs bind to the active site of the catalytic subunit at a rate significantly lower than collision frequency indicating conformational selection by the enzyme or a subsequent slow conformational change. NMR studies of the conformation of the enzyme-bound peptide substrates have ruled out α-helical and β-pleated sheet structures. The results of kinetic studies of peptide substrates in which the amino acid sequence was systematically varied were used to rule out the obligatory requirement for all possible β-turn conformations within the heptapeptide although an enzymatic preference for a β2–5 or β3–6 turn could not be excluded. Hence if protein kinase has an absolute requirement for a specific secondary structure, then this structure must be a coil. In the enzyme-substrate complex the distance along the reaction coordinate between the γ-P of ATP and the serine oxygen of the peptide substrate (5.3 ± 0.7 Å) allows room for a metaphosphate intermediate. This finding together with kinetic observations as well as the location of the inhibitory metal suggest a dissociative mechanism for protein kinase, although a mechanism with some associative character remains possible. Regulation of protein kinase is accomplished by competition between the regulatory subunit and peptide or protein substrates at the active site of the catalytic subunit. Thus, the regulatory subunit is found by NMR to block the binding of the peptide substrate to the active site of protein kinase but allows the binding of the nucleotide substrate and divalent cations. The dissociation constant of the regulatory subunit from the active site (10?10m) is increased ~10-fold by phosphorylation and ~104-fold by the binding of cAMP, to a value (10?5m) which exceeds the intracellular concentration of the R2C2 holoenzyme complex (10?6m). The resulting dissociation of the holoenzyme releases the catalytic subunit, permitting the active site binding of peptide or protein substrates.  相似文献   

19.
Divalent copper was found to inhibit non-competitively the lysis of Micrococcus lysodeikticus cells by hen egg-white lysozyme, with an inhibition constant Ka= 3.8 × 102m?1. The association constants of Cu2+ for lysozyme and for a derivative of lysozyme in which tryptophan residue 108 was selectively modified, were measured spectrofluorimetrieally and found to be 1.8 × 102m?1 and 1.0 × 103m?1, respectively. The electron spin resonance spectrum of Cu2+ was not affected by the addition of lysozyme, whereas many new lines appeared on addition of the modified protein. This was interpreted as evidence for the binding of Cu2+ in the neighbourhood of tryptophan 108. To unequivocally establish the site of ligation of Cu2+, crystals of lysozyme soaked in Cu2+ were examined by X-ray crystallography and the results compared to those obtained from crystals of native lysozyme. Cu2+ was found to be located 2 to 3 Å from the carboxyl side-chain of aspartic acid 52, 5 Å from the carboxyl of glutamic acid 35 and about 7 Å from tryptophan 108.The addition of a saccharide inhibitor to lysozyme was found to increase the association constant of Cu2+ for lysozyme from a value of 1.8 × 102m?1 to 6.0 × 102m?1. This finding was interpreted as indicative of a change in conformation around tryptophan 108 and glutamic acid 35 induced by the interaction of saccharides with the enzyme, which affects the metal binding properties of aspartic acid 52.  相似文献   

20.
《Life sciences》1995,57(5):PL71-PL74
The effects of elevated glucose and eicosapentaenoic acid (EPA, C20:5 ω3) on myo-inositol uptake in human skin fibroblasts (HSF) were evaluated. Myo-inositol incorporation into HSF was dependent on an active transport system via Na+-K+ ATPase activity based on the results with Na+ deprivation and ouabain (5 mM). Although glucose (27.5, 55 mM) inhibited 2-[3H] myo-inositol uptake, the addition of EPA (3×10−4M) prevented glucose-mediated inhibition. Since EPA decreased glucose-mediated inhibition of myo-inositol uptake, this agent might ameliorate some of the devastating functions associated with diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号