首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper studies the synthesis of structured triacylglycerols (STAGs), rich in polyunsaturated fatty acids (PUFAs) by a two-step enzymatic process: (i) alcoholysis of fish oils (cod liver and tuna oils) with ethanol to obtain 2-monoacylglycerols (2-MAGs), catalyzed by 1,3 specific lipases and (ii) esterification of these 2-MAGs with caprylic acid (CA, 8:0), also catalyzed by a 1,3 specific lipase, to produce STAGs of structure CA–PUFA–CA. As regards the alcoholysis reaction, three factors have been studied: the influence of the type of lipase used (lipase D from Rhizopus oryzae, immobilized on Accurel MP1000, and Novozym 435 from Candida antarctica), the operational mode of a stirred tank reactor (STR operating in discontinuous and continuous mode) and the intensity of treatment (IOT = lipase amount × reaction time/oil amount). Although higher 2-MAG yields were obtained with lipase D, Novozym 435 was selected due to its greater stability in the operational conditions. The highest 2-MAG yield (63%) was attained in the STR operating in discontinuous mode at an IOT of 1 g lipase × h g oil?1 (at higher IOT the 2-MAGs were degraded to glycerol). This system was scaled up to 100 times the initial volume, achieving a similar yield (65%) at the same IOT. The 2-MAGs in the final alcoholysis reaction mixture were separated from ethyl esters by solvent extraction using solvents of low toxicity (ethanol and hexane); the 2-MAG recovery yield was over 90% and the purity was approximately 87–90%. Regarding the esterification of the 2-MAGs, the following factors were studied: the influence of the lipase type used, the presence or absence of solvent (hexane) and the reaction time or intensity of treatment (IOT = lipase amount × reaction time/2-MAG amount). Of the five lipases tested, the highest STAG percentages (over 90%) were attained with lipases D and DF, immobilized on Accurel MP1000. These STAGs contain 64% CA, of which 98% is at positions 1 and 3. Position 2 contains 5% CA and 45% PUFAs, which means that all the PUFAs that were located at position 2 in the original oil remain in that position in the final STAGs. The lipase D immobilized on Accurel MP1000 is stable in the operational conditions used in the esterification reaction. Finally the purification of STAGs was carried out by neutralization of free fatty acids with hydroethanolic solution of KOH and extraction of STAGs with hexane. By this method purity was over 95% and separation yields were about 80%.  相似文献   

2.
A simple and effective preparation of lipases for use in organic solvents is hereby proposed. Lipases in aqueous solution were treated with isopropanol, immediately followed by immobilization onto a commercially available macroporous resin CRBO2 (crosslinked polystyrene with N-methylglucamine as a functional group). The dual modification of lipases by (1) isopropanol treatment and (2) immobilization improved the activity and stability of lipases more significantly than either of the two treatments alone. The degree of lipase activation was dependent on isopropanol–buffer (v/v) ratio and the source of lipase used. Among the lipases tested, Rhizopus oryzae lipase was more significantly activated. The maximum specific activity of R. oryzae lipase after dual modification was 94.9 mmol h−1 g−1, which was, respectively, 3.3-, 2.5- and 1.5-fold of untreated free, untreated immobilized and treated free lipases. The conformations of the treated and untreated free lipases were investigated by circular dichroism (CD) measurement. Changes in the far- and near-UV CD spectra of lipase indicate that lipase activation is accompanied by changes in secondary and tertiary structures of lipases. The increase in negative molar elipticity at 222 nm suggests that the α-helical content of lipase increase after pretreatment.  相似文献   

3.
Immobilization of Saccharomyces cerevisiae lipase by physical adsorption on Mg–Al hydrotalcite with a Mg/Al molar ratio of 4.0 led to a markedly improved performance of the enzyme. The immobilized lipase retained activity over wider ranges of temperature and pH than those of the free lipase. The immobilized lipase retained more than 95% relative activity at 50 °C, while the free lipase retained about 88%. The kinetic constants of the immobilized and free lipases were also determined. The apparent activation energies (Ea) of the free and immobilized lipases were estimated to be 6.96 and 2.42 kJ mol?1, while the apparent inactivation energies (Ed) of free and immobilized lipases were 6.51 and 6.27 kJ mol?1, respectively. So the stability of the immobilized lipase was higher than that of free lipase. The water content of the oil must be kept below 2.0 wt% and free fatty acid content of the oil must be kept below 3.5 mg KOH g [oil]?1 in order to get the best conversion. This immobilization method was found to be satisfactory to produce a stable and functioning biocatalyst which could maintain high reactivity for repeating 10 batches with ester conversion above 81.3%.  相似文献   

4.
《Process Biochemistry》2007,42(3):415-422
This work deals with the production of structured triacylglycerols (STAG) with caprylic acid (CA) located in positions 1 and 3 of the molecule of glycerol and docosahexaenoic acid (DHA) in position 2, by acidolysis of tuna oil and CA, catalyzed by several lipases. To this end several lipases and immobilization supports were tested with the aim of avoiding the acyl-migration observed in previous works. The determination of the best catalyst (i.e. the lipase and the immobilization support as a whole) was carried out by experiments of acidolysis of cod liver oil and CA in a bath reactor. The best results were obtained with the lipases from Rhizopus oryzae (Lipase D) and Rhizopus delemar (Lipase Rd), immobilized on Accurel MP1000 (a microporous polypropylene) with a lipase/support ratio 1:1.5 (w/w). The activity of these immobilized lipases was stable for a minimum of 5 days in the operational conditions (up to 40 °C).Lipase Rd was selected for the next step in which it was immobilized on Acurrel MP1000 to obtain STAG enriched in DHA by acidolysis of tuna oil (20% DHA) with CA. The experiments were carried out by recirculating the reaction mixture through an immobilized lipase packed bed reactor at different substrate/hexane ratios, as well as in absence of solvent. In the latter case, STAG with 51% CA and 13% DHA were obtained at 73 h. This result indicates that with this catalyst an acceptable reaction rate was attained in absence of solvent. A structural analysis by the pancreatic lipase method carried out to STAG with 45% CA and 16% DHA indicated that 91% of the CA incorporated is located in positions 1 and 3, and that 51% of the DHA is located in position 2 (MLM structure). This position is also rich in palmitic, eicosapentaenoic and oleic acids.After the acidolysis reaction a mixture of STAG and free fatty acids was obtained. The recovery of STAG from this reaction mixture is difficult because of the high content of free fatty acids. A separation method based on the neutralization of the free fatty acids with a KOH hydroalcoholic solution has been developed. By this procedure pure (100%) STAG were obtained with a recovery yield of 80%.  相似文献   

5.
《Process Biochemistry》2010,45(4):593-597
This paper reports a simple method for producing macroporous silica-monoliths with controllable porosity that can be used for the immobilization of lipases to generate an active and stable micro-reactor for biocatalysis. A range of commercially available lipases has been examined using the hydrolysis reactions of 4-nitrophenyl butyrate in water–decane media. The kinetic studies performed have identified that a similar value for kcat is obtained for the immobilized Candida antarctica lipase A (0.13 min−1) and the free lipase in solution (0.12 min−1) whilst the immobilized apparent Michaelis constant Km (3.1 mM) is 12 times lower than the free lipase in solution (38 mM). A 96% conversion was obtained for the immobilized C. antarctica lipase A compared to only 23% conversion for the free lipase. The significant higher conversions obtained with the immobilized lipases were mainly attributed to the formation of a favourable biphasic system in the continuous flowing micro-reactor system, where a significant increase in the interfacial activation occurred. The immobilized C. antarctica lipase A on the monolith also exhibited improved stability, showing 64% conversion at 80 °C and 70% conversion after continuous running for 480 h, compared to 40 and 20% conversions under the same temperature and reaction time for the free lipase.  相似文献   

6.
《Process Biochemistry》2010,45(10):1677-1682
A combination of two lipases was employed to catalyze methanolysis of soybean oil in aqueous medium for biodiesel production. The two lipase genes were cloned from fungal strains Rhizomucor miehei and Penicillium cyclopium, and each expressed successfully in Pichia pastoris. Activities of the 1,3-specific lipase from R. miehei (termed RML) and the non-specific mono- and diacylglycerol lipase from P. cyclopium (termed MDL) were 550 U and 1545 U per ml respectively, and enzymatic properties of these supernatant of fermentation broth (liquid lipase) were stable at 4 °C for >3 months. Under optimized conditions, the ratio of biodiesel conversion after 12 h at 30 °C, using RML alone, was 68.5%. When RML was assisted by addition of MDL, biodiesel conversion ratio was increased to >95% under the same reaction conditions. The results suggested that combination of lipases with different specificity, for enzymatic conversion of more complex lipid substrates, is a potentially useful strategy for biodiesel production.  相似文献   

7.
Lipase-catalyzed acylation of 3-benzyloxypropane-1,2-diol with vinyl acetate as acyl donor using different lipases [porcine pancreas lipase (PPL), Lipase AK “Amano”, Lipase PS “Amano”, and crude enzymes from Trichoderma reesei RUT-C30, Thermoascus thermophilus (NRRL5208), Talaromyces emersonii (NRLL3221)] was studied in supercritical carbon dioxide (scCO2). In the reactions catalyzed by different lipases different amounts of monoacetate and diacetate products along with minor amounts of cyclic acetals forming from the diol and acetaldehyde were obtained.Application of Lipase AK led to the highest conversion (84.7%) and the highest enantiomeric excess values (eemonoacetates = 38%, eediacetate = 85%). Effect of water content of scCO2 on the productivity and the enantiomer selectivity of the reactions with Lipase AK was also investigated.  相似文献   

8.
In human milk fat (HMF), palmitic acid (20–30%), the major saturated fatty acid, is mostly esterified at the sn-2 position of triacylglycerols, while unsaturated fatty acids are at the sn-1,3 positions, conversely to that occurring in vegetable oils.This study aims at the production of HMF substitutes by enzyme-catalyzed interesterification of tripalmitin with (i) oleic acid (system I) or (ii) omega-3 polyunsaturated fatty acids (omega-3 PUFA) (system II) in solvent-free media. Interesterification activity and batch operational stability of commercial immobilized lipases from Rhizomucor miehei (Lipozyme RM IM), Thermomyces lanuginosa (Lipozyme TL IM) and Candida antarctica (Novozym 435) from Novozymes, DK, and Candida parapsilosis lipase/acyltransferase immobilized on Accurel MP 1000 were evaluated. After 24-h reaction at 60 °C, molar incorporation of oleic acid was about 27% for all the commercial lipases tested and 9% with C. parapsilosis enzyme. Concerning omega-3 PUFA, the highest incorporations were observed with Novozym 435 (21.6%) and Lipozyme RM IM (20%), in contrast with C. parapsilosis enzyme (8.5%) and Lipozyme TL IM (8.2%). In system I, Lipozyme RM IM maintained its activity for 10 repeated 23-h batches while for Lipozyme TL IM, Novozym 435 and C. parapsilosis enzyme, linear (half-life time, t1/2 = 154 h), series-type (t1/2 = 253 h) and first-order (t1/2 = 34.5 h) deactivations were respectively observed. In system II, Lipozyme RM IM showed linear deactivation (t1/2 = 276 h), while Novozym 435 (t1/2 = 322 h) and C. parapsilosis enzyme (t1/2 = 127 h), presented series-type deactivation. Both activity and stability of the biocatalysts depended on the acyl donor used.  相似文献   

9.
Although the lipase of Geotrichum candidum has been extensively reported, little attention has been focused on molecular genetic and biochemical characterizations of Galactomyces geotrichum lipases. A lipase gene from G. geotrichum Y05 was cloned from both genomic DNA and cDNA sources. Nucleotide sequencing revealed that the ggl gene has an ORF of 1692 bp without any introns, encoding a protein of 563 amino acid residues, including a potential signal sequence of 19 amino acid residues. The amino acid sequence of this lipase showed 86% identity to lipase of Trichosporon fermentans WU-C12. The mature lipase gene was subcloned into pPIC9K vector, and overexpressed in methylotrophic Pichia pastoris GS115. Active lipase was accumulated to the level of 100.0 U/ml (0.4 mg/ml) in the shake-flask culture, 10.4-fold higher than the activity of the original strain (9.6 U/ml). This yield dramatically exceeds that previously reported with 23–50 U/ml, 0.06 mg/ml and 0.2 mg/ml. The purified lipase exhibited several properties of significant industrial importance, such as pH and temperature stability, wide organic solvent tolerance and broad hydrolysis on vegetable oils. Such a combination of properties makes it a promising candidate for its application in non-aqueous biocatalysis, such as biodiesel production, selective hydrolysis or esterification for enrichment of PUFAs and oil-contaminated biodegradation, which have been drawn considerable attention currently.  相似文献   

10.
We have analyzed the effects of the buffer nature on the stability of immobilized lipases. Commercial phospholipase Lecitase Ultra (LU), lipase B from Candida antarctica (CALB) and lipase from Thermomyces lanuginosus (TLL) have been immobilized on octyl-glyoxyl agarose beads. The enzymes were readily inactivated using 4 M sodium phosphate but 6 M NaCl did not inactivate them. Using 2 M of sodium phosphate, the inactivation of the 3 immobilized enzymes still was very significant even at 25 °C but at lower rate than with higher phosphate concentration. Thermal stress inactivations of the immobilized enzymes revealed that even 100 mM sodium phosphate produced a significant decrease in enzyme stability; this effect was less pronounced for Lecitase but dramatic for CALB. While 6 M NaCl presented slightly positive (LU) or negative (TLL) effects on their thermal stabilities of, CALB was thermally stabilized under the same conditions. Results were very different using free enymes. Fluorescence spectroscopy revealed dramatic structural rearrangements of the immobilized enzymes in the presence of high phosphate concentration. From these results, the use of sodium phosphate does not seem to be recommended for studies on thermal stability of lipases, although this should be verified for each enzyme and immobilized preparation.  相似文献   

11.
《Process Biochemistry》2010,45(6):986-992
The study was carried out to immobilise the acidic lipase derived from Pseudomonas gessardii onto mesoporous activated carbon (MAC400) for the application of hydrolysis of olive oil. MAC400 was prepared from rice husk by the two stages process. P. gessardii was isolated from the beef tallow acclimatised soil. The acidic lipase (ALIP) was produced from a slaughterhouse waste, namely beef tallow as a substrate and immobilised onto MAC400. The maximum immobilisation capacity of the MAC400 was 3570 U/g at optimum immobilisation conditions; time (180 min), pH (5.0) and temperature (30 °C). The immobilised lipase had better thermal stability and reusability than the free lipase. The immobilisation of ALIP onto MAC400 (MAC400–ALIP) followed pseudo-first-order rate kinetics with rate constant 0.012/min. The Michaelis–Menten constant of MAC400–ALIP was lower than that of the ALIP, which confirmed the higher affinity between enzyme and substrate. The immobilization of acidic lipase onto MAC400 was confirmed by Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) pattern analysis. Reusability study of MAC400–ALIP on olive oil hydrolysis showed 82% of hydrolysis up to 13 runs and 50% of hydrolysis up to 35 cycles of reuse. This work concludes that the acidic lipase immobilised mesoporous activated carbon matrix can be considered as a potential biocatalyst for the hydrolysis of olive oil. Thus, the enzyme immobilised matrix has potential industrial applications.”  相似文献   

12.
Three different functionalized bentonites including acid activated bentonite (Ba), organically modified bentonite with cetyltrimethyl ammonium bromide (BCTMAB) and the composite by acid activation and organo-modification (Ba-CTMAB) were prepared, and used for immobilization of lipase from bovine pancreatic lipase by adsorption. The amount of lipase adsorbed on the functionalized bentonites was in the following sequence: Ba > BCTMAB > Ba-CTMAB, showing the strongest affinity of Ba for lipase among the three supports. However, the immobilized lipase on Ba-CTMAB showed the highest activity in the hydrolysis of olive oil by 1.67 times of activity of free lipase due to the hydrophobically interfacial activation and enlarged catalytic interface. While, the activity of immobilized lipase on Ba was lower than 20% of free lipase’s activity due to the absence of hydrophobic activation and negative impact of excessive hydrogen ions on the surface. The Km values for the immobilized lipase on Ba-CTMAB (0.054 g/mL) and BCTMAB (0.074 g/mL) were both lower than that of free lipase (0.115 g/mL), and the Vmax values were higher for the immobilized lipases, exhibiting a higher affinity of the immobilized lipase toward olive oil than free lipase. In comparison to free lipase, the better resistance to heating inactivation, storage stability and reusability of the immobilized lipases on Ba-CTMAB and BCTMAB were also obtained. The results show that the efficient and stable biocatalysts for industrial application can be prepared by using the low-cost bentonite mineral as the supports.  相似文献   

13.
In this study, polyurethane foam (PUF) was used for immobilization of Yarrowia lipolytica lipase Lip2 via polyethyleneimine (PEI) coating and glutaraldehyde (GA) coupling. The activity of immobilized lipases was found to depend upon the size of the PEI polymers and the way of GA treatment, with best results obtained for covalent-bind enzyme on glutaraldehyde activated PEI-PUF (MW 70,000 Da), which was 1.7 time greater activity compared to the same enzyme immobilized without PEI and GA. Kinetic analysis shows the hydrolytic activity of both free and immobilized lipases on triolein substrate can be described by Michaelis–Menten model. The Km for the immobilized and free lipases on PEI-coated PUF was 58.9 and 9.73 mM, respectively. The Vmax values of free and immobilized enzymes on PEI-coated PUF were calculated as 102 and 48.6 U/mg enzyme, respectively. Thermal stability for the immobilization preparations was enhanced compared with that for free preparations. At 50 °C, the free enzyme lost most of its initial activity after a 30 min of heat treatment, while the immobilized enzymes showed significant resistance to thermal inactivation (retaining about 70% of its initial activity). Finally, the immobilized lipase was used for the production of lauryl laurate in hexane medium. Lipase immobilization on the PEI support exhibited a significantly improved operational stability in esterification system. After re-use in 30 successive batches, a high ester yield (88%) was maintained. These results indicate that PEI, a polymeric bed, could not only bridge support and immobilized enzymes but also create a favorable micro-environment for lipase. This study provides a simple, efficient protocol for the immobilization of Y. lipolytica lipase Lip2 using PUF as a cheap and effective material.  相似文献   

14.
Enzymes from fish and aquatic invertebrates have recently been characterized and their study has led to the emergence of some new applications of these classes of enzymes. However, very little is known about lipases from mollusks. A lipolytic activity was located in the marine snail digestive glands (hepatopancreas), from which a marine snail digestive lipase named mSDL was purified. Pure mSDL has a molecular mass of about 70 kDa as determined by SDS/PAGE analysis. Unlike the known digestive lipases while acting at 37 °C, the mSDL displayed its maximal activity on long and short-chain triacylglycerols at 50 °C. A specific activity of 400 U/mg and 100 U/mg was obtained with TC4 or olive oil as substrate respectively. Only 25% of the maximal activity was measured at 37 °C. Interestingly, neither colipase, nor bile salts were detected in the marine snail hepatopancreas, which suggests that colipase evolved in invertebrates simultaneously with the appearance of an exocrine pancreas and a true liver which produces bile salts. No similarity was found between the N-terminal amino acids sequence of the mSDL and those of the known digestive lipases. Altogether, these results suggest that the mSDL is a member of a new group of digestive lipases belonging to invertebrates.  相似文献   

15.
Triacylglycerols (TAG) enriched with medium chain fatty acids (M) present specific nutritional, energetic and pharmaceutical properties. Structured lipids (SL) were produced by acidolysis between virgin olive oil and caprylic (C8:0) or capric (C10:0) acids in solvent-free media, catalyzed by the main extracellular lipase from Yarrowia lipolytica lipase 2 (YLL2), immobilized in Accurel MP 1000. Response surface methodology was used for modeling and optimization of the reaction conditions catalyzed by immobilized YLL2. Central composite rotatable designs were performed as a function of the reaction time (2.5–49.5 h) and the molar ratio of medium chain fatty acid/TAG (MR; 0.6–7.4), for both acids, and also of temperature (32–48 ̊C) for C8:0 experiments. As for capric acid, the incorporation of caprylic acid in olive oil showed not to depend of the temperature, within the tested range. The response surfaces, fitted to the experimental data, were described by a first-order polynomial equation, for C8:0 incorporation, and by a second-order polynomial equation for C10:0 incorporation. Under optimized conditions (48 h reaction at 40 ̊C, with a molar ratio of 2:1 M/TAG) the highest incorporation was reached for C8:0 (25.6 mol%) and C10:0 (21.3 mol%).  相似文献   

16.
Uniform and monodispersed silica nanoparticles were synthesized with a mean diameter of 100 ± 20 nm as analyzed by Transmission Electron Microscopy (TEM). Glutaraldehyde was used as a coupling agent for efficient binding of the lipase onto the silica nanoparticles. For the hydrolysis of pNPP at pH 7.2, the activation energy within 25–40 °C for free and immobilized lipase was 7.8 and 1.25 KJ/mol, respectively. The Vmax and Km of immobilized lipase at 25 °C for pNPP hydrolysis were found to be 212 μmol/min/mg and 0.3 mM, whereas those for free lipase were 26.17 μmol/min and 1.427 mM, respectively. The lower activation energy of immobilized lipase in comparison to free lipase suggests a change in conformation of the enzyme leading to a requirement for lower energy on the surface of the nanoparticles. A better yield (7 fold higher) of ethyl isovalerate was observed using lipase immobilized onto silica nanoparticles in comparison to free lipase.  相似文献   

17.
A Metarhizium anisopliae spore surface lipase (MASSL) strongly bound to the fungal spore surface has been purified by ion exchange chromatography on DEAE sepharose followed by ultrafiltration and hydrophobic interaction chromatography on phenyl sepharose. Electrophoretic analyses showed that the molecular weight of this lipase is ~66 kDa and pI is 5.6. Protein sequencing revealed that identified peptides in MASSL shared identity with several lipases or lipase-related sequences. The enzyme was able to hydrolyze triolein, the animal lipid cholesteryl stearate and all ρNP ester substrates tested with some preference for esters with a short acyl chain. The values of Km and Vmax for the substrates ρNP palmitate and ρNP laurate were respectively 0.474 mM and 1.093 mMol min?1 mg?1 and 0.712 mM and 5.696 mMol min?1 mg?1. The optimum temperature of the purified lipase was 30 °C and the enzyme was most stable within the most acid pH range (pH 3–6). Triton X-100 increased and SDS reduced enzyme lipolytic activity. MASSL activity was stimulated by Ca2+, Mg2+ and Co2+ and inhibited by Mn2+. The inhibitory effect on activity exerted by EDTA and EGTA was limited, while the lipase inhibitor Ebelactone B completely inhibited MASSL activity as well as PMSF. Methanol 0.5% apparently did not affect MASSL activity while β-mercaptoethanol activated the enzyme.  相似文献   

18.
《Process Biochemistry》2004,39(11):1495-1502
The culture medium including nitrogen source, carbon source and metal ions, for lipase from Penicillium camembertii Thom PG-3 was optimized and the optimal medium consisted of soybean meal (fat free) 4%, Jojoba oil 0.5%, (NH4)2HPO4, 0.1% Tween 60, initial pH 6.4 and the inoculation was at 28 °C for 96 h. The lipase activity produced was enhanced 3.9-fold and reached 500 U/ml. The lipase was purified 19.8-fold by pH precipitation, ethanol precipitation and ammonium sulphate precipitation as well as DEAE-cellulose chromatography. The purified lipase showed one polypeptide band in SDS-polyacrylamide gel electrophoreses (SDS-PAGE) with molecular weight 28.18 kDa. The optimal pH and temperature for activity of lipase were 6.4 and 48 °C, respectively, which are higher than those lipases from other penicillium sources. The P. camembertii Thom lipase is 1,3-positional specificity for hydrolysis of triglyceride and hydrolyses plant oil preferentially to animal oil. The lipase can be used in short chain ester synthesis with an esterification degree of 95%.  相似文献   

19.
The synthetic activity of lipases in biphasic o/w systems was investigated with respect to their use in the synthesis of polyester chains via transesterification reactions. Lipase-catalyzed ring-opening polymerization (ROP) of pentadecalactone (ω-PDL) dispersed in water was used as a model reaction to understand the synthetic activity of lipases in biphasic o/w system. We conducted a systematic investigation of the influence of reaction conditions on the macromolecular characteristics of oligo(ω-PDL) encompassing chemical, thermophysical and colloidal properties of the reaction medium. A model was proposed assuming Michaelis–Menten interfacial kinetics followed by chain extension via lipase-catalyzed linear polycondensation. The solidification of oligo(ω-PDL) chains with a degree of polymerization of approximately three was identified as a major factor limiting the molecular weight of obtained oligomers to ∼870 g mol−1, despite the fast reaction rate and complete conversion of ω-PDL. The addition of toluene into the dispersed phase at a volumetric ratio of 0.3–0.5 of toluene to ω-PDL allowed us to circumvent this problem and increase the molecular weight of obtained oligomers up to 1460 g mol−1. The molecular weight of polymer product according to this model was thus inversely related to the weight ratio percentage of interfacial lipase PS to ω-PDL per droplet and correspondingly correlated with the activity of lipase. Taking into account all these parameters allowed increasing the molar mass of oligo(ω-PDL) from 870 g mol−1 to 3507 g mol−1.  相似文献   

20.
《Process Biochemistry》2010,45(4):586-592
Immobilized lipase-catalyzed synthesis of benzoic acid hydrazide from hydrazine and phenyl benzoate is reported in this work. A series of immobilized lipases such as Candida antarctica lipase B, Mucor miehei lipase and Thermomyces lanuginosus lipase were screened to establish that C. antarctica lipase B was the best lipase for hydrazinolysis. When phenyl benzoate (0.01 mol) and hydrazine (0.02 mol) in toluene (15 ml) were reacted with C. antarctica lipase B (Novozym 435) at 50 °C, 95% of phenyl benzoate was converted to benzoic acid hydrazide after 2 h. The effects of various parameters such as speed of agitation, concentration of the substrates, temperature, enzyme concentration, and reusability of the enzyme were studied to deduce kinetics and mechanism of the reaction. A mechanism based on an ordered bi–bi dead end complex with hydrazine was found to fit the data. Systematic deactivation studies indicated that the enzyme was deactivated due to the hydrazine and phenol, enzyme deactivation obeys first-order series model. The kinetic parameters deduced from these models were used to simulate the lipase activity. There was a very good agreement between the simulated and experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号