首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Sugio  T Hirose  L Z Ye    T Tano 《Journal of bacteriology》1992,174(12):4189-4192
Sulfite:ferric ion oxidoreductase in the plasma membrane of Thiobacillus ferrooxidans AP19-3 was purified to an electrophoretically homogeneous state. The enzyme had an apparent molecular weight of 650,000 and was composed of two subunits (M(rs), 61,000 and 59,000) as estimated by sodium sulfate-polyacrylamide gel electrophoresis. The Michaelis constants of sulfite:ferric ion oxidoreductase for Fe3+ and sulfite ions were 1.0 and 0.071 mM, respectively. Sulfite:ferric ion oxidoreductase suffered from end product inhibition by 1 mM Fe2+.  相似文献   

2.
Direct oxidation of sulfite to sulfate occurs in various photo- and chemotrophic sulfur oxidizing microorganisms as the final step in the oxidation of reduced sulfur compounds and is catalyzed by sulfite:cytochrome c oxidoreductase (EC ). Here we show that the enzyme from Thiobacillus novellus is a periplasmically located alphabeta heterodimer, consisting of a 40.6-kDa subunit containing a molybdenum cofactor and an 8.8-kDa mono-heme cytochrome c(552) subunit (midpoint redox potential, E(m8.0) = +280 mV). The organic component of the molybdenum cofactor was identified as molybdopterin contained in a 1:1 ratio to the Mo content of the enzyme. Electron paramagnetic resonance spectroscopy revealed the presence of a sulfite-inducible Mo(V) signal characteristic of sulfite:acceptor oxidoreductases. However, pH-dependent changes in the electron paramagnetic resonance signal were not detected. Kinetic studies showed that the enzyme exhibits a ping-pong mechanism involving two reactive sites. K(m) values for sulfite and cytochrome c(550) were determined to be 27 and 4 micrometer, respectively; the enzyme was found to be reversibly inhibited by sulfate and various buffer ions. The sorAB genes, which encode the enzyme, appear to form an operon, which is preceded by a putative extracytoplasmic function-type promoter and contains a hairpin loop termination structure downstream of sorB. While SorA exhibits significant similarities to known sequences of eukaryotic and bacterial sulfite:acceptor oxidoreductases, SorB does not appear to be closely related to any known c-type cytochromes.  相似文献   

3.
Summary Sulfite oxidase has been purified 100-fold from extracts of Thiobacillus neapolitanus. The enzymatic activity, measured as the rate of oxygen consumption, was stimulated some 1.5–2-fold by 3.3mm AMP throughout the course of purificationm indicating that a single enzyme is responsible for the oxidation of sulfite in the presence and absence of AMP. Reduced glutathione inhibited activity and prevented the AMP-dependent rate stimulation. The rate of sulfite oxidation in the presence and absence of AMP was first order with respect to the sulfite concentration.Dedicated to Prof. C. B. van Niel on the occasion of his 70th birthday.Part of a dissertation submitted by W. P. Hempfling to Yale University in partial fulfillment of the requirements for the Ph. D. degree, 1964.  相似文献   

4.
Cell-free extracts of Thiobacillus acidophilus catalysed the quantitative conversion of trithionate (S3O6(2-) to thiosulphate and sulphate. A continuous assay for quantification of experimental results was based on the difference in absorbance between trithionate and thiosulphate at 220 nm. Trithionate hydrolase was purified to near homogeneity from cell-free extracts of T. acidophilus. The molecular masses of the native enzyme and the subunit were 99 kDa (gel filtration) and 34 kDa (SDS/PAGE). The purified enzyme has a pH optimum of 3.5-4.5 and a temperature optimum of 70 degrees C. Enzyme activity was stimulated by sulphate. The stimulation of the enzyme activity by sulphate was half maximal at a concentration of 0.23 M. The Km for trithionate is 70 microM at 30 degrees C and 270 microM at 70 degrees C. Enzyme activity was lost after 36 days at 0 degrees C, 27 days at 70 degrees C; but after 97 days at 30 degrees C, 40% of the initial activity was still present: The enzyme activity was inhibited by mercury chloride, N-ethylmaleimide, thiosulphate and tetrathionate. Tetrathionate S4O6(2-) was not hydrolysed by trithionate hydrolase.  相似文献   

5.
6.
7.
A cytochrome c peroxidase isolated from Thiobacillus novellus   总被引:1,自引:0,他引:1  
  相似文献   

8.
Cytochrome c552 was purified to near homogenity and partially characterized from Halobacterium salinarium JWS mutant, devoid of carotenoid pigments. The purification involved the extraction of membranes with 1% Triton X-100, followed by butylagarose, DEAE-Sepharose CL6B and hydroxyapatite column chromatography. The fold of purification was 16. The purified cytochrome showed maximum absorption at 552 nm. The molecular mass determined by SDS-PAGE was found to be 14.1 kD.  相似文献   

9.
A sulfur:ferric ion oxidoreductase that utilizes ferric ion (Fe3+) as an electron acceptor of elemental sulfur was purified from iron-grown Thiobacillus ferrooxidans to an electrophoretically homogeneous state. Under anaerobic conditions in the presence of Fe3+, the enzyme reduced 4 mol of Fe3+ with 1 mol of elemental sulfur to give 4 mol of Fe2+ and 1 mol of sulfite, indicating that it corresponds to a ferric ion-reducing system (T. Sugio, C. Domatsu, O. Munakata, T. Tano, and K. Imai, Appl. Environ. Microbiol. 49:1401-1406, 1985). Under aerobic conditions, sulfite, but not Fe2+, was produced during the oxidation of elemental sulfur by this enzyme because the Fe2+ produced was rapidly reoxidized chemically by molecular oxygen. The possibility that Fe3+ serves as an electron acceptor under aerobic conditions was ascertained by adding o-phenanthroline, which chelates Fe2+, to the reaction mixture. Sulfur:ferric ion oxidoreductase had an apparent molecular weight of 46,000, and it is composed of two identical subunits (Mr = 23,000) as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Sulfur oxidation by this enzyme was absolutely dependent on the presence of reduced glutathione. The enzyme had an isoelectric point and a pH optimum at pH 4.6 and 6.5, respectively. Almost all the activity of sulfur:ferric ion oxidoreductase was observed in the osmotic shock fluid of the cells, suggesting that it was localized in the periplasmic space of the cells.  相似文献   

10.
The isolation and purification of cytochrome c550 from the methylamine-oxidizing electron-transport chain in Thiobacillus versutus is reported. The cytochrome is a single-heme-containing type I cytochrome c with a relative molecular mass of 16 +/- 1 kDa, an isoelectric point of 4.6 +/- 0.1, a midpoint potential of 272 +/- 3 mV at pH less than 4 and 255 +/- 5 mV at pH = 7.0, and an axial coordination of the Fe by a methionine and a histidine. The midpoint potential decreases with increasing pH due to the deprotonation of a group tentatively identified as a propionate (pKa = 6.5 +/- 0.1 and 6.7 +/- 0.1 in the oxidized and reduced protein, respectively) and a change in the Fe coordination at pH greater than 10. The electron-self-exchange rate appears to depend strongly on the ionic strength of the solution and is relatively insensitive to changes in pH. At 313 K and pH 5.2 the electron-exchange rate amounts to 0.7 x 10(2) M-1 s-1 and 5.3 x 10(2) M-1 s-1 at I = 40 mM and I = 200 mM, respectively. Amino acid composition and molar absorption coefficients at various wavelengths are reported. Resonances of heme protons and the epsilon H3 group of the ligand methionine of the Fe have been identified in the 1H-NMR spectrum of the reduced as well as the oxidized cytochrome.  相似文献   

11.
Cytochrome c oxidase has been purified from rat liver mitochondria using affinity chromatography. The preparation contains 10.5 to 13.4 nmol of heme a + a3 per mg of protein and migrates as a single band during polyacrylamide gel electrophoresis under nondissociating conditions. It has a heme a/a3 ratio of 1.12 and is free of cytochromes b, c, and c1 as well as the enzymes, NADH dehydrogenase, succinic dehydrogenase, coenzyme Q-cytochrome c reductase, and ATPase. The enzyme preparation consists of six polypeptides having apparent Mr of 66,000, 39,000, 23,000, 14,000, 12,500 and 10,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The peptide composition is similar to those found for cytochrome c oxidases from other systems. The enzymatic activity of the purified enzyme is completely inhibited by carbon monoxide or cyanide, partially inhibited by Triton X-100 and dramatically enhanced by Tween 80 or phospholipids.  相似文献   

12.
Hydrogenase of Thiobacillus ferrooxidans ATCC 19859 was purified from cells grown lithoautotrophically with 80% hydrogen, 8.6% carbon dioxide, and 11.4% air. Hydrogenase was located in the 140,000 ×g supernatant in cell-free extracts. The enzyme was purified 7.3-fold after chromatography on Procion Red and Q-Sepharose with a yield of 19%, resulting in an 85% pure preparation with a specific activity of 6.0 U (mg protein)–1. With native PAGE, a mol. mass of 100 and 200 kDa was determined. With SDS-PAGE, two subunits of 64 (HoxG) and of 34 kDa (HoxK) were observed. Hydrogenase reacted with methylene blue and other artificial electron acceptors, but not with NAD. The optimum of enzyme activity was at pH 9 and at 49° C. Hydrogenase contained 0.72 mol nickel and 6.02 mol iron per mol enzyme. The relationship of the T. ferrooxidans hydrogenase to other proteins was examined. A 9.5-kb EcoRI fragment of T. ferrooxidans ATCC 19859 hybridized with a 2.2-kb XhoI fragment from Alcaligenes eutrophus encoding the membrane-bound hydrogenase. Antibodies against this enzyme did not react with the T. ferrooxidans hydrogenase in Western blot analysis. The N-terminal amino acid sequence (40 amino acids) of HoxK was 46% identical to that of the hydrogen sensor HupU of Bradyrhizobium japonicum and 39% identical to that of the HupS subunit of the Desulfovibrio baculatus hydrogenase. The N-terminal sequence of 20 amino acids of HoxG of T. ferrooxidans was 83.3% identical to that of the 60-kDa subunit. HupL, of the hydrogenase of Anabaena sp. Sequences of ten internal peptides of HoxG were 50–100% identical to the respective sequences of HupL of the Anabaena sp. hydrogenase. Received: 17 November 1995 / Accepted: 2 February 1996  相似文献   

13.
A ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex has been purified from the plasma membrane of aerobically grown Paracoccus denitrificans by extraction with dodecyl maltoside and ion exchange chromatography of the extract. The purified complex contains two spectrally and thermodynamically distinct b cytochromes, cytochrome c1, and a Rieske-type iron-sulfur protein. Optical spectra indicate absorption peaks at 553 nm for cytochrome c1 and at 560 and 566 nm for the high and low potential hemes of cytochrome b. The spectrum of cytochrome b560 is shifted to longer wavelength by antimycin. The Paracoccus bc1 complex consists of only three polypeptide subunits. On the basis of their relative electrophoretic mobilities, these have apparent molecular masses of 62, 39, and 20 kDa. The 62- and 39-kDa subunits have been identified as cytochromes c1 and b, respectively. The 20-kDa subunit is assumed to be the Rieske-type iron-sulfur protein on the basis of its molecular weight and the presence of an EPR-detectable signal typical of this iron-sulfur protein in the three-subunit complex. The Paracoccus bc1 complex catalyzes reduction of cytochrome c by ubiquinol with a turnover of 470 s-1. This activity is inhibited by antimycin, myxothiazol, stigmatellin, and hydroxyquinone analogues of ubiquinone, all of which inhibit electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain. The electron transfer functions of the Paracoccus complex thus appear to be similar, and possibly identical, to those of the bc1 complex of eukaryotic mitochondria. The Paracoccus bc1 complex has the simplest subunit composition and one of the highest turnover numbers of any bc1 complex isolated from any species to date. These properties suggest that the structural requirements for electron transfer from ubiquinol to cytochrome c are met by a small number of peptides and that the "extra" peptides occurring in the mitochondrial bc1 complexes serve some other function(s), possibly in biogenesis or insertion of the complex into that organelle.  相似文献   

14.
Sweet potato cytochrome c oxidase (EC 1.9.3.1) was purified 45-fold with respect to its specific activity, with a high recovery by solubilization of the enzyme from the submitochondrial particles with deoxycholate, diethylaminoethyl-cellulose column chromatography, and fractionation with ammonium sulfate. Impurities, if any, could be removed by sucrose density gradient centrifugation of the purified enzyme preparation, although a considerable inactivation of the enzyme took place during centrifugation. The purified enzyme contained approximately 12 nmol of heme a per milligram of protein and about 2.5% phospholipid. The cytochrome c oxidase consisted of at least five polypeptides with molecular weights of 39,000, 33,500, 26,000, 20,000, and 5700, as determined by polyacrylamide gel electrophoresis of the purified enzyme preparation in the presence of sodium dodecyl sulfate and urea. Phosphatidylcholine and phosphatidylethanolamine stimulated the activity over 3-fold. The optimal pH of the purified enzyme was 7.0 to 7.5 in the presence of phosphatidylcholine (egg yolk or soybean) and pH 6.5 in the presence of phosphatidylethanolamine.  相似文献   

15.
《Phytochemistry》1987,26(10):2665-2670
The bifunctional enzyme dehydroquinase (DHQase, EC 4.2.1.10)-shikimate: NADP oxidoreductase (SHORase, EC 1.1.1.25) has been purified 6500-fold to homogeneity from Pisum sativum shoot tissue. A rapid purification procedure using high performance liquid chromatography was used to isolate the enzyme from chloroplast preparations. The purified enzyme is monomeric with Mr 59 000. Chromatofocusing separates three isoenzymes, two of which are chloroplastic. DHQase and SHORase (forward reaction) show pH optima at pH 7 and apparent Km values of 2.7 x 10−5 M (dehydroquinate), 2.1 x 10−4 M (dehydroshikimate) and 1.5 x 10−5 M (NADPH). Chloride is a competitive inhibitor of DHQase. The SHORase reaction has an ordered (sequential) kinetic mechanism and is unaffected by the presence of DHQ.  相似文献   

16.
Dietary ferulic acid (FA), a significant antioxidant substance, is currently the subject of extensive research. FA in cereals exists mainly as feruloylated sugar ester. To release FA from food matrices, it is necessary to cleave ester cross-linking by feruloyl esterase (FAE) (hydroxycinnamoyl esterase; EC 3.1.1.73). In the present study, the FAE from a human typical intestinal bacterium, Lactobacillus acidophilus, was isolated, purified, and characterized for the first time. The enzyme was purified in successive steps including hydrophobic interaction chromatography and anion-exchange chromatography. The purified FAE appeared as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with an apparent molecular mass of 36 kDa. It has optimum pH and temperature characteristics (5.6 and 37 degrees C, respectively). The metal ions Cu(2+) and Fe(3+) (at a concentration of 5 mmol liter(-1)) inhibited FAE activity by 97.25 and 94.80%, respectively. Under optimum pH and temperature with 5-O-feruloyl-L-arabinofuranose (FAA) as a substrate, the enzyme exhibited a K(m) of 0.0953 mmol liter(-1) and a V(max) of 86.27 mmol liter(-1) min(-1) mg(-1) of protein. Furthermore, the N-terminal amino acid sequence of the purified FAE was found to be A R V E K P R K V I L V G D G A V G S T. The FAE released FA from O-(5-O-feruloyl-alpha-L-arabinofuranosyl)-(1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose (FAXX) and FAA obtained from refined corn bran. Moreover, it released two times more FA from FAXX in the presence of added xylanase.  相似文献   

17.
The pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum was purified to homogeneity and partially characterized. A 9.2-fold purification was achieved in a three step purification procedure: ammonium sulfate fractionation, chromatography on Phenyl Sepharose and on Procion Blue H-EGN12. The pure enzyme exhibited a specfic activity of 25 U/mg of protein. Homogeneity of the pyruvate-ferredoxin oxidoreductase was confirmed by native polyacrylamide gel electrophoresis and sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis. The molecular weight was determined to be 123,000/monomer. The subunit composition of the native enzyme could not be determined because of the instability of the pure enzyme. The pyruvate-ferredoxin oxidoreductase is sensitive to oxygen and dilution during purification. The dilution inactivation could be partially overcome by the addition of 300 M coenzyme A or 50% ethyleneglycol. A thiamine pyrophosphate content of 0.39 mol per mol of enzyme monomer was found, the iron and sulfur content was 4.23 and 0.91, respectively. The pH-optimum was at pH 7.5 and the temperature optimum was at 60°C. Kinetic constants were measured in the forward reaction. The apparent K m for pyruvate and coenzyme A were 322 M and 3.7 M, respectively. With 2-ketobutyrate the pyruvate-ferredoxin oxidoreductase showed 12.5% of the activity compared to pyruvate. No activity was found with 2-ketoglutarate. Ferredoxin from Clostridium pasteurianum could be used as physiological electron acceptor.Non-standard abbreviations NAD(H) nicotinamide adenine dinucleotide (reduced) - NADP(H) nicotinamide adenine dinucleotide phosphate (reduced) - DTE dithioerythritol - PMS phenazine methosulfate - NBT nitro blue tetrazolium chloride - DMSO dimethyl sulfoxide - DCPIP dichlorophenolindophenol - MTT 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyl-tetrazolium bromide - TTC triphenyltetrazolium chloride - FAD flavin adenine dinucleotide - FMN flavin mononucleotide  相似文献   

18.
1. The polypeptide composition of purified QH2: cytochrome c oxidoreductase prepared by three different methods from beef-heart mitochondria has been determined. Polyacrylamide gel electrophoresis in the presence of dodecyl sulphate resolves eight intrinsic polypeptide bands; when, in addition, 8 M urea is present and a more highly cross-linked gel is used, the smallest polypeptide band is resolved into three different bands. 2. The identity of several polypeptide bands has been established by fractionation. The two heaviest polypeptides (bands 1 and 2) represent the so-called core proteins, band 3 the hemoprotein of cytochrome b, band 4 the hemoprotein of cytochrome c1, band 5 and Rieske Fe-S protein, band 6 a polypeptide associated with cytochrome c1 and identified with the so-called oxidation factor, and band 7 a polypeptide peptide associated with cytochrome b. 3. The validity of molecular weight estimate for the polypeptides of the enzyme based on their mobility on dodecyl sulphate gels has been examined. The polypeptides of bands 1, 2 and 3 showed anomalous migration rates. The molecular weights of the other polypeptides have been estimated from their relative mobilities on either dodecyl sulphate gels or 8 M urea-dodecyl sulphate gels as 29 000, 24 000, 12 000, 8000, 6000, 5000 and 4000, respectively. 4. The stoicheiometry of the different polypeptides in the intact complex was determined using separate staining factors for the individual polypeptide band.  相似文献   

19.
G W Chen  C F Hung  S H Chang  J G Lin  J G Chung 《Microbios》1999,98(391):159-174
N-acetyltransferase from Lactobacillus acidophilus was purified by ultrafiltration, DEAE-Sephacel, gel filtration chromatography on Sephadex G-100, and DEAE-5pw on high performance liquid chromatography, as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) on a 12% (w/v) slab gel. The purified enzyme was thermostable at 37 degrees C for 1 h with a half-life of 32 min at 37 degrees C, and displayed optimum activity at 37 degrees C and pH 7.0. The K(m) and Vmax values for 2-aminofluorene were 0.842 mM and 2.406 nmol/min/mg protein, respectively. Among a series of divalent cations and salts, Zn2+, Ca2+, Fe2+, Mg2+, and Cu2+ were demonstrated to be the most potent inhibitors. The enzyme had a molecular mass of 44.9 kD. The three chemical modification agents, iodoacetamide, phenylglyoxal, and diethylpyrocarbonate, all exhibited dose-, time-, and temperature-dependent inhibition effects. Preincubation of purified N-acetyltransferase with acetyl coenzyme A (AcCoA) provided significant protection against the inhibition of iodoacetamide and diethylpyrocarbonate, but only partial protection against the inhibition of phenylglyoxal. These results indicate that cysteine, histidine, and arginine residues are essential for this bacterial activity, and the first two are likely to reside on the AcCoA binding site, but the arginine residue may be located close to the AcCoA binding site. This report is the first demonstration of acetyl CoA:arylamine N-acetyltransferase in L. acidophilus.  相似文献   

20.
A soluble cytochrome c-552 from Thiobacillus thiooxidans was highly purified and its physico-chemical properteis were studied. The absorption maxima were at 552,523,418 nm in the reduced from and at 412 nm in the oxidized form. The pyridine hemochrome spectrum was the same as that of other cytochromes c. The molecular weight, estimated by the gel filtration method, was found to be 12,600. The isoelectric point was determined to be 9.2-9.3 by the electrofocusing technique. The standard oxidation-reduction potential of this cytochrome was +0.247 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号