首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feasibility of applying expanded bed adsorption technology to recombinant protein recovery from extracts of transgenic canola (rapeseed) was assessed. The extraction step results in a suspension of high solids content that is difficult to clarify. The coarse portion of the solids can be removed easily, and our aim was to operate the expanded bed in the presence of the recalcitrant particulates. Recombinant beta-glucuronidase (rGUS) produced in transgenic canola seed was the model system. Diethylaminoethyl (DEAE) and Streamline DEAE resin exhibited similar binding and elution properties for both rGUS and native canola proteins. More than 95% of native canola proteins did not bind to DEAE resins at pH 7.5, whereas the bound proteins were fractionated by two-step salt elution into two groups with the first peak, containing 70% of total bound proteins, at 20 mS/cm, followed by elution of rGUS at 50 mS/cm. The adsorption isotherm was only slightly influenced by the presence of up to 14 mg solids/mL extract; C(m) and K(d) changed by -1% and +39%, respectively. Bed expansion was semiquantitatively predictable from physical properties of the fluid together with Stokes's law and the Richardson-Zaki correlation for both clarified and partially clarified extracts. The presence of 1.4% solids did not change rGUS breakthrough behavior of the expanded bed; however, a small difference between expanded bed and packed bed was observed early in the sample loading stage, during which bed expansion adjusts. Canola solids moved through the column in approximately plug flow with no detriment to bed stability. Seventy-two percent recovery of 34-fold purified rGUS was obtained after initial loading of 1.4% (w/w) solids extract to 25% breakthrough.  相似文献   

2.
Corn has emerged as a viable host for expression of recombinant proteins; targeted expression to the endosperm has received particular attention. The protein extracts from corn endosperm differ from those of traditional hosts in regard to the nature of residual solids and extracted matrix contaminants. Each of these differences presents reasons for considering expanded bed adsorption for product capture and new considerations for limitations of the method. In this work three inlet-flow distribution devices (mesh, glass ballotini, and localized mixing) and six adsorbents with different physical (size and density), chemical (ligand), and base matrix properties were evaluated to determine conditions compatible with processing of crude corn endosperm extract by expanded bed adsorption. Of the inlet devices evaluated, the design with localized mixing at the inlet (as produced commercially by UpFront Chromatography A/S, Copenhagen, DK) allowed solids up to 550 microm into the column without clogging for all flow rates evaluated. A mesh at the inlet with size restriction of either 50 microm or 80 microm became clogged with very small corn particles (< 44 microm). When glass ballotini was used, large particles (550 microm) passed through for high flow rates (570 cm/h), but even small (< 44 microm) particles became trapped at a lower flow rate (180 cm/h). The physical and chemical properties of the resin determined whether solids could be eluted. The denser UpFront adsorbents allowed for complete elution of larger and more concentrated corn solids than the currently available Amersham Streamline adsorbents (Amersham Biosciences, Piscataway, NJ) as a result of the former's higher flow rate for the desired 2x expansion (570 cm/h for UpFront vs. 180 cm/h for Streamline). All corn solids < 162 microm eluted through nonderivatized UpFront resin. Larger corn solids began to accumulate due to their elevated sedimentation velocities. Feeds of < 44 microm solids at 0.45% and 2.0% dry weight successfully eluted through ion exchange adsorbents (DEAE and SP) from UpFront. However, significant accumulation occurred when the solids size increased to a feed of < 96 microm solids, thus indicating a weak interaction between corn solids and both forms of ion exchange ligands. Expanded beds operated with Streamline ion exchange adsorbents (DEAE and SP) did not allow full elution of corn solids of < 44 microm. A hyperdiffuse style EBA resin produced by Biosepra (Ciphergen Biosystems, Fremont, CA) with CM functionality showed a severe interaction with corn solids that collapsed the expanded bed and could not be eliminated with elevated flow rates or higher salt concentration.  相似文献   

3.
Human epidermal growth factor is a polypeptide hormone having many diverse biological functions. This paper first presents the recovery results of human epidermal growth factor (hEGF) immediately from the fermentation broth of recombinant Escherichia coli by using an expanded bed system (a couple of STREAMLINE25 and ÄKTA explorer 100). The influences of operational conditions such as linear flow rate, gradient length of NaCl concentration, pH and sample concentration on the purification performances of hEGF in expanded and packed bed modes with STREAMLINE DEAE resin were systematically evaluated. After optimization, the practical recovery procedure in the expanded bed mode was carried out on a scaled-up system under the conditions of linear flow rates of 183 cm/h (upward) and 37 cm/h (downward), sample volume of 300 ml and column bed height of 13.8 cm which yielded a primary product of hEGF from the cell-free supernatant containing hEGF after centrifugation at 4000 rev/min for 15 min. As a result, the hEGF concentration in the product was higher than 20% (w/v), the concentration factor was greater than 4.3 and the total yield was higher than 80%, respectively. At the same time, the results of hEGF recovery by using expanded bed adsorption (EBA), packed bed chromatography (PBC) and salting out were compared. The results show that the procedure of hEGF recovery in expanded bed adsorption has some advantages over the other two procedures, because of its higher concentration factor, recovery yield, productivity, hEGF concentration in the primary product and shorter duration of purification run.  相似文献   

4.
Adsorption chromatography in expanded beds is a widely used technology for direct capture of target proteins from fermentation broths. However, in many cases this method cannot be applied as a result of the strong tendency of cells or cell debris to interact with the adsorbent beads. To prevent contamination of the expanded bed with the biomass, STREAMLINE DEAE, anion exchanger designed for expanded bed adsorption, was modified with a layer of poly(acrylic acid) (PAA). The shielding layer of polyelectrolyte was attached to the surface of the matrix beads via electrostatic interactions. PAA with a high degree of polymerization was chosen to prevent diffusion of large polymer molecules into the pores of adsorbent. Thus, the shielding layer of PAA was adsorbed only at the mouth of the pores of STREAMLINE DEAE beads and only marginally decreased the binding capacity of the ion exchanger for bovine serum albumin, the model protein in this study. PAA-coated STREAMLINE DEAE practically did not interact with yeast cells, which otherwise bound strongly to the native adsorbent at neutral conditions. Cell-resistant PAA-coated anion exchanger was successfully used for isolation of BSA from the model protein mixture containing BSA, lysozyme (positively charged at applied conditions), and yeast cells. The layer of PAA was stable under mild elution conditions, and the modified adsorbent could be used in the repeated purification cycles.  相似文献   

5.
The adsorption kinetics of retroviral vectors to several chromatographic media, DEAE FF, Streamlinetrade mark Q XL and CHTtrade mark Ceramic Hydroxyapatite, in batch mode was investigated. The effects of buffer type, pH and operational temperature were studied. A mathematical model describing viral adsorption kinetics that considers viral degradation in solution was developed. The best results, either in terms of speed and extent of adsorbed infectious particles, were obtained with DEAE FF and Streamlinetrade mark Q XL. Fixed-bed chromatography was further investigated using DEAE FF, Q XL and Q FF, for validation of the batch adsorption process. Fixed-bed DEAE FF and Q XL proved to be good candidates for purification of MoMLV derived vectors due to resulting high yields, 53+/-13% and 51+/-7%, respectively, while removing more than 99% of protein and 90% of the DNA contaminants.  相似文献   

6.
Bruce LJ  Ghose S  Chase HA 《Bioseparation》1999,8(1-5):69-75
The effect of column verticality on liquid dispersion and separation efficiency in expanded bed adsorption columns was investigated using 1 and 5 cm diameter columns. Column misalignment of only 0.15° resulted in the reduction of the Bodenstein number from 140 to 50 for the 1 cm dia. column and from 75 to 45 for the 5 cm dia. column. This degree of misalignment was not detectable by visual assessment of adsorbent particle movement within the column. Depending on the relative importance of transport limitations, kinetic limitations and dispersion to any specific separation, this increase in dispersion with column alignment can significantly affect separation efficiency. Pure protein breakthrough profiles resulting from the application of bovine serum albumin onto STREAMLINE Q XL demonstrated that, at 10% breakthrough, 7.8% more protein could be applied to a vertical 1 cm dia. column compared to the same column misaligned by 0.15°. When an unclarified yeast homogenate was applied to a 1 cm dia. vertical column packed with STREAMLINE DEAE, 10% breakthrough of glucose-6-phosphate dehydrogenase (G6PDH) corresponded to a load 55% greater compared to the same column aligned 0.185° off-vertical. The G6PDH breakthrough curves for vertical and 0.15° off-vertical runs performed using a 5 cm column were essentially indistinguishable.  相似文献   

7.
In this report, we describe the recombinant SLO expression as a fusion protein with a C-terminal hexahistidine tag and its purification using immobilized metal affinity expanded bed adsorption (STREAMLINE(trade mark) Chelating). In order to facilitate downstream processing of the purification, an efficient fermentation process was developed focusing on the achievement of high yields of soluble protein. The purification strategy resulted in a 40% recovery of active recombinant SLO and the protein was purified eight-fold. SDS-PAGE and Western-blot analysis of the purified protein revealed the presence of a 75 Mr form, which was the estimated relative Mass of the recombinant SLO.  相似文献   

8.
The performance of a vortex flow reactor (VFR) with suspended particles for protein adsorption was studied under varying operating conditions, and resin volume fractions. The VFR behaved as an expanded bed in the regimen of laminar vortices flow. Streamline DEAE was used for bovine serum albumin (BSA) adsorption. Expanded bed VFR experiments were performed with varying geometric aspect ratios (14.6, 28.6 and 40.0) and axial superficial velocity (100–300 cm h−1) to investigate their influence on productivity and dynamic capacity. The results are compared with literature data on an expanded bed column (EBC). Adsorption breakthrough curves were fitting to a simple two-parameter model.  相似文献   

9.
Topical treatments of chronic infections with monoclonal antibodies will require large quantities of antibodies. Because plants have been proven capable of producing multisubunit antibodies and provide for large-scale production, they are likely hosts to enable such applications. Recovery costs must also be low because of the relatively high dosages required. Hence, we have examined the purification of a human secretory antibody from corn endosperm extracts by processing alternatives of packed bed and expanded bed adsorption (EBA). Because of the limited availability of the transgenic corn host, the system was modeled by adding the antibody to extracts of nontransgenic corn endosperm. Complete clarification of a crude extract followed by packed bed adsorption provided antibody product in 75% yield with 2.3-fold purification (with antibody accounting for 24% of total protein). The small size of the packed bed, cation-exchange resin SP-Sepharose FF and the absence of a dense core (present in EBA resins) allowed for more favorable breakthrough performance compared to EBA resins evaluated. Four adsorbents specifically designed for EBA operation, with different physical properties (size and density), chemical properties (ligand), and base matrices were tested: SP-steel core resin (UpFront Chromatography), Streamline SP and Streamline DEAE (Amersham Biosciences), and CM Hyper-Z (BioSepra/Ciphergen Biosystems). Of these, the small hyperdiffuse-style resin from BioSepra had the most favorable adsorption characteristics. However, it could not be utilized with crude feeds due to severe interactions with corn endosperm solids that led to bed collapse. UpFront SP-steel core resin, because of its relatively smaller size and hence lower internal mass transfer resistance, was superior to the Streamline resins and operated successfully with application of a crude corn extract filtered to remove all solids of >44 microm. However, the EBA performance with this adsorbent provided a yield of only 61% and purification factor of 2.1 (with antibody being 22% of total protein). Process simulation showed that capital costs were roughly equal between packed and expanded bed processes, but the EBA design required four times greater operating expenditures. The use of corn endosperm as the starting tissue proved advantageous as the amount of contaminating protein was reduced approximately 80 times compared to corn germ and approximately 600 times compared to canola. Finally, three different inlet designs (mesh, glass beads, and mechanical mixing) were evaluated on the basis of their ability to produce efficient flow distribution as measured by residence time distribution analysis. All three provided adequate distribution (axial mixing was not as limiting as mass transfer to the adsorption process), while resins with different physical properties did not influence flow distribution efficiency values (i.e., Peclet number and HETP) when operated with the same inlet design.  相似文献   

10.
Physical and biochemical comparison has been made of the performance of a simple fluidised bed contactor and a commercial expanded bed contactor, characterised by identical dimensions, and operated at various settled bed heights with two anion exchange adsorbents. The contactors were tested with various feedstocks comprising bovine albumin in the absence and presence of 20 g dry cell weight biomass litre-1. Earlier classification of the simple contactor as a single-stage, well mixed fluidised bed is reviewed. The relative merits of STREAMLINE DEAE and DEAE Spherodex LS as fluidisable, anion exchange adsorbents are discussed.  相似文献   

11.
The aim of this study is to prepare cholesterol-imprinted polymeric particles. N-Methacryloyl-(L)-tyrosinemethylester (MAT) was chosen as the complexing monomer. In the first step, functional monomer MAT was synthesized by the reaction of L-tyrosine methylester and methacryloyl chloride and characterized by FTIR and NMR. Then, cholesterol was complexed with MAT in different mol ratios and the cholesterol-imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-(L)-tyrosine methylester) [MIP] particles were synthesized by bulk polymerization. After that, the template molecules (i.e., cholesterol) were removed using chloroform. MIP particles were characterized by elemental analysis, FTIR, SEM, swelling tests and surface area measurements. Cholesterol adsorption experiments were performed in a batch experimental set-up. Adsorption medium was methanol or intestinal mimicking solution. Stigmasterol and estradiol were used as competing molecules in selectivity tests. Obtained results were as follows: swelling ratio of MIP and non-imprinted (NIP) particles were 60.8% and 44.1% in water. With the increase in the amount of MAT in the polymerization medium, incorporation of MAT was increased (16.6-78.0 micromol/g). SEM photographs showed the surface roughness and porosity. Specific surface area of NIP and MIP particles were found as 19.2 and 31.5 m(2)/g, respectively. Template molecules (i.e., cholesterol) were removed from the polymer structure in the ratio of 76-84% of the initial concentration. Cholesterol adsorption increased with the increase in cholesterol concentration up to 1.5 mg/mL. MIP particles prepared using higher amounts of cholesterol exhibit significantly higher capacity to the NIP particles (i.e., control polymer). MIP particles were 3.09 and 3.60 times selective with respect to the stigmasterol and estradiol, respectively. Reusability of MIP particles was also investigated. MIP particles showed negligible loss in the cholesterol adsorption capacity after five adsorption-desorption cycles with the same adsorbent.  相似文献   

12.
The high resolution afforded by packed bed chromatography makes it an indispensable operation in the downstream processing of therapeutic molecules. Packed bed performance is however inherently susceptible to changes in feed stream characteristics and fouling processes. The impact of fouling is seldom considered during the early stages of bioprocess development which is concerned with the selection of purification conditions. Instead these are performed with rigorously clarified feeds. Under such conditions, chromatography is effectively treated as an isolated step, independent from its preceding unit operations. In this study, we demonstrate how windows of operation could be used to visualize the impact of changes in the preceding clarification step on the fouling response of a subsequent cation exchange capture step. Laboratory columns (2,5 and 12 cm height) were subjected to varying fouling challenges of Escherichia coli lysate containing different amounts of solids carried over from the previous step. Changes in trans‐column pressure drop and breakthrough of the target protein (Fab′) were monitored. The limits of operability of the resin were determined with respect to the process material's properties. This information was used to extract the parameters for the adsorption kinetics used in the general rate (GR) model to create windows of operation for manufacturing scale operation. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

13.
采用5种不同极性的树脂(AB-8、S-8、NKA-9、D-101和X-5)来评价对苜蓿皂苷的吸附和解吸附作用,其中中等极性的AB-8树脂对苜蓿皂苷具有最大的吸附量,用55%~65%的乙醇溶液能有效地将吸附的皂苷洗脱下来。当苜蓿粗提物量和AB-8树脂量为1∶1时,树脂的吸附量达到饱和。采用AB-8树脂,用90%乙醇洗脱,苜蓿提取物的最大解吸附量为108.4 mg/g干重树脂。通过大孔树脂吸附和解吸附,将90%乙醇洗脱液浓缩,皂苷含量(53%)是苜蓿粗提物含量(5.68%)的9倍。结果表明,AB-8大孔吸附树脂可用于苜蓿皂苷的大规模制备。  相似文献   

14.
Adsorption of BSA on strongly basic chitosan: Equilibria   总被引:1,自引:0,他引:1  
Equilibrium isotherms for adsorption of bovine serum albumin (BSA) on a new adsorbent, a strongly basic crosslinked chitosan (Chitopearl 2503), which is hard and is not compressed by pressure in a column, have been presented and compared with diethylaminoethyl (DEAE) Sepharose Fast Flow (hard gel). In Chitopearl 2503, when only buffer existed in the BSA solution, the isotherm was not affected by the initial concentration of BSA but it was affected by pH considerably. The isotherm was favorable when pH >/= pl ( congruent with 4.8). When NaCl existed in the BSA solution, the amount of BSA absorbed on the resin decreased with increasing concentration of NaCl. When the concentration of NaCl was 200 mol/m(3), the resin did not adsorb BSA at all. The equilibrium data were correlated by the Langmuir equation reasonably well. The BSA may be adsorbed mainly by electrostatic attraction between negatively charged BSA and positively charged quanternary ammonium groups at pH > pl and by protonation reaction of the primary ammonium groups by weak acid groups of BSA at pH = pl. These are confirmed by measuring the amount of inorganic ion exchanged for BSA. In DEAE Sepharose Fast Flow, the isotherm was favorable when pH > pl but unfavorable ar pH = pl. The saturation capacity of BSA on Chitopearl 2503 is about 1.3 to 2.2 times larger than that on DEAE Sepharose Fast Flow. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
In this work, the performance and adsorption characteristics of macroporous resins for the recovery and enrichment of ganoderic acid (GA)-Mk and GA-T from Ganoderma lucidum mycelia were systematically evaluated. ADS-8 resin displayed the best adsorption and desorption capacities among the tested resins based on batch experiments. The interaction between solute and ADS-8 resin at different temperatures was described in terms of Langmuir and Freundlich isotherms, and the equilibrium experimental data were well fitted to the two isotherms. Thermodynamic analysis indicated the exothermic and spontaneous nature of the adsorption process. The adsorption capacity of ADS-8 resin was found to depend strongly on the pH value of the initial solution. Dynamic adsorption and desorption tests were performed on an ADS-8 resin-packed column to obtain optimal parameters for recovering GA-Mk and GAT from G. lucidum extract. Under optimized conditions, a laboratory scale-up preparation of GA-Mk and GA-T was carried out. The contents of GA-Mk and GA-T were increased from 45 to 22 mg/g in the crude extract to 352 and 141 mg/g in the final product with recovery yields of 90.1 and 72.2%, respectively. These results demonstrated that ADS-8 resin chromatography could act as a useful approach for obtaining ganoderic acids from G. lucidum mycelia.  相似文献   

16.
In the course of developing a cost-effective, scaleable process for the purification of a recombinant protein from Chinese hamster ovary (CHO) suspension cell culture, we investigated direct capture of this molecule using expanded bed adsorption (EBA). EBA combines clarification, purification, and concentration of the product into a single step. The unclarified bioreactor material was directly applied to a STREAMLINE 25 column containing an affinity STREAMLINE adsorbent. This work focused on simplifying the EBA operations and minimizing the overall processing time by running the EBA column unidirectionally, eluting in the expanded bed mode, and coupling the EBA column directly with ion exchange or hydrophobic interaction chromatography. Unidirectional EBA was clearly a simpler unit operation and did not require the use of specialized equipment. The increase in the elution pool volume was insignificant, especially when the EBA column was eluted directly onto the downstream column. Scale-down was simple and could be automated. Coupling of unidirectional EBA with a downstream purification step reduced processing time, equipment requirements and cost.  相似文献   

17.
Brobjer M 《Bioseparation》1999,8(1-5):219-228
A capture step was developed using the expanded bed adsorption technology to separate a protein of interest on a cation exchanger from a crude Escherichia coli homogenate. This method was developed in bench-top scale using a STREAMLINE 25 column (Amersham Pharmacia Biotech, Sweden) and STREAMLINE SP. The development was based on earlier experiments performed in a packed bed column (SP-Sepharose FF) to investigate the conditions for sample application, wash and elution. The packed bed method was transformed into an expanded bed method by slightly modifying the wash procedure and cleaning in place (CIP). This method was then scaled-up to pilot scale and used for production of the fusion protein according to cGMP.The yield over the step in pilot scale was 70-85% compared with only 30-50% in small scale. Pressure build-up, attachment of biomass to the adsorbent and collapses of the expanded bed were phenomena seen in small scale but not in pilot scale. The scale-up of the step significantly improved the performance of the step.  相似文献   

18.
The use of expanded beds of STREAMLINE ion exchange adsorbents for the direct extraction of an intracellular enzyme glucose-6-phosphate dehydrogenase (G6PDH) from unclarified yeast cell homogenates has been investigated. It has been demonstrated that such crude feedstocks can be applied to the bed without prior clarification steps. The purification of G6PDH from an unclarified yeast homogenate was chosen as a model system containing the typical features of a direct extraction technique. Optimal conditions for the purification were determined in small scale, packed bed experiments conducted with clarified homogenates. Results from these experiments were used to develop a preparative scale separation of G6PDH in a STREAMLINE 50 EBA apparatus. The use of an on-line rotameter for measuring and controlling the height of the expanded bed when operated in highly turbid feedstocks was demonstrated. STREAMLINE DEAE has been shown to be successful in achieving isolation of G6PDH from an unclarified homogenate with a purification factor of 12 and yield of 98% in a single step process. This ion exchange adsorbent is readily cleaned using simple cleaning-in-place procedures without affecting either adsorption or the bed expansion properties of the adsorbent after many cycles of operation. The ability of combining clarification, capture, and purification in a single step will greatly simplify downstream processing flowsheets and reduce the costs of protein purification. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
The use of an expanded bed of STREAMLINE Red H-7B for the purification of the intracellular glycolytic enzyme glucose 6-phosphate dehydrogenase (G6PDH) directly from untreated preparations of disrupted yeast cells has been investigated. Small-scale experiments, carried out in packed beds, have shown that the optimal pH for adsorption is 6.0 and have enabled optimization of elution conditions using a series of eluents. The dynamic capacity of the adsorbent for G6PDH was determined in a small expanded bed to be 28 units/mL. These results were used to develop a preparative scale separation of G6PDH in a STREAMLINE 50 expanded bed column. G6PDH was purified directly from an unclarified yeast homogenate in 99% yield with an average purification factor in the eluted fraction of 103. Cleaning-in-place (CIP) procedures using 0.5 M NaOH and 4M urea in 60% (v/v) ethanol have demonstrated that the adsorbent can be regenerated with no loss of adsorption capacity of alteration of bed expansion characteristics after many cycles of operation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
The present studies were undertaken to confirm reports of high concentrations of the C-terminal tetrapeptide of gastrin in hog antral mucosa. A method was developed whereby synthetic tetrapeptide added to boiling water extracts of hog antral mucosa could be purified to homogeneity by adsorption to Amberlite XAD2 resin, ion exchange chromatography on DEAE cellulose, and reverse phase HPLC. The product had the amino acid composition of gastrin tetrapeptide. When the same method was used on antral mucosa without prior addition of synthetic G4, several small peaks of material with C-terminal immunoreactivity could be found in DEAE column eluates but none could be unequivocally identified as the tetrapeptide. In the same column runs there was a relatively large peak of immunoreactivity eluting later than the tetrapeptide. This material was purified to homogeneity by HPLC and on the basis of its amino acid composition and sequence was identified as the C-terminal hexapeptide of gastrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号