首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A greenhouse experiment was conducted to examine the effect of foliar application of triacontanol (TRIA) on two cultivars (cv. S-24 and MH-97) of wheat (Triticum aestivum L.) at different growth stages. Plants were grown in full strength Hoagland’s nutrient solution under salt stress (150 mM NaCl) or control (0 mM NaCl) conditions. Three TRIA concentrations (0, 10, and 20 μM) were sprayed over leaves at three different growth stages, i.e. vegetative (V), boot (B), and vegetative + boot (VB) stages (two sprays on same plants, i.e., the first at 30-d-old plants and the second 78-d-old plants). Salt stress decreased significantly growth, net photosynthetic rate (P N), transpiration rate (E), chlorophyll contents (Chl a and b), and electron transport rate (ETR), while membrane permeability increased in both wheat cultivars. Stomatal conductance (g s) decreased only in salt-sensitive cv. MH-97 under saline conditions. Foliar application of TRIA at different growth stages enhanced significantly the growth, P N, g s, Chl a and b contents, and ETR, while membrane permeability was reduced in both cultivars under salt stress. Of various growth stages, foliar-applied TRIA was comparatively more effective when it was applied at V and VB stages. Overall, 10 μM TRIA concentration was the most efficient in reducing negative effects of salinity stress in both wheat cultivars. The cv. S-24 showed the better growth and ETR, while cv. MH-97 exhibited higher nonphotochemical quenching.  相似文献   

2.
Three-month-old mulberry (Morus alba L.) cultivars (salt tolerant cv. S1 and salt sensitive cv. ATP) were subjected to different concentrations of NaCl for 12 d. Leaf area, dry mass accumulation, total chlorophyll (Chl) content, net CO2 assimilation rate (P N), stomatal conductance (g s), and transpiration rate (E) declined, and intercellular CO2 concentration (C i) increased. The changes in these parameters were dependent on stress severity and duration, and differed between the two cultivars. The tolerant cultivar showed a lesser reduction in P N and g s coupled with a better C i and water use efficiency (WUE) than the sensitive cultivar. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
M. Ashraf 《Plant and Soil》1989,119(2):205-210
The physiological basis of salt tolerance of two cultivars of blackgram, cv Candhari Mash (relatively salt tolerant) and cv Mash 654 (salt sensitive), was assessed in salinized sand culture at the flowering stage. Increasing NaCl concentration in the rooting medium significantly reduced the chlorophyll a, chlorophyll b, and total chlorophyll, leaf water potential (Ψw), leaf solute potential (Ψs), and leaf turgor potential (Ψp) in both the cultivars. Leaf protein and proline content was increased as a result of increasing salt concentration in both cultivars. High salt concentrations had no significant effect on the seed protein content of both cultivars. At high salinities, cv Candhari Mash had significantly greater chlorophyll a, chlorophyll b and total chlorophyll, leaf water potential, solute potential, and turgor potential than cv Mash 654, but the latter had greater leaf proline content than cv Candhari Mash. Cultivars did not differ significantly for both leaf and seed protein contents. The relatively salt tolerant cv Candhari Mash maintained high leaf water potential and turgor potential to resist salt injury. Leaf proline content had negative correlation with salt tolerance in blackgram.  相似文献   

4.
Kumar  S. Giridara  Lakshmi  A.  Madhusudhan  K.V.  Ramanjulu  S.  Sudhakar  C. 《Photosynthetica》2000,36(4):611-616
Three-month-old mulberry (Morus alba L.) cultivars (salt tolerant cv. S1 and salt sensitive cv. ATP) were subjected to different concentrations of NaCl for 12 d. Leaf area, dry mass accumulation, total chlorophyll (Chl) content, net CO2 assimilation rate (P N), stomatal conductance (g s), and transpiration rate (E) declined, and intercellular CO2 concentration (C i) increased. The changes in these parameters were dependent on stress severity and duration, and differed between the two cultivars. The tolerant cultivar showed a lesser reduction in P N and g s coupled with a better C i and water use efficiency (WUE) than the sensitive cultivar.  相似文献   

5.
Tolerance to Water Stress in Tomato Cultivars   总被引:2,自引:0,他引:2  
The effects of plant water stress imposed at vegetative, flowering, and fruiting stages of four cultivars of tomato (Lycopersicon esculentum Mill.) on net photosynthetic rate (P N), stomatal conductance (g s), transpiration rate (E), osmotic adjustment, and crop water stress index (CWSI) were investigated. Osmotic adjustment was the highest in cv. Arka Meghali, followed by cv. RFS-1. CWSI was lowest in cv. Arka Meghali and highest in cv. Pusa Ruby. Significant reduction in g s, E, and P N was observed in all the cultivars. The maximum reduction in E was observed in cv. Arka Saurabh during the fruiting stage (62.4 %) and maximum reduction in P N at the flowering stage in Pusa Ruby (53.1 %). Maximum P N was observed in Arka Meghali under water stress. The values of internal CO2 concentration (C i) did not follow the decrease in g s which might be taken as an indication of mesophyll (non-stomatal) limitation to P N. Magnitude of P N decrease accompanying g s reductions varied in the four cultivars. Arka Meghali which had highest rate of gas exchange efficiency (P N/g s) under water deficits can be recommended for rainfed cultivation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
In summer seasons of 1991 and 1992 the gas exchange and leaf water relations were analysed in two peanut cultivars: drought tolerant cv. GG 2 (DT) and drought sensitive cv. JL 24 (DS). Soil moisture stress was imposed by withholding irrigation at pod development phase. The decrease in photosynthesis (PN) under stress was associated with a decrease in stomatal conductance (gs) and relative water content (RWC). The PN and RWC were significantly higher under stress in DT than DS. On relief of stress the gs and RWC recovered more quickly in DT than DS. The maintenance of higher RWC (>80 %), gs and PN under stress appears to be imparting drought tolerance in peanut.  相似文献   

7.
The complex nature of plant resistance to adverse environmental conditions, such as salinity and drought requires a better understanding of the stress-induced changes that may be involved in tolerance mechanisms. Here we investigate stress-related morpho-physiological effects during vegetative and reproductive growth in two Japonica rice cultivars (Bomba and Bahia) exposed to a range of NaCl concentrations from the seedling stage. The stress-related detrimental effects were observed either earlier or to a higher extent in cv. Bomba than in Bahia. Damages to the photosynthetic apparatus were related to loss of chlorophyll (Chl) and to a decrease of the maximum potential efficiency of PSII (F v /F m), affecting negatively net CO2 assimilation rate (P N). Stress-related leaf anatomical alterations were analysed during the vegetative and reproductive stages. The size of bulliform cells as well as dimensions related to the vascular system increased under mild stress but decreased in the longer term or under higher stress level. The pattern of the anatomical alterations observed at the reproductive stage under 20 mM NaCl was reflected in poor panicle development and yield loss, with effects more pronounced in cv. Bomba than in Bahia. In summary, our results show that some physiological and, particularly, leaf anatomical responses induced by NaCl stress are distinctive indicators of sensitivity to salt stress in rice cultivars.  相似文献   

8.
Changes in Soluble Proteins in Spring Wheat Stressed with Sodium Chloride   总被引:4,自引:0,他引:4  
Two newly developed salt-tolerant genotypes of spring wheat, S24 and S36 and their salt-tolerant parents, LU26S (from Pakistan) and Kharchia (from India) along with a salt-sensitive cv. Potohar were grown in full strength Hoagland's nutrient solution with 0 or 125 mM NaCl. At the onset of the booting stage third leaf from top was sampled for protein analysis. Total soluble protein content increased due to salt treatment in all cultivars/lines but this increase was more marked in salt-sensitive cv. Potohar and low in salt-tolerant S24 as compared with the other lines. Patterns of labelled polypeptides in all cultivars/lines were identical; the differences were only quantitative (for instance, 29 kD and 48 kD polypeptides were reduced significantly due to NaCl treatment only in the cv. Potohar). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The photosynthetic responses to salt stress were examined in a wheat (Triticum aestivum L. cv. Asakaze)–barley (Hordeum vulgare L. cv. Manas) 7H addition line having elevated salt tolerance and compared to the parental wheat genotype. For this purpose, increasing NaCl concentrations up to 300 mM were applied and followed by a 7-day recovery period. Up to moderate salt stress (200 mM NaCl), forcible stomatal closure, parallel with a reduction in the net assimilation rate (P N), was only observed in wheat, but not in the 7H addition line or barley. Since the photosynthetic electron transport processes of wheat were not affected by NaCl, the impairment in P N could largely be accounted for the salt-induced decline in stomatal conductance (g s), accompanied by depressed intercellular CO2 concentration and carboxylation efficiency. Both, P N and nonstomatal limitation factors (Lns) were practically unaffected by moderate salt stress in barley and in the 7H addition line due to the sustained g s, which might be an efficient strategy to maintain the efficient photosynthetic activity and biomass production. At 300 mM NaCl, both P N and g s decreased significantly in all the genotypes, but the changes in P N and Lns in the 7H addition line were more favourable similar to those in wheat. The downregulation of photosynthetic electron transport processes around PSII, accompanied by increases in the quantum yield of regulated energy dissipation and of the donor side limitation of PSI without damage to PSII, was observed in the addition line and barley during severe stress. Incomplete recovery of P N was observed in the 7H addition line as a result of declined PSII activity probably caused by enhanced cyclic electron flow around PSI. These results suggest that the better photosynthetic tolerance to moderate salt stress of barley can be manifested in the 7H addition line which may be a suitable candidate for improving salt tolerance of wheat.  相似文献   

10.
Ashraf  M.  Arfan  M.  Shahbaz  M.  Ahmad  Ashfaq  Jamil  A. 《Photosynthetica》2002,40(4):615-620
Thirty-days-old plants of two cultivars of okra (Hibiscus esculentus L.), Sabzpari and Chinese-red, were subjected for 30 d to two water regimes (100 and 60 % field capacity). Leaf water potential and osmotic potential of both lines decreased significantly with the imposition of drought. Both the leaf pressure potential and osmotic adjustment were much lower in Chinese-red than those in Sabzpari. Chlorophyll (Chl) b content increased, whereas Chl a content remained unchanged and thus Chl a/b ratios were reduced in both lines. Drought stress also caused a significant reduction in net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and water use efficiency (WUE) especially in cv. Sabzpari. The lines did not differ in intrinsic WUE (P Ngs) or intercellular/ambient CO2 ratio. Overall, the growth of two okra cultivars was positively correlated with P N, but not with g s or P N/E, and negatively correlated with osmotic adjustment.  相似文献   

11.
Wheat (Triticum aestivum L.) genotypes K-65 (salt tolerant) and HD 2329 (salt sensitive) were grown in pots under natural conditions and irrigated with NaCl solutions of electrical conductivity (ECe) 4.0, 6.0, and 8.0 dS m−1. Control plants were irrigated without saline water. Observations were made on the top most fully expanded leaf at tillering, anthesis, and grain filling stages. The net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) were reduced with the addition of NaCl. The reduction was higher in HD 2329 than in K-65. Salinity enhanced leaf to air temperature gradient (ΔT) in both the genotypes. NaCl increased the activities of superoxide dismutase (SOD) and peroxidase (POX); the percent increment was higher in K-65. The sodium and potassium contents were higher in the roots and leaves of K-65 over HD 2329. Thus at cellular level K-65 has imparted salt tolerance by manipulating P N, E, g s, and K accumulation in leaves along with overproduction of antioxidative enzyme activities (SOD and POX).  相似文献   

12.
Morant-Avice  A.  Houchi  R.  Jurvilliers  P.  Tremblin  G. 《Photosynthetica》1999,36(3):465-469
Three cultivars of winter hexaploid triticales M2A/JAIN, DF 99/Yogu "S5", and Asseret were grown on nutrient solution with or without 75 mM NaCl. Stomatal permeability and transpiration rate decreased in all salt-stressed triticale cultivars. Net photosynthetic rate (PN) of cv. M2A and Asseret was not affected by NaCl. On the contrary, PN in cv. DF99 was reduced in relation to control plants. A higher water-use efficiency under saline conditions led to better salt tolerance of cv. M2A compared to cvs. Asseret and DF99. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Changes in the antioxidant defense system and proline accumulation were examined at different growth stages (vegetative, boot and reproductive) in plants of two hexaploid spring wheat cultivars (S-24, salt tolerant; MH-97, salt sensitive), grown in hydroponics and salinity-affected with 0, 50, 100 and 150 mM of NaCl. Salt stress provoked a marked decline in plant dry mass and ascorbic acid contents, and increased proline, total soluble proteins and H2O2 contents in both wheat cultivars at all growth stages. However, higher accumulation of proline and H2O2 contents was recorded at the vegetative and boot stages, respectively, in both wheat cultivars. Salt stress caused a consistent rise in the activities of some key antioxidant enzymes (CAT, SOD, POD, and APX) at all growth stages only in the salt tolerant cultivar S-24, whereas such pattern of enhanced activities of enzymatic antioxidants in cv. MH-97 was found only at the vegetative stage under saline regimes. Maximum activities of various enzymatic antioxidants were observed at the vegetative stage in both wheat cultivars under varying external salt treatments. The results showed that high salinity tolerance of cv. S-24, as manifested by lower decrease in its dry matter under salt stress, was associated with higher activities of antioxidant enzymes, increased accumulation of proline, and lower levels of H2O2, as compared with cv. MH-97 at all growth stages under saline regimes.  相似文献   

14.
A sand culture experiment assessed whether gibberellic acid(GA3) could alleviate the adverse effects of salt stress on thegrowth, ion accumulation and photosynthetic capacity of two spring wheatcultivars, Barani-83 (salt sensitive) and SARC-I (salt tolerant).Three-week-oldplants of both cultivars were exposed to 0, 100 and 200 molm–3 NaCl in Hoagland's nutrient solution. Threeweeks after the initiation of salt treatments, half of the plants of eachcultivar were sprayed overall with 100 mg L–1GA3 solution. Plants were harvested 3 weeks after theapplication of GA3. Fresh and dry weights of shoots and roots, plantheight and leaf area were decreased with increasing supply of salt, butgibberellic acid treatment caused a significant ameliorative effect on both thecultivars with respect to these growth attributes. However, GA3caused no significant change in grain yields but increased grain size in boththe cultivars. Saline growth medium caused a marked increase in theconcentrations of Na+ and Cl in shoots androots of both the lines. However, with the application of GA3accumulation of Na+ and Cl was enhanced inboth shoots and roots of both wheat lines, but more ions accumulated in saltsensitive Barani-83 than in salt tolerant SARC-1. Net CO2assimilation rate (A) of both wheat lines decreased consistently withincreasingsupply of NaCl, but application of GA3 alleviated the effect of saltstress on this variable in both the cultivars. However, the ameliorative effectof the hormone was more pronounced in Barani-83 than in SARC-1. Althoughwater-use efficiency (A/E=CO2assimilation/transpiration) and intrinsic water use efficiency(A/gs=CO2 assimilation/stomatalconductance) decreased significantly with increasing salt concentration of thegrowth medium in both the cultivars, GA3 was more effective inenhancing both the water-use attributes in Barani-83 than in SARC-1. Overall,GA3 treatment stimulated the vegetative growth of both cultivars ofwheat under salt stress, but it caused a slight reduction in grain yield.GA3 treatment enhanced the accumulation of Na+ andCl in both shoots and roots of wheat plants under saltstress.It also caused a significant increase in photosynthetic capacity in both linesat the vegetative stage under both saline and non-saline media.  相似文献   

15.
In some regions of the world, low annual precipitation necessitates irrigation of crop plants which usually leads to soil salinity. Due to climatic changes this effect is also expected in the countries of Central Europe, and so in Poland. The aim of the study was (1) to compare tolerance to salt stress of Polish Triticum aestivum cvs. ‘Bogatka’ and ‘Banderola’ with T. durum cv. ‘Komnata’ and breeding line 121, and (2) to indicate the physiological parameter/parameters most suitable for such comparison. The investigation was performed in two experiments. In the first one, the germination ability of caryopses and coleoptiles’ growth were estimated at 0–250 mM of NaCl. The second experiment was conducted on plants grown in a glasshouse in saline soil at 0–150 mM of NaCl for 6 weeks. Salt tolerance was evaluated on the basis of following parameters: chlorophyll fluorescence, net photosynthesis rate (P N), transpiration rate (E), stomatal conductance (g s), cell membrane permeability (EL), proline content, fresh weight (FW), dry weight (DW), and relative water content (RWC). Highest germination of caryopses of durum cultivars was recorded at all the salinity levels; however, their coleoptiles were shorter than coleoptiles of bread wheat cultivars. Analysis of chlorophyll fluorescence showed that applied salt doses did not disturb the light phase of photosynthesis in all cultivars under study. Plants of durum wheat showed the higher dissipation of energy excess at the level of the antenna chlorophyll (DIo/CSm) under salinity as compared to plants of bread wheat. Both ‘Komnata’ and line 121 showed stronger P N reduction as an effect of salinity. A decline of P N was closely connected with a decrease in g s. The P N correlated with a decrease in DW in all studied cultivars except ‘Bogatka’. Control plants of ‘Komnata’ and line 121 were characterized by higher EL and proline level than bread wheat cultivars. An increasing cell membrane permeability correlated with a decrease of RWC in ‘Banderola’ and ‘Komnata’. The content of proline under the increasing salinity correlated with changes of RWC in ‘Banderola’, ‘Komnata’ and line 121, which indicate protectoral role of proline against dehydration of tissue. Dry weight and RWC seem to be the parameters most useful in the salt-tolerance estimation of wheat plants. Taking into account the studied parameters ‘Banderola’ could be recognized as more salt tolerant, the degree of salinity tolerance of ‘Bogatka’ is the same as line 121, while ‘Komnata’ seems to be the most salt sensitive. The salt tolerance of T. aestivum and T. durum depends on the cultivar rather than the wheat species.  相似文献   

16.
The effects of increasing relative humidity on the growth and salt tolerance of two melon (Cucumis melo L.) cultivars, Revigal C-8 (salt sensitive) and Galia (salt tolerant) was investigated. One month after germination, the plants were exposed for 15 d to 0 (control) and 80 mM NaCl, under relative humidity (RH), 30 and 70 %. The growth of the whole plant, leaf, stem and root of cv. Revigal C-8 was increased with increasing RH. On the other hand, cv. Galia showed an increase in root growth with increasing RH only under the NaCl treatment. Under salinity, most of the Na+ was withheld in the stems. An increase in RH in the NaCl treatment significantly decreased Na+ and Cl concentrations in leaves of cv. Revigal C-8, while it had no effect on their concentrations in cv. Galia. In both cultivars, increasing RH under NaCl condition significantly decreased water contents in leaves and stems, and increased osmotic potential in roots. The amount of the root exudate of cv. Galia was significantly decreased with increasing RH, while it was not affected in cv. Revigal C-8. Under the NaCl treatment, cv. Galia had significantly higher leaf osmotic potential than cv. Revigal C-8 at both relative humidities and higher amount of root exudate at 30 % RH.  相似文献   

17.
The ontogenetic changes in growth, and the diurnal changes in net photosynthetic rate (PN) and stomatal conductance were studied in two peanut cultivars of different habit groups. Significant cultivar differences were noticed: the prostrate cv. M 13 was found superior to the erect cv. J 11 in all the parameters studied. Specific leaf mass and the rates of gross photosynthesis and respiration were higher in cv. M 13 than in cv. J 11. In vegetative phase, the maximum PN was in cv. J 11, but in pod filling phase, it was in cv. M 13. The differences in growth and PN of the cultivars were significant after the onset of reproductive sink. Therefore, the screening for higher PN has to be made at the pod-filling phase, and between 09.00 and 10.00 of the day (at optimum temperature).  相似文献   

18.
Deng  Xi-ping  Shan  Lun  Ma  Yong-qing  Inanaga  Shinobu 《Photosynthetica》2000,38(2):187-192
Yields of wheat in semiarid and arid zones are limited by drought, and water condition is very important at each stage of development. Studies carried out at Loess Plateau in the northwestern part of China indicated that yield of spring wheat (Triticum aestivum L.) cv. Dingxi 81-392 was reduced by 41% when subjected to water stress. The effects of two water regimens on net photosynthetic rate (P N), stomatal conductance (g s), and intercellular CO2 concentration (C i) were investigated at the jointing, booting, anthesis, and grain filling stages. Low soil moisture in comparison to adequate one had invariably reduced P N during the diurnal variations at the four growth stages. P N and g s in both soil moisture regimes was maximally reduced at midday. C i and the stomatal limitation fluctuated remarkably during photosynthesis midday depression processes, especially at the grain filling stage. Hence atmospheric drought at midday was one of the direct causes inducing stomata closure and the g s depression, but it was beneficial for maintaining stable intrinsic water use efficiency. Fluctuation in C i implicated that non-stomatal limitation also plays an important role during the period of photosynthesis midday depression. Consequently stomatal and/or non-stomatal limitation are the possible cause of the midday photosynthesis decline.  相似文献   

19.
Effects of plant hormones indole-3-yl-acetic acid (IAA), gibberellic acid (GA), benzylaminopurine (BAP), abscisic acid (ABA) and ethrel (ETH) in 5 M concentration on gas exchange, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO, EC 4.1.1.39) activity, pigment content and yield in cotton (Gossypium hirsutum L. cv. H-777) under drought were studied. At reproductive stage (55 – 60 d after sowing) these hormones were sprayed on shoots one day prior to stress imposition by withholding irrigation. The soil moisture of control plants was kept at field capacity. Net photosynthetic rate (PN), stomatal conductance (gs), transpiration rate (E), carboxylation efficiency (CE), water use efficiency (WUE), RuBPCO activity, boll number per plant, seed number per plant and lint mass per plant significantly decreased at drought while chlorophyll (Chl) b content and flower number per plant increased. ABA and ETH significantly reduced gas exchange parameters, Chl a and Chl b content. Detrimental drought effect on PN, gs, E, CE, RuBPCO and lint mass per plant was significantly alleviated by BAP and also its effect on seed number and lint mass per plant was significantly alleviated with the ABA treatment.  相似文献   

20.
Water status parameters, flag leaf photosynthetic activity, abscisic acid (ABA) levels, grain yield, and storage protein contents were investigated in two drought-tolerant (Triticum aestivum L. cv. MV Emese and cv. Plainsman V) and two drought-sensitive (cvs. GK élet and Cappelle Desprez) wheat genotypes subjected to soil water deficit during grain filling to characterize physiological traits related to yield. The leaf water potential decreased earlier and at a higher rate in the sensitive than in the tolerant cultivars. The net CO2 assimilation rate (P N) in flag leaves during water deficit did not display a strict correlation with the drought sensitivity of the genotypes. The photosynthetic activity terminated earliest in the tolerant cv. Emese, and the senescence of flag leaves lasted 7 days longer in the sensitive Cappelle Desprez. Soil drought did not induce characteristic differences between sensitive and tolerant cultivars in chlorophyll a fluorescence parameters of flag leaves during post-anthesis. Changes in the effective quantum yield of PSII (ΦPSII) and the photochemical quenching (qP) depended on the genotypes and not on the sensitivity of cultivars. In contrast, the levels of ABA in the kernels displayed typical fluctuations in the tolerant and in the sensitive cultivars. Tolerant genotypes exhibited an early maximum in the grain ABA content during drought and the sensitive cultivars maintained high ABA levels in the later stages of grain filling. In contrast with other genotypes, the grain number per ear did not decrease in Plainsman and the gliadin/glutenin ratio was higher than in the control in Emese during drought stress. A possible causal relationship between high ABA levels in the kernels during late stages of grain filling and a decreased grain yield was found in the sensitive cultivars during drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号