首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种快速鉴定转基因植物纯合体的新方法   总被引:3,自引:0,他引:3  
植物转化中鉴定转基因植物的整合性是一个很重要的步骤,常规方法是对独立分离的转基因T1代植株产生的T2代进行转基因分离比率研究,以检测T1代的转基因整合状态,不仅费时费力,而且浪费了T1代资源。本介绍一种应用双重定量实时PCR技术鉴定转基因植物纯合子的新方法:以T1代植物DNA为模板,根据转基因后代的Ct表型值鉴定其转基因整合状态,Ct值接近2的为转基因纯合型,Ct值接近1的为转基因杂合型。用这种方法,可以同时对数十个T1代转基因幼苗的整合状态进行快速鉴定,准确率为100%。  相似文献   

2.
Precise characterization of transgene insertion is necessary for phenotype interpretation of transgenic animals. To check for the presence of deletions, estimate the number of inserted transgene copies, and in addition, identify the zygosity of transgenic mice, gene copy numbers were determined by real-time quantitative PCR. Instead of correlating tested samples to a single relative standard curve, serial dilution curves were constructed for every mouse sample. A novel statistical approach was designed in which mice with the same copy number were characterized by the adjusted group mean and standard deviation common to the target sequence. This enabled us to characterize the variability of the obtained results, statistically compare different groups of mice and estimate precision and limits of the applied method.  相似文献   

3.
Establishment and maintenance of transgenic mouse strains require being able to distinguish homozygous from heterozygous animals. To date, the developed real-time quantitative PCR techniques are often complicated, time-consuming and expensive. Here, we propose a very easy and rapid method with a simple data analysis to determine zygosity in transgenic mice. We show that the real-time quantitative PCR using SYBR Green fluorescent dye can be applied to discriminate two-fold differences in copy numbers of the transgene. Our procedure has to fit only three simple requirements: (1) to design primers capable of detecting one Ct difference for two-fold differences in DNA amounts (2) to measure genomic DNA concentrations accurately and (3) to have a reference animal of known zygosity in each run. Then, if the Ct values for the control gene are similar in all samples, we are able to compare directly the Ct values for the transgene in every sample, and so, to deduce the zygosity status of each mouse relative to the reference animal. This method is really simple and reliable, and it may be valuable as a rapid screening tool for zygosity status in transgenic animals.  相似文献   

4.
Quantitative real-time polymerase chain reaction (PCR) assays were designed that enabled the zygosity of transgenes in soybean [Glycine max (L.) Merrill] and peanut (Arachis hypogaea L.) to be determined. The two zygosity assays, based on TaqMan technology that uses a fluorogenic probe which hybridizes to a PCR target sequence flanked by primers, were both accurate and reproducible in the determination of the number of transgenes present in a cell line. In the first assay, in which TaqMan assays were performed on increasing amounts of a plasmid containing the transgene of interest, a linear relationship between the level of fluorescence and the template amount was produced. Using the resultant linear relationships as standard curves, we were able to determine the zygosity of both soybeans segregating for the cry1Ac transgene and that of a T1 peanut segregating for the hph transgene. In the second assay, a relative determination of copy number (referred to as comparative Ct) was performed on transgenic soybeans by comparing the amplification efficiency of the transgene of interest to that of an endogenous gene in a multiplexed PCR reaction. Both methods proved to be sufficiently sensitive to differentiate between homozygotes and hemizygotes. These assays have numerous potential applications in plant genetic engineering and tissue culture, including the hastening of the identification of transgenic tissue, selecting transformation events with a low number of transgenes and the monitoring of the transmission of transgenes in subsequent crosses.  相似文献   

5.
Microinjection of DNA constructs into fertilized mouse oocytes typically results in random transgene integration at a single genomic locus. The resulting transgenic founders can be used to establish hemizygous transgenic mouse lines. However, practical and experimental reasons often require that such lines be bred to homozygosity. Transgene zygosity can be determined by progeny testing assays which are expensive and time-consuming, by quantitative Southern blotting which is labor-intensive, or by quantitative PCR (qPCR) which requires transgene-specific design. Here, we describe a zygosity assessment procedure based on fluorescent in situ hybridization (zyFISH). The zyFISH protocol entails the detection of transgenic loci by FISH and the concomitant assignment of homozygosity using a concise and unbiased scoring system. The method requires small volumes of blood, is scalable to at least 40 determinations per assay, and produces results entirely consistent with the progeny testing assay. This combination of reliability, simplicity and cost-effectiveness makes zyFISH a method of choice for transgenic mouse zygosity determinations.  相似文献   

6.
This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.  相似文献   

7.
Successful identification of homozygous and heterozygous transgenic animals with currently available techniques demands tedious and time-consuming procedures with a high proportion of ambiguous results. Real-time PCR is a quantitative and extremely precise method with high throughput that could be applied to the analysis of large numbers of animals differing only by a factor of two in the amount of target sequences. We defined the technical conditions of real-time PCR to co-amplify a transgene and a reference gene using two fluorogenic probes and the comparative cycle threshold method. We applied these conditions to the analysis of zygosity in a line of transgenic rats. Real-time PCR allowed clear-cut identification of all transgenic animals analysed (n=45) as homozygous or heterozygous. Southern blot analysis of these animals using an internal quantitative control and PhosphorImager quantification showed ambiguous results in six of them and was concordant with real-time PCR in the rest. Mating of homozygous and heterozygous animals, as defined by real-time PCR, showed transgene transmission to the offspring following expected Mendelian laws. Real-time PCR allows rapid, precise, non-ambiguous and high throughput identification of zygosity in transgenic animals. This technique could be helpful in the establishment of breeding programs for transgenic colonies and in experiments in which gene dosage effects could have a functional impact.  相似文献   

8.
Yang L  Ding J  Zhang C  Jia J  Weng H  Liu W  Zhang D 《Plant cell reports》2005,23(10-11):759-763
In transgenic plants, transgene copy number can greatly influence the expression level and genetic stability of the target gene, making estimation of transgene copy number an important area of genetically modified (GM) crop research. Transgene copy numbers are currently estimated by Southern analysis, which is laborious and time-consuming, requires relatively large amounts of plant materials and may involve hazardous radioisotopes. We report here the development of a sensitive, high-throughput real-time (RT)-PCR technique for estimating transgene copy number in GM rice. This system uses TaqMan quantitative RT-PCR and comparison to a novel rice endogenous reference gene coding for sucrose phosphate synthase (SPS) to determine the copy numbers of the exogenous beta-glucuronidase (GUS) and hygromycin phosphotransferase (HPT) genes in transgenic rice. The copy numbers of the GUS and HPT in primary rice transformants (T0) were calculated by comparing quantitative PCR results of the GUS and HPT genes with those of the internal standard, SPS. With optimized PCR conditions, we achieved significantly accurate estimates of one, two, three and four transgene copies in the T0 transformants. Furthermore, our copy number estimations of both the GUS reporter gene and the HPT selective marker gene showed that rearrangements of the T-DNA occurred more frequently than is generally believed in transgenic rice.  相似文献   

9.
Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL‐)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T‐DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL‐PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T1 progeny from 26 T0 plants showed that at least 19% of the lines carried multiple T‐DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T‐DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided.  相似文献   

10.
This review examines how real-time PCR can be used to determine copy number and zygosity in transgenic plants. Distinguishing between plants that harbor one and two copies of a transgene or are hemizygous and homozygous requires the ability to routinely distinguish twofold differences, a detection difference which approaches the resolution of PCR-based quantification methods. After explaining the basic principles, especially the threshold cycle (Ct value) as the basic measuring unit in real-time PCR, we introduce three quantitation methods currently in use. While the absolute and relative standard curve approaches are qualitative methods that distinguish high-copy from low-copy transformants, the comparative ( ) method with double-dye oligonucleotides (TaqMan probes) is able to detect twofold differences. In order to obtain reliable results, Ct values for an amplicon should be below 25 and the standard deviation below 0.3. Although real-time PCR can deliver exact copy number determinations, the procedure is not fail-safe. Therefore, real-time PCR should to be viewed as complementary to—rather than as a replacement of—other methods such as Southern analysis, but it is particularly useful as a preliminary screening tool for estimating copy numbers of a large number of transformants.  相似文献   

11.
A number of quantitative, real-time PCR methods have been developed for determining transgene copy numbers in plants. Here, we demonstrate that the Roche LightCyclerTM system can be used to determine the zygosity of transgenic lines without the use of standard curves or efficiency correction calculations. We have developed a duplex PCR assay which permits the determination of zygosity, relative to a calibrator sample, in transgenic rice lines containing the gene for a viral glycoprotein. Our data demonstrate that unambiguous 2-fold discrimination of copy number can be attained by calculating relative copy number using the threshold crossing point (Ct) calculated by the LightCyclerTM software combined with delta delta Ct calculations, provided that the appropriate calibrator sample is included in each run. The method presented here is rapid, sensitive, robust and easy to optimise.  相似文献   

12.
Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants, so transgene copy number analysis is identified as one most important task after obtaining transgenic plants. In this paper, TaqMan real-time PCR was used to estimate the copy number of exogenous MAC12.2 and NPTII genes in transgenic precocious trifoliate orange (Poncirus trifoliata [L.] Raf) in order to overcome the limitations of Southern blot analysis, which is labor-intensive, time-consuming, in considerable needs of DNA, etc. We developed a real-time PCR assay which permitted the determination of the copy number of transgene (MAC12.2 and NPTII), relative to a conserved endogenous gene (PtLTP) in transgenic lines. R value is 0.92 by comparing the results to that of Southern blot analysis, indicating a strong correlation coefficient between TaqMan real-time PCR assay and Southern blot method.  相似文献   

13.
In transgenic plants, the number of transgene copies can greatly influence the level of expression and genetic stability of the target gene. Transgene copy numbers are estimated by Southern blot analysis, which is laborious and time-consuming, requires relatively large amounts of plant materials, and may involve hazardous radioisotopes. Here we report the development of a sensitive, convenient real-time PCR technique for estimating the number of transgene copies in transgenic rapeseed. This system uses TaqMan quantitative real-time PCR and comparison with a novel, confirmed single-copy endogenous reference gene, high-mobile-group protein I/Y (HMG I/Y), to determine the numbers of copies of exogenous β-glucuronidase (GUS) and neomycin phosphotransferase II (nptII) genes. TheGUS andnptII copy numbers in primary transformants (T0) were calculated by comparing threshold cycle (C T) values of theGUS andnptII genes with those of the internal standard,HMG I/Y. This method is more convenient and accurate than Southern blotting because the number of copies of the exogenous gene could be directly deduced by comparing itsC T value to that of the single-copy endogenous gene in each sample. Unlike other similar procedures of real-time PCR assay, this method does not require identical amplification efficiencies between the PCR systems for target gene and endogenous reference gene, which can avoid the bias that may result from slight variations in amplification efficiencies between PCR systems of the target and endogenous reference genes.  相似文献   

14.
转g10-epsps基因耐除草剂大豆ZUTS-33是由浙江大学研发的耐除草剂大豆品系,目前已进入生产性试验阶段。到目前为止尚无文献报道对该转基因新品种的检测方法,因此亟需建立精准的定量检测方法为农业转基因生物安全管理提供技术支持。根据耐除草剂大豆ZUTS-33品系外源基因插入位点特异序列设计引物和TaqMan探针,利用优化的实时荧光定量PCR检测方法评价该引物对和探针的特异性、准确度、精确度和重复性,并确定此检测方法的检测极限(limit of detection,LOD)和定量极限(limit of quantity,LOQ)。实验结果显示,研究所建立的转基因大豆ZUTS-33转化体特异性实时荧光定量PCR检测方法具有高度的品系鉴定特异性,准确度、精确度均符合要求,重复性较好,且检测方法的LOD达到20拷贝,LOQ达到40拷贝。研究结果为转g10-epsps基因耐除草剂大豆ZUTS-33的身份识别和检测监测提供了有效的方法。  相似文献   

15.
16.
A TaqMan quantitative real-time PCR detection system was developed to examine transgene copy number in cotton. GhUBC1, a gene validated to be present as a single copy per haploid Gossypium hirsutum genome, was used as the endogenous reference to estimate copy number of GFP and selection marker NPTII in 28 T0 plants. This system was found to be more accurate than genomic Southern blot hybridization and could effectively tell homozygotes from heterozygotes in a T1 transgenic cotton population. Therefore it is suitable for efficient and cost effective early screening of transgenic seedlings and identifying transgene homozygotes in segregation populations.  相似文献   

17.
实时荧光定量PCR(TaqMan)法测定外源基因的拷贝数   总被引:2,自引:0,他引:2  
王爱民 《广西植物》2009,29(3):408-412
实时荧光定量PCR是近年新兴的一项技术,因其快速、方便、便宜,需要DNA样品量少,无需放射性检测等优点被广泛应用于基因的定量分析。该文就实时荧光定量PCR(TaqMan)技术的发展、基本原理及测定外源基因拷贝数的技术流程做一介绍。  相似文献   

18.
To determine zygosity in transgenic (Tg) mice, a new technology, real-time quantitative PCR, has recently been introduced in transgenic research to overcome several drawbacks (time-consuming, specialized techniques and/or ambiguity in the results) of previously established methods, for example, Southern blot hybridization, dot blot hybridization, fluorescence in situ hybridization (FISH), etc. However, the previous real-time quantitative PCR method still possesses several drawbacks, for example, it needs two sets of primers/probes and the complicated setting up of appropriate conditions, both of which are expensive and remain time-consuming. We therefore developed an improved real-time quantitative PCR system for determination of zygosity, which is easy, rapid and less expensive, because the technique needs only two experimental processes: estimation of DNA concentration and CYBR Green PCR. We found that homozygous, hemizygous and non-Tg animals could easily be distinguished among F1 littermates in crosses of hemizygous EGFP- and DsRed2-Tg mice. Our improved method will be applicable to any Tg mouse strains, when a primer set is matched to the corresponding transgene.  相似文献   

19.
实时荧光定量PCR法检测转基因小鼠拷贝数   总被引:9,自引:0,他引:9  
目的利用实时荧光定量PCR法鉴定转基因小鼠外源基因插入拷贝数。方法以TG-CARK转基因首见鼠为研究对象,选取小鼠的高度保守基因Fabpi为内参,利用绝对定量的实时荧光PCR法鉴定转基因小鼠拷贝数,并与传统的Southern blot方法的定量结果进行比较。结果实时定量PCR鉴定的转基因拷贝数与Southernblot法完全一致,三只TG-CARK首见小鼠的拷贝数分别为1,7,45。结论实时定量PCR技术具有高准确性、高稳定性、高通量和低成本的优点,是比传统杂交技术更好的鉴定小鼠转基因拷贝数的方法。  相似文献   

20.
Quantitative real-time polymerase chain reaction (qPCR) has been previously applied to estimate transgene copy number in transgenic plants. However, the results can be erroneous owing to inaccurate estimation of PCR efficiency. Here, a novel qPCR approach, named standard addition qPCR (SAQPCR), was devised to accurately determine transgene copy number without the necessity of obtaining PCR efficiency data. The procedures and the mathematical basis for the approach are described. A recombinant plasmid harboring both the internal reference gene and the integrated target gene was constructed to serve as the standard DNA. It was found that addition of suitable amounts of standard DNA to test samples did not affect PCR efficiency, and the guidance for selection of suitable cycle numbers for analysis was established. Samples from six individual T0 tomato (Solanum lycopersicum) plants were analyzed by SAQPCR, and the results confirmed by Southern blot analysis. The approach produced accurate results and required only small amounts of plant tissue. It can be generally applied to analysis of different plants and transgenes. In addition, it can also be applied to zygosity analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号