共查询到20条相似文献,搜索用时 15 毫秒
1.
Variability and immunogenicity of caprine arthritis-encephalitis virus surface glycoprotein
下载免费PDF全文

The complete surface glycoprotein (SU) nucleotide sequences of three French isolates of caprine arthritis-encephalitis virus (CAEV) were determined and compared with those of previously described isolates: three American isolates and one French isolate. Phylogenetic analyses revealed the existence of four distinct and roughly equidistant evolutionary CAEV subtypes. Four conserved and five variable domains were identified in the SU. The fine specificities of antibodies produced against these domains during natural infection were examined using a pepscan analysis. Nine immunogenic segments were delineated throughout the conserved and variable domains of SU, two of them corresponding to conserved immunodominant epitopes. Antigenic determinants which may be involved in the immunopathogenic process induced by CAEV were identified. These results also provide sensitive and specific antigen peptides for the serological detection and differentiation of CAEV and visna/maedi virus infections. 相似文献
2.
Antibody reactivity to the immunodominant epitopes of the caprine arthritis-encephalitis virus gp38 transmembrane protein associates with the development of arthritis. 总被引:4,自引:4,他引:4
下载免费PDF全文

G Bertoni M L Zahno R Zanoni H R Vogt E Peterhans G Ruff W P Cheevers P Sonigo G Pancino 《Journal of virology》1994,68(11):7139-7147
High titers of antibodies to caprine arthritis-encephalitis virus (CAEV) envelope (Env) glycoproteins are found in infected goats developing a progressive arthritis. In order to identify linear B epitopes of the CAEV Env, which may be involved in the immunopathology of arthritis, we constructed a lambda gt11 Env expression library. By combining library screening with sera from naturally infected Swiss goats with an enzyme immunoassay with overlapping peptides (pepscan), four group-specific epitopes could be precisely defined in the transmembrane envelope proteins: TM1 to TM4, including a conserved structure (TM3) that corresponds to the immunodominant epitope of human immunodeficiency virus type 1 and other lentiviruses. A panel of 190 CAEV naturally infected goat serum samples, obtained from animals with defined clinical status, was tested for reactivity to synthetic peptides corresponding to the TM epitopes in an enzyme-linked immunosorbent assay. Antibody reactivity to two epitopes was highly associated (TM3, P = 0.002, and TM4, P < 0.001) with the presence of clinically detectable arthritis. Such an association is absent for anti-Gag antibody. Antibodies to the immunodominant structures of the TM glycoprotein could thus have an important role in the immunopathogenic process leading to disease. 相似文献
3.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2016,1860(8):1764-1775
BackgroundThe development of an efficient vaccine and broadly cross-neutralizing antibodies of hepatitis C virus (HCV) remains a priority. The heavily glycosylated viral envelope glycoprotein E1E2 complex is a candidate vaccine antigen. Bacteria-derived unmethylated CpG DNA, a potent stimulator of immune cells, is important for vaccine research.MethodsHere, the immunogenicities of wild type (WT) E1E2, five N-glycosylation site mutated E1E2 glycoproteins, and five CpG-coupled E1E2 N-glycosylation mutated glycoproteins were analyzed in BALB/c mice by DNA vaccination using in vivo electroporation.ResultsThe E1E2 protein expression levels were examined and shown to be unaffected by these N-glycosylation mutations. We found that a CpG-coupled E1-N209D-E2-N430D DNA vaccine (named CpG-E1E2-M4) induced the highest cellular immune response compared to the WT E1E2, CpG-E1E2, and other mutants. Furthermore, the CpG-E1E2-M4 anti-serum effectively neutralized the infection of cell-cultured HCV (HCVcc, genotype 2a)- and HCV pseudo particles (HCVpp, genotypes 1 to 7) to Huh-7.5.1 hepatocytes. Additionally, CpG-E1E2-M4 enhanced the Interleukin-12 (IL-12) production and antigen-presenting activity of CD11c+ dendritic cells (DCs) by inducing CD4+ Th1 polarization and the production of perforin and granzyme B (GrB) in CD8+ T cells.ConclusionsAs our knowledge this is the first study revealing that the naturally poor immunogenicity of E1E2 can be enhanced by the deletion of N-glycans combined with the addition of immune activator CpG by DNA vaccination.General significanceDeletion of N-glycans can enhance viral immunogenicity. The selected CpG-E1E2-M4 mutant is a novel potential HCV DNA vaccine that elicits enhanced CD4+ Th1 and CD8+ T cell responses and neutralizing antibody production against HCV infection. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc. 相似文献
4.
Studies of the conformation-dependent neutralizing epitopes of simian immunodeficiency virus envelope protein.
下载免费PDF全文

K Javaherian A J Langlois D C Montefiori K A Kent K A Ryan P D Wyman J Stott D P Bolognesi M Murphey-Corb G J Larosa 《Journal of virology》1994,68(4):2624-2631
It has been shown previously that the major neutralizing epitopes in simian immunodeficiency virus (SIV) are discontinuous and conformation dependent and that the V3 loop, in contrast to that of human immunodeficiency virus (HIV) type 1, does not by itself elicit neutralizing antibodies (K. Javaherian et al., Proc. Natl. Acad. Sci. USA 89:1418-1422, 1992). We now present data showing that on the basis of fractionation of infected macaque sera, protease digestion of the envelope, and binding properties of two neutralizing monoclonal antibodies to SIV and SIV-HIV chimeric envelope proteins, changes in V3 can disrupt the conformation-dependent neutralization region. The chimeric protein did not produce significant neutralizing antibodies against either SIV or HIV. We also report that neutralizing antibodies elicited by recombinant SIV envelope proteins of mac251 and B670 isolates cross-neutralize. Finally, we show that deglycosylation of the SIV envelope results in a molecule which binds neither soluble CD4 nor the neutralizing monoclonal antibodies being investigated here and does not elicit sera with a significant neutralizing titer. 相似文献
5.
Torresi J Fischer A Grollo L Zeng W Drummer H Jackson DC 《Immunology and cell biology》2007,85(2):169-173
We describe a peptide-based strategy for hepatitis C virus (HCV) vaccine design that exploits synthetic peptides representing antibody epitopes of the hypervariable region 1 (HVR1) of the E2 glycoprotein and also less variable regions immediately downstream of HVR1. These epitopes were linked to a T-helper (T(h)) epitope (KLIPNASLIENCTKAEL) derived from the Morbillivirus canine distemper virus. Antibody titres induced by the two vaccine candidates T(h)-A (E2 amino acid 384-414) and T(h)-B (E2 amino acid 390-414) were significantly higher than those produced against vaccines lacking the T(h) epitope (P<0.05). Mice inoculated with the vaccine candidates T(h)-C (E2 amino acids 412-423) and T(h)-F (E2 amino acids 436-447) emulsified in complete Freund's adjuvant each elicited antibody titres that were significantly higher than those elicited by T(h)-E (E2 amino acids 396-407) and T(h)-D (E2 amino acids 432-443) (P<0.01). Antisera obtained from mice inoculated with the epitope vaccines T(h)-A, T(h)-B, T(h)-D and T(h)-E bound to E2 expressed at the surface of 293T cells that had been transfected with E1E2. Furthermore, IgG from the sera of mice inoculated with four of the vaccine candidates, T(h)-A, T(h)-C, T(h)-D and T(h)-E, inhibited the entry of HCV/human immunodeficiency virus pseudoparticles (HCVpps) into Huh-7 cells. These results demonstrate the potential of synthetic peptide-based constructs in the delivery of potential neutralizing epitopes that are present within the viral envelope of HCV. 相似文献
6.
Miguel?Lacerda Penny?L?Moore Nobubelo?K?Ngandu Michael?Seaman Elin?S?Gray Ben?Murrell Mohan?Krishnamoorthy Molati?Nonyane Maphuti?Madiga Constantinos?Kurt?Wibmer Daniel?Sheward Robert?T?Bailer Hongmei?Gao Kelli?M?Greene Salim?S?Abdool?Karim John?R?Mascola Bette?TM?Korber David?C?Montefiori Lynn?Morris Carolyn?Williamson Cathal?Seoighe
Background
Identification of the epitopes targeted by antibodies that can neutralize diverse HIV-1 strains can provide important clues for the design of a preventative vaccine.Methods
We have developed a computational approach that can identify key amino acids within the HIV-1 envelope glycoprotein that influence sensitivity to broadly cross-neutralizing antibodies. Given a sequence alignment and neutralization titers for a panel of viruses, the method works by fitting a phylogenetic model that allows the amino acid frequencies at each site to depend on neutralization sensitivities. Sites at which viral evolution influences neutralization sensitivity were identified using Bayes factors (BFs) to compare the fit of this model to that of a null model in which sequences evolved independently of antibody sensitivity. Conformational epitopes were identified with a Metropolis algorithm that searched for a cluster of sites with large Bayes factors on the tertiary structure of the viral envelope.Results
We applied our method to ID50 neutralization data generated from seven HIV-1 subtype C serum samples with neutralization breadth that had been tested against a multi-clade panel of 225 pseudoviruses for which envelope sequences were also available. For each sample, between two and four sites were identified that were strongly associated with neutralization sensitivity (2ln(BF)?>?6), a subset of which were experimentally confirmed using site-directed mutagenesis.Conclusions
Our results provide strong support for the use of evolutionary models applied to cross-sectional viral neutralization data to identify the epitopes of serum antibodies that confer neutralization breadth.7.
West Nile virus (WNV) is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1) of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24) were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV) serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV), Newcastle Disease Virus (NDV), Duck Plague Virus (DPV) and Goose Parvovirus (GPV) antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and subunit vaccines development for WNV and other viruses of the JEV serocomplex. 相似文献
8.
Lavine CL Lao S Montefiori DC Haynes BF Sodroski JG Yang X;NIAID Center for HIV/AIDS Vaccine Immunology 《Journal of virology》2012,86(4):2153-2164
Broad and potent neutralizing antibody (BNAb) responses are rare in people infected by human immunodeficiency virus type 1 (HIV-1). Clearly defining the nature of BNAb epitopes on HIV-1 envelope glycoproteins (Envs) targeted in vivo is critical for future directions of anti-HIV-1 vaccine development. Conventional techniques are successful in defining neutralizing epitopes in a small number of individual subjects but fail in studying large groups of subjects. Two independent methods were employed to investigate the nature of NAb epitopes targeted in 9 subjects, identified by the NIAID Center for HIV/AIDS Vaccine Immunology (CHAVI) 001 and 008 clinical teams, known to make a strong BNAb response. Neutralizing activity from 8/9 subjects was enhanced by enriching high-mannose N-linked glycan (HM-glycan) of HIV-1 glycoproteins on neutralization target viruses and was sensitive to specific glycan deletion mutations of HIV-1 glycoproteins, indicating that HM-glycan-dependent epitopes are targeted by BNAb responses in these subjects. This discovery adds to accumulating evidence supporting the hypothesis that glycans are important targets on HIV-1 glycoproteins for BNAb responses in vivo, providing an important lead for future directions in developing NAb-based anti-HIV-1 vaccines. 相似文献
9.
10.
Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein
下载免费PDF全文

Using a panel of neutralizing monoclonal antibodies, we have mapped epitopes in domain III of the envelope protein of the New York strain of West Nile virus. The ability of monoclonal antibodies that recognize these epitopes to neutralize virus appeared to differ between lineage I and II West Nile virus strains, and epitopes were located on the upper surface of domain III at residues E307, E330, and E332. 相似文献
11.
Identification of the V1 region as a linear neutralizing epitope of the simian immunodeficiency virus SIVmac envelope glycoprotein.
下载免费PDF全文

E Jurkiewicz G Hunsmann J Schffner T Nisslein W Lüke H Petry 《Journal of virology》1997,71(12):9475-9481
The sequence variability of viral structure polypeptides has been associated with immune escape mechanisms. The V1 region of simian immunodeficiency virus (SIV) is a highly variable region of the SIVmac env gene. Here, we describe the V1 region as a linear neutralizing epitope. V1 region-specific neutralizing antibodies (NAb) were first demonstrated in a rabbit infected with a recombinant vaccinia virus carrying the env gene of human immunodeficiency virus type 2 strain ben (HIV-2ben). Since we detected in this animal V1 region-specific NAb that were able to neutralize not only human immunodeficiency virus type 2 but also SIVmac32H, we investigated whether a similar immune response is evoked in macaques (Macaca mulatta) either infected with SIVmac or immunized with the external glycoprotein (gp130) of the same virus. Distinctly lower NAb titers were found in the SIVmac-infected animals than in the gp130-immunized macaques. Since the NAb titers in both groups were high enough for competition experiments, we used five overlapping peptides encompassing the whole V1 region for a detailed identification of the epitope. In each of the 12 macaques investigated, we detected a high level of NAb reacting with at least one peptide located in the central part of the V1 region. The relatively high degree of divergence, especially within the central part of the V1 region, which characterized the evolution of the retroviral sequences from the original inoculum in the infected macaques suggests the development of escape mutants. Furthermore, 3 of 12 animals developed NAb directed against the amino-terminal end of the V1 region epitope. Sequence analysis, however, revealed relatively low levels of genetic drift and genetic variability within this part of the V1 region. The induction of V1 env-specific NAb not only in gp130-immunized macaques but also in SIVmac-infected animals in combination with the increased genetic variability of this region in vivo indicates a marked biological significance of this epitope for the virus. 相似文献
12.
Kamdem Toukam D Tenbusch M Stang A Temchura V Storcksdieck Genannt Bonsmann M Grewe B Koch S Meyerhans A Nchinda G Kaptue L Uberla K 《PloS one》2012,7(5):e38068
Although human immunodeficiency type 1 (HIV-1) infection induces strong antibody responses to the viral envelope glycoprotein (Env) only a few of these antibodies possess the capacity to neutralize a broad range of strains. The induction of such antibodies represents an important goal in the development of a preventive vaccine against the infection. Among the broadly neutralizing monoclonal antibodies discovered so far, three (2F5, Z13 and 4E10) target the short and hidden membrane proximal external region (MPER) of the gp41 transmembrane protein. Antibody responses to MPER are rarely observed in HIV-infected individuals or after immunization with Env immunogens. To initiate antibody responses to MPER in its membrane-embedded native conformation, we generated expression plasmids encoding the membrane-anchored ectodomain of gp41 with N-terminal deletions of various sizes. Following transfection of these plasmids, the MPER domains are displayed on the cell surface and incorporated into HIV virus like particles (VLP). Transfected cells displaying MPER mutants bound as efficiently to both 2F5 and 4E10 as cells transfected with a plasmid encoding full-length Env. Mice immunized with VLPs containing the MPER mutants produced MPER-specific antibodies, the levels of which could be increased by the trimerization of the displayed proteins as well as by a DNA prime-VLP boost immunization strategy. Although 2F5 competed for binding to MPER with antibodies in sera of some of the immunized mice, neutralizing activity could not be detected. Whether this is due to inefficient binding of the induced antibodies to MPER in the context of wild type Env or whether the overall MPER-specific antibody response induced by the MPER display mutants is too low to reveal neutralizing activity, remains to be determined. 相似文献
13.
Passive neutralizing antibody controls SHIV viremia and enhances B cell responses in infant macaques
Ng CT Jaworski JP Jayaraman P Sutton WF Delio P Kuller L Anderson D Landucci G Richardson BA Burton DR Forthal DN Haigwood NL 《Nature medicine》2010,16(10):1117-1119
Maternal HIV-1-specific antibodies are efficiently transferred to newborns, but their role in disease control is unknown. We administered neutralizing IgG, including the human neutralizing monoclonal IgG1b12, at levels insufficient to block infection, to six newborn macaques before oral challenge with simian-HIV strain SF162P3 (SHIV(SF162P3)). All of the macaques rapidly developed neutralizing antibodies and had significantly reduced plasma viremia for six months. These studies support the use of neutralizing antibodies in enhancing B cell responses and viral control in perinatal settings. 相似文献
14.
Severity of arthritis is predicted by antibody response to gp135 in chronic infection with caprine arthritis-encephalitis virus. 总被引:6,自引:8,他引:6
下载免费PDF全文

Antibody titers to caprine arthritis-encephalitis virus surface glycoprotein gp135 and core protein p28 in synovial fluid and serum from 35 goats infected for 3 years were compared with the histologic severity of arthritis in these animals. Anti-gp135 antibody titers in synovial fluid and serum directly reflect the severity of carpal arthritis in chronically infected goats. 相似文献
15.
Demonstration of coinfection with and recombination by caprine arthritis-encephalitis virus and maedi-visna virus in naturally infected goats
下载免费PDF全文

Recombination of different strains and subtypes is a hallmark of lentivirus infections, particularly for human immunodeficiency virus, and contributes significantly to viral diversity and evolution both within individual hosts and within populations. Recombinant viruses are generated in individuals coinfected or superinfected with more than one lentiviral strain or subtype. This, however, has never been described in vivo for the prototype lentivirus maedi-visna virus of sheep and its closely related caprine counterpart, the caprine arthritis-encephalitis virus. Cross-species infections occur in animals living under natural conditions, which suggests that dual infections with small-ruminant lentiviruses (SRLVs) are possible. In this paper we describe the first documented case of coinfection and viral recombination in two naturally infected goats. DNA fragments encompassing a variable region of the envelope glycoprotein were obtained from these two animals by end-limiting dilution PCR of peripheral blood mononuclear cells or infected cocultures. Genetic analyses, including nucleotide sequencing and heteroduplex mobility assays, showed that these goats harbored two distinct populations of SRLVs. Phylogenetic analysis permitted us to assign these sequences to the maedi-visna virus group (SRLV group A) or the caprine arthritis-encephalitis virus group (SRLV group B). SimPlot analysis showed clear evidence of A/B recombination within the env gene segment of a virus detected in one of the two goats. This case provides conclusive evidence that coinfection by different strains of SRLVs of groups A and B can indeed occur and that these viruses actually recombine in vivo. 相似文献
16.
Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein 总被引:9,自引:0,他引:9
下载免费PDF全文

Dengue virus is an emerging global health threat. The major envelope glycoprotein, E, mediates viral attachment and entry by membrane fusion. Antibodies that bind but fail to neutralize noncognate serotypes enhance infection. We have determined the crystal structure of a soluble fragment of the envelope glycoprotein E from dengue virus type 3. The structure closely resembles those of E proteins from dengue type 2 and tick-borne encephalitis viruses. Serotype-specific neutralization escape mutants in dengue virus E proteins are all located on a surface of domain III, which has been implicated in receptor binding. While antibodies against epitopes in domain I are nonneutralizing in dengue virus, there are neutralizing antibodies that recognize serotype-conserved epitopes in domain II. The mechanism of neutralization for these antibodies is probably inhibition of membrane fusion. Our structure shows that neighboring glycans on the viral surface are spaced widely enough (at least 32 A) that they can interact with multiple carbohydrate recognition domains on oligomeric lectins such as DC-SIGN, ensuring maximum affinity for these putative receptors. 相似文献
17.
18.
Cryptic nature of envelope V3 region epitopes protects primary monocytotropic human immunodeficiency virus type 1 from antibody neutralization. 总被引:3,自引:30,他引:3
下载免费PDF全文

D C Bou-Habib G Roderiquez T Oravecz P W Berman P Lusso M A Norcross 《Journal of virology》1994,68(9):6006-6013
Characterization of biological and immunological properties of human immunodeficiency virus type 1 (HIV-1) is critical to developing effective therapies and vaccines for AIDS. With the use of a novel CD4+ T-cell line (PM-1) permissive to infection by both monocytotropic (MT) and T-cell-tropic virus types, we present a comparative analysis of the immunological properties of a prototypic primary MT isolate of HIV-1 strain JR-CSF (MT-CSF) with those of a T-cell-tropic variant (T-CSF) of the same virus, which emerged spontaneously in vitro. The parental MT-CSF infected only PM-1 cells and was markedly resistant to neutralization by sera from HIV-1-infected individuals, rabbit antiserum to recombinant MT-CSF gp120, and anti-V3 monoclonal antibodies. The T-CSF variant infected a variety of CD4+ T-cell lines, contained positively charged amino acid substitutions in the gp120 V3 region, and was highly sensitive to antibody neutralization. Neutralization and antibody staining of T-CSF-expressing cells were significantly inhibited by HIV-1 V3 peptides; in contrast, the MT strain showed only weak V3-specific binding of polyclonal and monoclonal antibodies. Exposure of PM-1 cells to a mixture of both viruses in the presence of human anti-HIV-1 neutralizing antiserum resulted in infection with only MT-CSF. These results demonstrate that although the V3 region of MT viruses is immunogenic, the target epitopes in the V3 principal neutralizing domain on the membrane form of the MT envelope appear to be cryptic or hidden from blocking antibodies. 相似文献
19.
20.
Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes 总被引:1,自引:1,他引:1
下载免费PDF全文

Sukupolvi-Petty S Austin SK Purtha WE Oliphant T Nybakken GE Schlesinger JJ Roehrig JT Gromowski GD Barrett AD Fremont DH Diamond MS 《Journal of virology》2007,81(23):12816-12826
Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials. 相似文献