首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Escherichia coli DNA gyrase is comprised of two subunits, GyrA and GyrB. Previous studies have shown that GyrI, a regulatory factor of DNA gyrase activity, inhibits the supercoiling activity of DNA gyrase and that both overexpression and antisense expression of the gyrI gene suppress cell proliferation. Here we have analyzed the interaction of GyrI with DNA gyrase using two approaches. First, immunoprecipitation experiments revealed that GyrI interacts preferentially with the holoenzyme in an ATP-independent manner, although a weak interaction was also detected between GyrI and the individual GyrA and GyrB subunits. Second, surface plasmon resonance experiments indicated that GyrI binds to the gyrase holoenzyme with higher affinity than to either the GyrA or GyrB subunit alone. Unlike quinolone antibiotics, GyrI was not effective in stabilizing the cleavable complex consisting of gyrase and DNA. Further, we identified an 8-residue synthetic peptide, corresponding to amino acids (89)ITGGQYAV(96) of GyrI, which inhibits gyrase activity in an in vitro supercoiling assay. Surface plasmon resonance analysis of the ITGGQYAV-containing peptide-gyrase interaction indicated a high association constant for this interaction. These results suggest that amino acids 89--96 of GyrI are essential for its interaction with, and inhibition of, DNA gyrase.  相似文献   

2.
DNA topoisomerases catalyze the inter-conversion of different topological forms of DNA. While all type II DNA topoisomerases relax supercoiled DNA, DNA gyrase is the only enyzme that introduces negative supercoils into DNA at the expense of ATP hydrolysis. We present here a biophysical characterization of the nucleotide cycle of DNA gyrase from Bacillus subtilis, both in the absence and presence of DNA. B. subtilis DNA gyrase is highly homologous to its well-studied Escherichia coli counterpart, but exhibits unique mechanistic features. The active heterotetramer of B. subtilis DNA gyrase is formed by mixing the GyrA and GyrB subunits. GyrB undergoes nucleotide-induced dimerization and is an ATP-operated clamp. The intrinsic ATPase activity of gyrase is stimulated tenfold in the presence of plasmid DNA. However, in contrast to the E. coli homolog, the rate-limiting step in the nucleotide cycle of B. subtilis GyrB is ATP hydrolysis, not product dissociation or an associated conformational change. Furthermore, there is no cooperativity between the two DNA and ATP binding sites in B. subtilis DNA gyrase. Nevertheless, the enzyme is as efficient in negative supercoiling as the E. coli DNA gyrase. Our results provide evidence that the evolutionary goal of efficient DNA supercoiling can be realized by similar architecture, but differences in the underlying mechanism. The basic mechanistic features are conserved among DNA gyrases, but the kinetics of individual steps can vary significantly even between closely related enzymes. This suggests that each topoisomerase represents a different solution to the complex reaction sequence in DNA supercoiling.  相似文献   

3.
DNA topoisomerases manage chromosome supercoiling and organization in all cells. Gyrase, a prokaryotic type IIA topoisomerase, consumes ATP to introduce negative supercoils through a strand passage mechanism. All type IIA topoisomerases employ a similar set of catalytic domains for function; however, the activity and specificity of gyrase are augmented by a specialized DNA binding and wrapping element, termed the C-terminal domain (CTD), which is appended to its GyrA subunit. We have discovered that a nonconserved, acidic tail at the extreme C terminus of the Escherichia coli GyrA CTD has a dramatic and unexpected impact on gyrase function. Removal of the CTD tail enables GyrA to introduce writhe into DNA in the absence of GyrB, an activity exhibited by other GyrA orthologs, but not by wild-type E. coli GyrA. Strikingly, a "tail-less" gyrase holoenzyme is markedly impaired for DNA supercoiling capacity, but displays normal ATPase function. Our findings reveal that the E. coli GyrA tail regulates DNA wrapping by the CTD to increase the coupling efficiency between ATP turnover and supercoiling, demonstrating that CTD functions can be fine-tuned to control gyrase activity in a highly sophisticated manner.  相似文献   

4.
Topoisomerases (topos) maintain DNA topology and influence DNA transaction processes by catalysing relaxation, supercoiling and decatenation reactions. In the cellular milieu, division of labour between different topos ensures topological homeostasis and control of central processes. In Escherichia coli, DNA gyrase is the principal enzyme that carries out negative supercoiling, while topo IV catalyses decatenation, relaxation and unknotting. DNA gyrase apparently has the daunting task of undertaking both the enzyme functions in mycobacteria, where topo IV is absent. We have shown previously that mycobacterial DNA gyrase is an efficient decatenase. Here, we demonstrate that the strong decatenation property of the enzyme is due to its ability to capture two DNA segments in trans. Topo IV, a strong dedicated decatenase of E. coli, also captures two distinct DNA molecules in a similar manner. In contrast, E. coli DNA gyrase, which is a poor decatenase, does not appear to be able to hold two different DNA molecules in a stable complex. The binding of a second DNA molecule to GyrB/ParE is inhibited by ATP and the non-hydrolysable analogue, AMPPNP, and by the substitution of a prominent positively charged residue in the GyrB N-terminal cavity, suggesting that this binding represents a potential T-segment positioned in the cavity. Thus, after the GyrA/ParC mediated initial DNA capture, GyrB/ParE would bind efficiently to a second DNA in trans to form a T-segment prior to nucleotide binding and closure of the gate during decatenation.  相似文献   

5.
Escherichia coliDNA gyrase B subunit (GyrB) is composed of a 43-kDa N-terminal domain containing an ATP-binding site and a 47-kDa C-terminal domain involved in the interaction with the gyrase A subunit (GyrA). Site-directed mutagenesis was used to substitute, in both the entire GyrB subunit and its 43-kDa N-terminal fragment, the amino acid Y5 by either a serine (Y5S) or a phenylalanine residue (Y5F). Under standard conditions, cells bearing Y5S or Y5F mutant GyrB expression plasmids produced significantly less recombinant proteins than cells transformed with the wild-type plasmid. This dramatic decrease in expression of mutant GyrB proteins was not observed when the corresponding N-terminal 43-kDa mutant plasmids were used. Examination of the plasmid content of the transformed cells after induction showed that the Y5F and Y5S GyrB protein level was correlated with the plasmid copy number. By repressing tightly the promoter activity encoded by these expression vectors during cell growth, it was possible to restore the normal level of the mutant GyrB encoding plasmids in the transformed bacteria. Treatment with chloramphenicol before protein induction enabled large overexpression of the GyrB mutant Y5F and Y5S proteins. In addition, the decrease in plasmid copy number was also observed when the 47-kDa C-terminal fragment of the GyrB subunit was expressed in bacteria grown under standard culture conditions. Analysis of DNA supercoiling and relaxation activities in the presence of GyrA demonstrated that purified Y5-mutant GyrB proteins were deficient for ATP-dependent gyrase activities. Taken together, these results show that Y5F and Y5S mutant GyrB proteins, but not the corresponding 43-kDa N-terminal fragments, competein vivowith the bacterial endogenous GyrB subunit of DNA gyrase, thereby reducing the plasmid copy number in the transformed bacteria by probably acting on the level of negative DNA supercoilingin vivo.This competition could be mediated by the presence of the intact 47-kDa C-terminal domain in the Y5F and Y5S mutant GyrB subunits. This study demonstrates also that the amino acid Y5 is a crucial residue for the expression of the gyrase B activityin vivo.Thus, ourin vivoapproach may also be useful for detecting other important amino acids for DNA gyrase activity, as mutations affecting the ATPase activity or the GyrB/GyrB or GyrB/GyrA protein interactions.  相似文献   

6.
When a mutation in an essential gene shows a temperature-sensitive phenotype, one usually assumes that the protein is inactive at nonpermissive temperature. DNA gyrase is an essential bacterial enzyme composed of two subunits, GyrA and GyrB. The gyrB652 mutation results from a single base change that substitutes a serine residue for arginine 436 (R436-S) in the GyrB protein. At 42 degrees C, strains with the gyrB652 allele stop DNA replication, and at 37 degrees C, such strains grow but have RecA-dependent SOS induction and show constitutive RecBCD-dependent DNA degradation. Surprisingly, the GyrB652 protein is not inactive at 42 degrees C in vivo or in vitro and it doesn't directly produce breaks in chromosomal DNA. Rather, this mutant has a low k(cat) compared to wild-type GyrB subunit. With more than twice the normal mean number of supercoil domains, this gyrase hypomorph is prone to fork collapse and topological chaos near the terminus of DNA replication.  相似文献   

7.
The B subunit of DNA gyrase (GyrB) consists of a 43 kDa N-terminal domain, containing the site of ATP binding and hydrolysis, and a 47 kDa C-terminal domain that is thought to play a role in interactions with GyrA and DNA. In cells containing a deletion of topA (the gene encoding DNA topoisomerase I) a compensatory mutation is found in gyrB. This mutation (gyrB-225) results in a two amino acid insertion in the N-terminal domain of GyrB. We found that cells containing this mutation are more sensitive than wild-type cells to quinolone drugs with respect to bacteriostatic and lethal action. We have characterised the mutant GyrB protein in vitro and found it to have reduced DNA supercoiling, relaxation, ATPase, and cleavage activities. The mutant enzyme is up to threefold more sensitive to quinolones than wild-type. The mutation also increases the affinity of GyrB for GyrA and DNA, while the affinity of quinolone for the enzyme-DNA complex is unaffected. We propose that the loss in activity is due to misfolding of the GyrB-225 protein, providing an example in which misfolding of one protein, DNA gyrase, suppresses a deficiency of another, topoisomerase I. The increased quinolone sensitivity is proposed to be a consequence of an altered conformation of the protein that renders quinolones better able to disrupt, rather than generate, gyrase-drug-DNA complexes.  相似文献   

8.
One of the major mechanisms followed by the therapeutic agents to target the causative organism of TB, mycobacterium tuberculosis (Mtb), involves disruption of the replication cycle of the pathogen DNA. The process involves two steps that occur simultaneously, ie, breakage and reunion of DNA at gyrase A (GyrA) domain and ATP hydrolysis at gyrase B (GyrB) domain. Current therapy for multi-drug resistant TB involves FDA approved, Fluoroquinolone-based antibiotics, which act by targeting the replication process at GyrA domain. However, resistance against fluoroquinolones due to mutations in the GyrA domain has limited the use of this therapy and shifted the focus of the research community on the GyrB domain. Thus, this study involves in silico designing of chemotherapeutic agents for resistant TB by targeting GyrB domain. In the current study, a pharmacophore model for GyrB domain was generated using reported inhibitors. It was utilized as a query search against three commercial databases to identify GyrB domain inhibitors. Additionally, a qualitative Hip-Hop pharmacophore model for GyrA was also developed on the basis of some marketed fluoroquinolone-based GyrA inhibitors, to remove non-selective gyrase inhibitors obtained in virtual screening. Further, molecular dynamic simulations were carried out to determine the stability of the obtained molecules in complex with both the domains. Finally, Molecular mechanics with generalized Born and surface area solvation score was calculated to determine the binding affinity of obtained molecule with both domains to determine the selectivity of the obtained molecules that resulted in seven putative specific inhibitors of GyrB domain.  相似文献   

9.
We assign a function for a small protein, YacG encoded by Escherichia coli genome. The NMR structure of YacG shows the presence of an unusual zinc-finger motif. YacG was predicted to be a part of DNA gyrase interactome based on protein-protein interaction network. We demonstrate that YacG inhibits all the catalytic activities of DNA gyrase by preventing its DNA binding. Topoisomerase I and IV activities remain unaltered in the presence of YacG and its action appears to be restricted only to DNA gyrase. The inhibition of the enzyme activity is due to the binding of YacG to carboxyl terminal domain of GyrB. Overexpression of YacG results in growth inhibition and alteration in DNA topology due to uncontrolled inhibition of gyrase.  相似文献   

10.
Most bacteria possess two type IIA topoisomerases, DNA gyrase and topo IV, that together help manage chromosome integrity and topology. Gyrase primarily introduces negative supercoils into DNA, an activity mediated by the C-terminal domain of its DNA binding subunit (GyrA). Although closely related to gyrase, topo IV preferentially decatenates DNA and relaxes positive supercoils. Here we report the structure of the full-length Escherichia coli ParC dimer at 3.0 A resolution. The N-terminal DNA binding region of ParC is highly similar to that of GyrA, but the ParC dimer adopts a markedly different conformation. The C-terminal domain (CTD) of ParC is revealed to be a degenerate form of the homologous GyrA CTD, and is anchored to the top of the N-terminal domains in a configuration different from that thought to occur in gyrase. Biochemical assays show that the ParC CTD controls the substrate specificity of topo IV, likely by capturing DNA segments of certain crossover geometries. This work delineates strong mechanistic parallels between topo IV and gyrase, while explaining how structural differences between the two enzyme families have led to distinct activity profiles. These findings in turn explain how the structures and functions of bacterial type IIA topoisomerases have evolved to meet specific needs of different bacterial families for the control of chromosome superstructure.  相似文献   

11.
Fighting bacterial resistance is a challenging task in the field of medicinal chemistry. DNA gyrase represents a validated antibacterial target and has drawn much interest in recent years. By a structure-based approach we have previously discovered compound 1, an indolinone derivative, possessing inhibitory activity against DNA gyrase. In the present paper, a detailed biophysical characterization of this inhibitor is described. Using mass spectrometry, NMR spectroscopy, and fluorescence experiments we have demonstrated that compound 1 binds reversibly to the ATP-binding site of the 24 kDa N-terminal fragment of DNA gyrase B from Escherichia coli (GyrB24) with low micromolar affinity. Based on these data, a plausible molecular model of compound 1 in the active site of GyrB24 was constructed. The predicted binding mode explains the competitive inhibitory mechanism with respect to ATP and forms a useful basis for further development of potent DNA gyrase inhibitors.  相似文献   

12.
In spite of much work on DNA gyrase and quinolones for many years, our knowledge of the molecular basis of quinolone-gyrase action is still incomplete. We designed a photoaffinity labeling reagent for the quinolone target, and synthesized a norfloxacin analogue with an azide function which, under UV irradiation, becomes covalently linked to its target. For that, a large amount of purified gyrase was needed. Both subunits were purified using exclusion and affinity chromatography. A plasmid was used that allowed the overproduction of GyrA as a fusion-protein with six histidine residues at its carboxy-terminal domain. GyrA-(His)6 was purified after chromatography on a nickel-containing column, and native GyrB after chromatography on immobilized novobiocin. Reconstituted DNA gyrase (A2B2) had supercoiling activity. Photoaffinity labeling showed covalent binding of the 3H-photoaffinity analogue of norfloxacin to the gyrase-DNA complex, and mainly to the GyrA. The specific binding site remains to be explored.  相似文献   

13.
DNA gyrase is an essential type II topoisomerase found in bacteria. We have previously characterized DNA gyrase from Mycobacterium tuberculosis and Mycobacterium smegmatis. In this study, several monoclonal antibodies were generated against the gyrase A subunit (GyrA) of M. smegmatis. Three, MsGyrA:C3, MsGyrA:H11 and MsGyrA:E9, were further analyzed for their interaction with the enzyme. The monoclonal antibodies showed high degree of cross-reactivity with both fast-growing and slow-growing mycobacteria. In contrast, none recognized Escherichia coli GyrA. All the three monoclonal antibodies were of IgG1 isotype falling into two distinct types with respect to epitope recognition and interaction with the enzyme. MsGyrA:C3 and MsGyrA:H11 IgG, and their respective Fab fragments, inhibited the DNA supercoiling activity catalyzed by mycobacterial DNA gyrase. The epitope for the neutralizing monoclonal antibodies appeared to involve the region towards the N-terminus (residues 351-415) of the enzyme in a conformation-dependent manner. These monoclonal antibodies would serve as valuable tools for structure-function analysis and immunocytological studies of mycobacterial DNA gyrase. In addition, they would be useful for designing peptide inhibitors against DNA gyrase.  相似文献   

14.
Pierrat OA  Maxwell A 《Biochemistry》2005,44(11):4204-4215
Microcin B17 (MccB17) is a DNA gyrase poison; in previous work, this bacterial toxin was found to slowly and incompletely inhibit the reactions of supercoiling and relaxation of DNA by gyrase and to stabilize the cleavage complex, depending on the presence of ATP and the DNA topology. We now show that the action of MccB17 on the gyrase ATPase reaction and cleavage complex formation requires a linear DNA fragment of more than 150 base pairs. MccB17 is unable to stimulate the ATPase reaction by stabilizing the weak interactions between short linear DNA fragments (70 base pairs or less) and gyrase, in contrast with the quinolone ciprofloxacin. However, MccB17 can affect the ATP-dependent relaxation of DNA by gyrase lacking its DNA-wrapping or ATPase domains. From these findings, we propose a mode of action of MccB17 requiring a DNA molecule long enough to allow the transport of a segment through the DNA gate of the enzyme. Furthermore, we suggest that MccB17 may trap a transient intermediate state of the gyrase reaction present only during DNA strand passage and enzyme turnover. The proteolytic signature of MccB17 from trypsin treatment of the full enzyme requires DNA and ATP and shows a protection of the C-terminal 47-kDa domain of gyrase, indicating the involvement of this domain in the toxin mode of action and consistent with its proposed role in the mechanism of DNA strand passage. We suggest that the binding site of MccB17 is in the C-terminal domain of GyrB.  相似文献   

15.
Simocyclinone D8 (SD8) is an antibiotic produced by Streptomyces antibioticus that targets DNA gyrase. A previous structure of SD8 complexed with the N-terminal domain of the DNA gyrase A protein (GyrA) suggested that four SD8 molecules stabilized a tetramer of the protein; subsequent mass spectrometry experiments suggested that a protein dimer with two symmetry-related SD8s was more likely. This work describes the structures of a further truncated form of the GyrA N-terminal domain fragment with and without SD8 bound. The structure with SD8 has the two SD8 molecules bound within the same GyrA dimer. This new structure is entirely consistent with the mutations in GyrA that confer SD8 resistance and, by comparison with a new apo structure of the GyrA N-terminal domain, reveals the likely conformation changes that occur upon SD8 binding and the detailed mechanism of SD8 inhibition of gyrase. Isothermal titration calorimetry experiments are consistent with the crystallography results and further suggest that a previously observed complex between SD8 and GyrB is ~ 1000-fold weaker than the interaction with GyrA.  相似文献   

16.
A rapid single step immunoaffinity purification procedure is described for Mycobacterium smegmatis DNA gyrase. The mycobacterial enzyme is a 340 kDa heterotetrameric protein comprising two subunits each of GyrA and GyrB, exhibiting subtle differences and similarities to the well-characterised Escherichia coli gyrase. In contrast to E.coli gyrase, the M.smegmatis enzyme exhibits strong decatenase activity at physiological Mg2+ concentrations. Further, the enzymes exhibited marked differences in ATPase activity, DNA binding characteristics and susceptibility to fluoroquinolones. The holoenzyme showed very low intrinsic ATPase activity and was stimulated 20-fold in the presence of DNA. The DNA-stimulated ATPase kinetics revealed apparent K0.5 and kcat of 0.68 mM and 0.39 s–1, respectively. The dissociation constant for DNA was found to be 9.2 nM, which is 20 times weaker than that of E.coli DNA gyrase. The differences between the enzymes were further substantiated as they exhibited varied sensitivity to moxifloxacin and ciprofloxacin. In spite of these differences, mycobacterial DNA gyrase is a functionally and mechanistically conserved enzyme and the variations in activity seem to reflect functional optimisation for its physiological role during mycobacterial genome replication.  相似文献   

17.
We have transferred the Escherichia coli gyrA and gyrB genes onto plasmids that allow the overproduction of the DNA gyrase A and B proteins and have designed relatively simple purification procedures for both proteins. The pure proteins are obtained in good yield; from 2 liters of culture (12 g of cells), one can recover 25 mg of GyrA or 3 mg of GyrB protein.  相似文献   

18.
DNA gyrase is the topoisomerase uniquely able to actively introduce negative supercoils into DNA. Vital in all bacteria, but absent in humans, this enzyme is a successful target for antibacterial drugs. From biophysical experiments in solution, we report the low-resolution structure of the full-length A subunit (GyrA). Analytical ultracentrifugation shows that GyrA is dimeric, but nonglobular. Ab initio modeling from small-angle X-ray scattering allows us to retrieve the molecular envelope of GyrA and thereby the organization of its domains. The available crystallographic structure of the amino-terminal domain (GyrA59) forms a dimeric core, and two additional pear-shaped densities closely flank it in an unexpected position. Each accommodates very well a carboxyl-terminal domain (GyrA-CTD) built from a homologous crystallographic structure. The uniqueness of gyrase is due to the ability of the GyrA-CTDs to wrap DNA. Their position within the GyrA structure strongly suggests a large conformation change of the enzyme upon DNA binding.  相似文献   

19.
DNA gyrase, a type II topoisomerase that introduces negative supercoils into DNA, is a validated antibacterial drug target. The holoenzyme is composed of 2 subunits, gyrase A (GyrA) and gyrase B (GyrB), which form a functional A(2)B(2) heterotetramer required for bacterial viability. A novel fluorescence polarization (FP) assay has been developed and optimized to detect inhibitors that bind to the adenosine triphosphate (ATP) binding domain of GyrB. Guided by the crystal structure of the natural product novobiocin bound to GyrB, a novel novobiocin-Texas Red probe (Novo-TRX) was designed and synthesized for use in a high-throughput FP assay. The binding kinetics of the interaction of Novo-TRX with GyrB from Francisella tularensis has been characterized, as well as the effect of common buffer additives on the interaction. The assay was developed into a 21-μL, 384-well assay format and has been validated for use in high-throughput screening against a collection of Food and Drug Administration-approved compounds. The assay performed with an average Z' factor of 0.80 and was able to identify GyrB inhibitors from a screening library.  相似文献   

20.
The subunits of topoisomerase IV (topo IV), the ParC and ParE proteins in Escherichia coli, were purified to near homogeneity from the respective overproducers. They revealed type II topoisomerase activity only when they were combined with each other. In the presence of Mg2+ and ATP, topo IV was capable of relaxing a negatively or positively supercoiled plasmid DNA or converting the knotted P4 phage DNA, whether nicked or ligated, to a simple ring. However, supercoiling activity was not detected. The topoisomerase activity was not detectable when the purified ParC and ParE proteins were combined with the purified GyrB and GyrA proteins, respectively. This is consistent with the result that neither a parC nor a parE mutation was compensated by transformation with a plasmid carrying either the gyrA or the gyrB gene. Simultaneous introduction of both the gyrA and gyrB plasmids corrected the phenotypic defect of parC and parE mutants. The results suggest that DNA gyrase can substitute for topo IV at least in some part of the function for chromosome partitioning. Antisera were prepared against the purified ParC, ParE, GyrA, and GyrB proteins and used to investigate cellular localization of these gene products. ParC protein was found to be specifically associated with inner membranes only in the presence of DNA. This result suggests that one of the functions of topo IV might be to anchor chromosomes on membranes as previously proposed for eukaryotic topoisomerase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号