首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rho family of GTP-binding proteins plays critical roles during myogenesis induction. To elucidate their role later during myogenesis, we have analyzed RhoA function during myoblast fusion into myotubes. We find that RhoA activity is rapidly and transiently increased when cells are shifted into differentiation medium and then is decreased until myoblast fusion. RhoA activity must be down-regulated to allow fusion, because expression of a constitutively active form of RhoA (RhoAV14) inhibits this process. RhoAV14 perturbs the expression and localization of M-cadherin, a member of the Ca2+-dependent cell-cell adhesion molecule family that has an essential role in skeletal muscle cell differentiation. This mutant does not affect N-cadherin and other proteins involved in myoblast fusion, beta1-integrin and ADAM12. Active RhoA induces the entry of M-cadherin into a degradative pathway and thus decreases its stability in correlation with the monoubiquitination of M-cadherin. Moreover, p120 catenin association with M-cadherin is decreased in RhoAV14-expressing cells, which is partially reverted by the inhibition of the RhoA effector Rho-associated kinase ROCK. ROCK inhibition also restores M-cadherin accumulation at the cell-cell contact sites. We propose that the sustained activation of the RhoA pathway inhibits myoblast fusion through the regulation of p120 activity, which controls cadherin internalization and degradation.  相似文献   

2.
The purpose of the present study was to evaluate the effects of EtOH on RhoA, actin cytoskeleton, catenin p120 and E-cadherin and their interactions in CCK-stimulated rat pancreatic acini. In isolated rat pancreatic acinar cells, CCK stimulation enhanced protein expression and association of RhoA, Gα13, Vav-2, catenin p120 and E-cadherin. CCK induced translocation and activation of RhoA and actin-filamentous assembly and disassembly. RhoA was diffusely localized throughout the acinar cell in the resting state and redistributed to the apical site in response to submaximal CCK stimulation and to a lesser extent in response to supramaximal CCK stimulation. Ethanol and subsequent submaximal CCK stimulation mimicked the effect of supramaximal CCK stimulation in terms of amylase secretion and morphologic effects. However, inhibition of RhoA translocation and activation were observed only with ethanol pretreatment. Ethanol followed by supramaximal CCK stimulation disrupted the well-defined localization of catenin p120 and E-cadherin around the lateral plasma membrane. These data suggest that ethanol impaired the assembly and disassembly of actin cytoskeleton and impaired cell–cell adhesion via the RhoA signaling pathways, catenin p120 and E-cadherin in CCK-stimulated pancreatic acini.  相似文献   

3.
Integrin-ligand binding regulates tumor cell motility and invasion. Cell migration also involves the Rho GTPases that control the interplay between adhesion receptors and the cytoskeleton. We evaluated how specific extracellular matrix ligands modulate Rho GTPases and control motility of human squamous cell carcinoma cells. On laminin-5 substrates, the epithelial cells rapidly spread and migrated, but on type I collagen the cells spread slowly and showed reduced motility. We found that RhoA activity was suppressed in cells attached to laminin-5 through the alpha3 integrin receptor. In contrast, RhoA was strongly activated in cells bound to type I collagen and this was mediated by the alpha2 integrin. Inhibiting the RhoA pathway by expression of a dominant-negative RhoA mutant or by directly inhibiting ROCK, reduced focal adhesion formation and enhanced cell migration on type I collagen. Cdc42 and Rac and their downstream target PAK1 were activated following adhesion to laminin-5. PAK1 activation induced by laminin-5 was suppressed by expression of a dominant-negative Cdc42. Moreover, constitutively active PAK1 stimulated migration on collagen I substrates. Our results indicate that in squamous epithelial cells, collagen-alpha2beta1 integrin binding activates RhoA, slowing cell locomotion, whereas laminin-5-alpha3beta1 integrin interaction inhibits RhoA and activates PAK1, stimulating cell migration. The data demonstrate that specific ligand-integrin pairs regulate cell motility differentially by selectively modulating activities of Rho GTPases and their effectors.  相似文献   

4.
p120 catenin regulates the actin cytoskeleton via Rho family GTPases   总被引:19,自引:0,他引:19  
Cadherins are calcium-dependent adhesion molecules responsible for the establishment of tight cell-cell contacts. p120 catenin (p120ctn) binds to the cytoplasmic domain of cadherins in the juxtamembrane region, which has been implicated in regulating cell motility. It has previously been shown that overexpression of p120ctn induces a dendritic morphology in fibroblasts (Reynolds, A.B. , J. Daniel, Y. Mo, J. Wu, and Z. Zhang. 1996. Exp. Cell Res. 225:328-337.). We show here that this phenotype is suppressed by coexpression of cadherin constructs that contain the juxtamembrane region, but not by constructs lacking this domain. Overexpression of p120ctn disrupts stress fibers and focal adhesions and results in a decrease in RhoA activity. The p120ctn-induced phenotype is blocked by dominant negative Cdc42 and Rac1 and by constitutively active Rho-kinase, but is enhanced by dominant negative RhoA. p120ctn overexpression increased the activity of endogenous Cdc42 and Rac1. Exploring how p120ctn may regulate Rho family GTPases, we find that p120ctn binds the Rho family exchange factor Vav2. The behavior of p120ctn suggests that it is a vehicle for cross-talk between cell-cell junctions and the motile machinery of cells. We propose a model in which p120ctn can shuttle between a cadherin-bound state and a cytoplasmic pool in which it can interact with regulators of Rho family GTPases. Factors that perturb cell-cell junctions, such that the cytoplasmic pool of p120ctn is increased, are predicted to decrease RhoA activity but to elevate active Rac1 and Cdc42, thereby promoting cell migration.  相似文献   

5.
p120 catenin regulates the activity of the Rho family guanosine triphosphatases (including RhoA and Rac1) in an adhesion-dependent manner. Through this action, p120 promotes a sessile cellular phenotype when associated with epithelial cadherin (E-cadherin) or a motile phenotype when associated with mesenchymal cadherins. In this study, we show that p120 also exerts significant and diametrically opposing effects on tumor cell growth depending on E-cadherin expression. Endogenous p120 acts to stabilize E-cadherin complexes and to actively promote the tumor-suppressive function of E-cadherin, potently inhibiting Ras activation. Upon E-cadherin loss during tumor progression, the negative regulation of Ras is relieved; under these conditions, endogenous p120 promotes transformed cell growth both in vitro and in vivo by activating a Rac1–mitogen-activated protein kinase signaling pathway normally activated by the adhesion of cells to the extracellular matrix. These data indicate that both E-cadherin and p120 are important regulators of tumor cell growth and imply roles for both proteins in chemoresistance and targeted therapeutics.  相似文献   

6.
p120 catenin is a major regulator of cadherin stability at cell-cell contacts and a modulator of Rho GTPase activities. In C2C12 myoblasts, N-cadherin is stabilized at cell contacts through its association with cholesterol-rich membrane domains or lipid rafts (LR) and acts as an adhesion-activated receptor that activates RhoA, an event required for myogenesis induction. Here, we report that association of p120 catenin with N-cadherin at cell contacts occurs specifically in LR. We demonstrate that interaction of p120 catenin with N-cadherin is required for N-cadherin association with LR and for its stabilization at cell contacts. LR disruption inhibits myogenesis induction and N-cadherin-dependent RhoA activation as does the perturbation of the N-cadherin-p120 catenin complex after p120 catenin knockdown. Finally, we observe an N-cadherin-dependent accumulation of RhoA at phosphatidylinositol 4,5-bisphosphate-enriched cell contacts which is lost after LR disruption. Thus, a functional N-cadherin-catenin complex occurs in cholesterol-rich membrane microdomains which allows the recruitment of RhoA and the regulation of its activity during myogenesis induction.Skeletal myogenesis is a multistep process regulated by diffusible molecules and the interaction of muscle cell precursors with their neighbors and the extracellular matrix (1, 2). Particularly, N-cadherin-dependent intercellular adhesion has a major role in cell cycle exit and induction of skeletal muscle differentiation through activation of the Rho family GTPases. RhoA positively regulates MyoD expression and skeletal muscle differentiation because it is required for serum response factor-mediated activation of several muscle-specific gene promoters (3, 4).Dynamic association of cadherin complexes at the plasma membrane (PM)4 is crucial for cadherin-mediated signaling. Their extracellular domain mediates homophilic cell-cell adhesion, whereas the intracellular domain associates with catenins that produce attachment sites for the F-actin cytoskeleton (57). The juxtamembrane domain of the cadherin cytoplasmic tail binds to p120 catenin, which regulates cadherin stability at cell contacts and modulates Rho GTPase activities (811). Cadherin stability is directly dependent on p120 catenin, and in its absence most cadherins are internalized and often degraded, suggesting that p120 catenin controls cadherin turnover at the cell surface (11, 12). Moreover, mutations in the E-cadherin region that bind to p120 catenin dissociate the E-cadherin-p120 catenin complex and disrupt strong cell adhesion, although interaction with other catenins remains intact (13). Cadherin stability at cell-cell contacts is also regulated by homophilic binding between extracellular domains and association with the F-actin cytoskeleton (14, 15). Association of N-cadherin with cholesterol-enriched microdomains, called lipid rafts (LR), at cell contacts, also stabilizes N-cadherin (16). Because p120 catenin interaction with cadherins and N-cadherin association with LR at cell contact sites are both involved in cadherin stability at cell contact sites, we asked whether p120 catenin association with N-cadherin required LR. We observed that their association occurred specifically in these cholesterol-rich domains. Moreover, using an N-cadherin mutant unable to bind to p120 catenin, we showed that the N-cadherin/p120 catenin interaction was required for N-cadherin association with LR and its stabilization at cell contacts. Because N-cadherin is implicated in the commitment to myogenesis through RhoA activation, we questioned whether its association with p120 catenin in LR was a prerequisite for RhoA activation. LR disruption inhibited myogenesis induction, association of p120 catenin with N-cadherin, and N-cadherin-dependent RhoA activation, as did the perturbation of the N-cadherin-p120 catenin complex after p120 catenin knockdown. Together, these data suggest a crucial role for the N-cadherin/p120 catenin association in LR in the regulation of RhoA activity during myogenesis induction.  相似文献   

7.
The adherens junction protein p120‐catenin is implicated in the regulation of cadherin stability, cell migration and inflammatory responses in mammalian epithelial tissues. How these events are coordinated to promote wound repair is not understood. We show that p120 catenin regulates the intrinsic migratory properties of primary mouse keratinocytes, but also influences the migratory behavior of neighboring cells by secreted signals. These events are rooted in the ability of p120‐catenin to regulate RhoA GTPase activity, which leads to a two‐tiered control of cell migration. One restrains cell motility via an increase in actin stress fibers, reduction in integrin turnover and an increase in the robustness of focal adhesions. The other is coupled to the secretion of inflammatory cytokines including interleukin‐24, which causally enhances randomized cell movements. Taken together, our results indicate that p120‐RhoA‐GTPase‐mediated signaling can differentially regulate the migratory behavior of epidermal cells, which has potential implications for chronic wound responses and cancer.  相似文献   

8.
Cadherins and catenins play an important role in cell-cell adhesion. Two of the catenins, beta and gamma, are members of a group of proteins that contains a repeating amino acid motif originally described for the Drosophila segment polarity gene armadillo. Another member of this group is a 120-kD protein termed p120, originally identified as a substrate of the tyrosine kinase pp60src. In this paper, we show that endothelial and epithelial cells express p120 and p100, a 100-kD, p120- related protein. Peptide sequencing of p100 establishes it as highly related to p120. p120 and p100 both appear associated with the cadherin/catenin complex, but independent p120/catenin and p100/catenin complexes can be isolated. This association is shown by coimmunoprecipitation of cadherins and catenins with an anti-p120/p100 antibody, and of p120/p100 with cadherin or catenin antibodies. Immunocytochemical analysis with a p120-specific antibody reveals junctional colocalization of p120 and beta-catenin in epithelial cells. Catenins and p120/p100 also colocalize in endothelial and epithelial cells in culture and in tissue sections. The cellular content of p120/p100 and beta-catenin is similar in MDCK cells, but only approximately 20% of the p120/p100 pool associates with the cadherin/catenin complex. Our data provide further evidence for interactions among the different arm proteins and suggest that p120/p100 may participate in regulating the function of cadherins and, thereby, other processes influenced by cell-cell adhesion.  相似文献   

9.
Macrophage stimulating protein (MSP) is a growth and motility factor that mediates its activity via the RON/STK receptor tyrosine kinase. MSP promotes integrin-dependent epithelial cell migration, which suggests that MSP may regulate integrin receptor functions. Integrins are cell surface receptors for extracellular matrix. Epithelial cell adhesion and motility are mediated by integrins. We studied the enhancement by MSP of cell adhesion and the molecular mechanisms mediating this effect. MSP decreased the time required for adhesion of 293 and RE7 epithelial cells to substrates coated with collagen or fibronectin. Prevention of adhesion by an RGD-containing peptide showed that the cell-substrate interaction was mediated by integrins. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), blocked MSP-dependent adhesion, which shows that PI3-K is in the MSP-induced adhesion pathway. MSP also affected focal adhesion kinase (FAK) which is important for some types of cell adhesion and motility. Although MSP caused PI3-K-independent tyrosine phosphorylation and activation of FAK, experiments with dominant-negative FAK constructs showed that FAK does not mediate the effects of MSP on cell adhesion or motility. Thus PI3-K, but not FAK, mediates MSP-induced integrin-dependent adhesion of epithelial cells. Also, we found ligand-independent association between RON and beta1 integrin, which is additional evidence for a relationship between these two receptor systems.  相似文献   

10.
RhoA organizes actin stress fibres and is necessary for cell transformation by oncogenes such as src and ras. Moreover, RhoA is implicated in cadherin clustering during the formation of adherens junctions. The catenin p120 has also been implicated in cadherin clustering through an unknown mechanism. Here we show that p120 selectively inhibits RhoA activity in vitro and in vivo. RhoA inhibition and the interaction of p120 with cadherins are mutually exclusive, suggesting a mechanism for regulating the recruitment and exchange of RhoA at nascent cell-cell contacts. By affecting RhoA activation, p120 could modulate cadherin functions, including suppression of invasion, neurite extension and junction formation.  相似文献   

11.
12.
13.
Cadherin engagement inhibits RhoA via p190RhoGAP   总被引:9,自引:0,他引:9  
Cadherins are transmembrane receptors that mediate cell-cell adhesion in epithelial cells. A number of changes occur during cadherin-mediated junction formation, one of which is a rearrangement of the actin cytoskeleton. Key regulators of actin cytoskeletal dynamics in cells are the Rho family of GTPases. We have demonstrated in previous studies that cadherin signaling suppresses RhoA activity and activates Rac1. The signaling events downstream of cadherins that modulate the activity of Rho family proteins remain unknown. Here we have identified a pathway by which RhoA becomes inactivated by cadherins. To determine whether cadherins regulate RhoA through activation of a GTPase-activating protein (GAP) for RhoA, we used constitutively active RhoA to isolate activated GAPs. Using this assay, we have identified the RhoA-specific GAP, p190RhoGAP, downstream from engaged cadherins. We found that cadherin engagement induced tyrosine phosphorylation of p190RhoGAP and increased its binding to p120RasGAP. The increased precipitation of p190RhoGAP with 63LRhoA was blocked by addition of PP2 suggesting that Src family kinases are required downstream from cadherin signaling. The inhibition of RhoA activity by cadherins was antagonized by expression of a dominant negative p190RhoGAP. Taken together, these data demonstrate that p190RhoGAP activity is critical for RhoA inactivation by cadherins.  相似文献   

14.
CD148 is a transmembrane tyrosine phosphatase that is expressed at cell junctions. Recent studies have shown that CD148 associates with the cadherin/catenin complex and p120 catenin (p120) may serve as a substrate. However, the role of CD148 in cadherin cell-cell adhesion remains unknown. Therefore, here we addressed this issue using a series of stable cells and cell-based assays. Wild-type (WT) and catalytically inactive (CS) CD148 were introduced to A431D (lacking classical cadherins), A431D/E-cadherin WT (expressing wild-type E-cadherin), and A431D/E-cadherin 764AAA (expressing p120-uncoupled E-cadherin mutant) cells. The effects of CD148 in cadherin adhesion were assessed by Ca2+ switch and cell aggregation assays. Phosphorylation of E-cadherin/catenin complex and Rho family GTPase activities were also examined. Although CD148 introduction did not alter the expression levels and complex formation of E-cadherin, p120, and β-catenin, CD148 WT, but not CS, promoted cadherin contacts and strengthened cell-cell adhesion in A431D/E-cadherin WT cells. This effect was accompanied by an increase in Rac1, but not RhoA and Cdc42, activity and largely diminished by Rac1 inhibition. Further, we demonstrate that CD148 reduces the tyrosine phosphorylation of p120 and β-catenin; causes the dephosphorylation of Y529 suppressive tyrosine residue in Src, a well-known CD148 site, increasing Src activity and enhancing the phosphorylation of Y228 (a Src kinase site) in p120, in E-cadherin contacts. Consistent with these findings, CD148 dephosphorylated both p120 and β-catenin in vitro. The shRNA-mediated CD148 knockdown in A431 cells showed opposite effects. CD148 showed no effects in A431D and A431D/E-cadherin 764AAA cells. In aggregate, these findings provide the first evidence that CD148 promotes E-cadherin adhesion by regulating Rac1 activity concomitant with modulation of p120, β-catenin, and Src tyrosine phosphorylation. This effect requires E-cadherin and p120 association.  相似文献   

15.
The Eph family of receptor tyrosine kinases is involved in limiting cell and tissue interactions via a repulsive mechanism. The mechanism of repulsion involves reorganizing the actin cytoskeleton, but little is known of the molecular components that connect the receptor to the actin cytoskeleton. Recent studies in retinal ganglion cells have demonstrated that EphA4 activates the small GTPase Rho. We have investigated the involvement of Rho in signaling downstream from EphA4. As a model system, we have used a chimeric receptor called EPP that we express and activate in early Xenopus embryos. Previous studies demonstrated that EPP activation leads to loss of cell-cell adhesion and change in cell shape, plus loss of aspects of cell polarity in epithelial cells, such as apical microvilli and the apical/basolateral boundary. In this study, we show that injecting inhibitors of Rho GTPases into early Xenopus embryos produces a phenotype very similar to that resulting from EPP activation. More importantly, expression of a constitutively active form of Xenopus RhoA (XRhoA) concurrent with activated EPP rescued embryos from the loss of cell-cell adhesion and change in cell shape associated with EPP. These data argue that, in contrast to the case in retinal ganglion cells, EphA4 in early Xenopus embryos acts to inhibit RhoA, suggesting that this receptor may regulate Rho differently (and therefore affect the cytoskeleton differently) in neuronal and non-neuronal cells. Furthermore, overexpression of ephexin, a novel guanine nucleotide exchange factor for Rho family GTPases, also blocks EPP-induced dissociation. This suggests that EphA4, which has been demonstrated to activate ephexin in cultured neuronal cells, may also target Rho GTPase via an ephexin-independent pathway.  相似文献   

16.
We previously demonstrated that exogenous expression of a truncated form of the tight junction protein ZO-3 affected junctional complex assembly and function. Current results indicate that this ZO-3 construct influences actin cytoskeleton dynamics more globally. We show that expression of the amino-terminal half of ZO-3 (NZO-3) in Madin-Darby canine kidney cells results in a decreased number of stress fibers and focal adhesions and causes an increased rate of cell migration in a wound healing assay. We also demonstrate that RhoA activity is reduced in NZO-3-expressing cells. We determined that ZO-3 interacts with p120 catenin and AF-6, proteins localized to the junctional complex and implicated in signaling pathways important for cytoskeleton regulation and cell motility. We also provide evidence that NZO-3 interacts directly with the C terminus of ZO-3, and we propose a model where altered interactions between ZO-3 and p120 catenin in NZO-3-expressing cells affect RhoA GTPase activity. This study reveals a potential link between ZO-3 and RhoA-related signaling events.  相似文献   

17.
The semaphorins are a family of proteins originally identified as axon-guiding molecules in the developing nervous system that have been recently shown to regulate many cellular functions, including motility, in a variety of cell types. We have previously shown that in endothelial cells Semaphorin 4D acts through its receptor, Plexin-B1, to elicit a pro-angiogenic phenotype that involves the activation of the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. Here we show through the use of a receptor chimeric approach, Plexin-B1 mutants, and dominant negative and pharmacological inhibitors that this response is dependent upon the activation of RhoA and its downstream target, Rho kinase (ROK). Indeed, we demonstrate that in endothelial cells, Semaphorin 4D promotes the formation of focal adhesion complexes, stress fibers, and the phosphorylation of myosin light chain, a response that was abolished by the use of ROK inhibitors and absent from cells expressing Plexin-B1 mutant constructs incapable of signaling to RhoA. Stress fiber polymerization and contraction are in turn necessary for RhoA-dependent pro-angiogenic signaling through Plexin-B1. Furthermore, we observed that in endothelial cells Plexin-B1 promotes the integrin-mediated activation of Pyk2, resulting in the stimulation of PI3K, Akt, and ERK. These findings provide evidence that Plexin-B1 promotes endothelial cell motility through RhoA and ROK by regulating the integrin-dependent signaling networks that result in the activation of PI3K and Akt.  相似文献   

18.
The expression and activity of epithelial proteinases is under stringent control to prevent aberrant hydrolysis of structural proteins and disruption of tissue architecture. E-cadherin-dependent cell-cell adhesion is also important for maintenance of epithelial structural integrity, and loss of E-cadherin expression has been correlated with enhanced invasive potential in multiple tumor models. To address the hypothesis that there is a functional link between E-cadherin and proteinase expression, we have examined the role of E-cadherin in proteinase regulation. By using a calcium switch protocol to manipulate junction assembly, our data demonstrate that initiation of de novo E-cadherin-mediated adhesive contacts suppresses expression of both relative matrix metalloproteinase-9 levels and net urinary-type plasminogen activator activity. E-cadherin-mediated cell-cell adhesion increases both phosphatidylinositol 3'-kinase (PI3-kinase)-dependent AKT phosphorylation and epidermal growth factor receptor-dependent MAPK/ERK activation. Pharmacologic inhibition of the PI3-kinase pathway, but not the epidermal growth factor receptor/MAPK pathway, prevents E-cadherin-mediated suppression of proteinases and delays junction assembly. Moreover, inhibition of junction assembly with a function-blocking anti-E-cadherin antibody stimulates proteinase-dependent Matrigel invasion. As matrix metalloproteinase-9 and urinary-type plasminogen activator potentiate the invasive activity of oral squamous cell carcinoma, these data suggest E-cadherin-mediated signaling through PI3-kinase can regulate the invasive behavior of cells by modulating proteinase secretion.  相似文献   

19.
Selective uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion   总被引:21,自引:0,他引:21  
p120(ctn) is a catenin whose direct binding to the juxtamembrane domain of classical cadherins suggests a role in regulating cell-cell adhesion. The juxtamembrane domain has been implicated in a variety of roles including cadherin clustering, cell motility, and neuronal outgrowth, raising the possibility that p120 mediates these activities. We have generated minimal mutations in this region that uncouple the E-cadherin-p120 interaction, but do not affect interactions with other catenins. By stable transfection into E-cadherin-deficient cell lines, we show that cadherins are both necessary and sufficient for recruitment of p120 to junctions. Detergent-free subcellular fractionation studies indicated that, in contrast to previous reports, the stoichiometry of the interaction is extremely high. Unlike alpha- and beta-catenins, p120 was metabolically stable in cadherin-deficient cells, and was present at high levels in the cytoplasm. Analysis of cells expressing E-cadherin mutant constructs indicated that p120 is required for the E-cadherin-mediated transition from weak to strong adhesion. In aggregation assays, cells expressing p120-uncoupled E-cadherin formed only weak cell aggregates, which immediately dispersed into single cells upon pipetting. As an apparent consequence, the actin cytoskeleton failed to insert properly into peripheral E-cadherin plaques, resulting in the inability to form a continuous circumferential ring around cell colonies. Our data suggest that p120 directly or indirectly regulates the E-cadherin-mediated transition to tight cell-cell adhesion, possibly blocking subsequent events necessary for reorganization of the actin cytoskeleton and compaction.  相似文献   

20.
During epithelial tumor progression, the loss of E-cadherin expression and inappropriate expression of mesenchymal cadherins coincide with increased invasiveness. Reexpression experiments have established E-cadherin as an invasion suppressor. However, the mechanism by which E-cadherin suppresses invasiveness and the role of mesenchymal cadherins are poorly understood. We show that both p120 catenin and mesenchymal cadherins are required for the invasiveness of E-cadherin-deficient cells. p120 binding promotes the up-regulation of mesenchymal cadherins and the activation of Rac1, which are essential for cell migration and invasiveness. p120 also promotes invasiveness by inhibiting RhoA activity, independently of cadherin association. Furthermore, association of endogenous p120 with E-cadherin is required for E-cadherin-mediated suppression of invasiveness and is accompanied by a reduction in mesenchymal cadherin levels. The data indicate that p120 acts as a rheostat, promoting a sessile cellular phenotype when associated with E-cadherin or a motile phenotype when associated with mesenchymal cadherins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号