首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The appearance and distribution of AChE activity in the neural crest cells of the chick embryo were histochemically investigated. Prior to closure of the neural tube, neural crests were not demonstrated and most of the cells constituting the neural plate and the more lateral ectoderm were AChE-negative. With the closure of the neural tube, the neural crests assumed the form of a cell mass in its mid-dorsal portion and AChE activity was demonstrated in some elements of both tube and crests. The neural crest cells beginning to migrate ventrally or laterally were AChE-positive, and some showed intense enzymatic activity. Electron microscopically, the neural crest cells and the cells migrating from the neural crest displayed AChE activity in the cisternae of the nuclear envelope and in a few r-ER profiles, but were morphologically undifferentiated. As assessed by 3H-thymidine autoradiography, these cells possessed the potential to proliferate. These findings indicate that with the formation of the neural tube and neural crest, cells constituting these structures begin to differentiate with respect to AChE activity and that the enzyme appears in the neural crest cells before the onset of neuronal differentiation.  相似文献   

2.
Summary The myotome of early chick embryos was investigated histochemically by means of the acetylcholinesterase (AChE) reaction.Light-microscopically, at the cervical level, the myotome was first recognized and AChE activity demonstrated at stage 13 (2 day-old embryo). Subsequently, the myotome elongated ventro-laterally along the inner surface of the dermomyotome and reached the ventro-lateral end of the dermomyotome at stage 17 to 18 (3 day-old embryo). AChE activity in the myotome showed subsequent increase in intensity during the course of development. The myotome consisted mainly of AChE-positive cells displaying enzymatic activity along the nuclear membrane and within the cytoplasm. In contrast, almost all cells of the dermomyotome and the interstitial cells were AChE-negative.Electron-microscopically, the myotome cells of the 2 day-old embryo and the cells in the dorso-medial portion of the myotome of the 3 day-old embryo were morphologically undifferentiated; AChE activity was detected in the nuclear envelope and in single short profiles of the endoplasmic reticulum (ER). On the other hand, in the 3 day-old embryo the cells in the ventro-lateral portion of the myotome showed AChE activity in the nuclear envelope, numerous profiles of the ER and some Golgi complexes. These AChE-positive cells were regarded as developing myogenic cells based on their morphological characteristics.The present findings indicate (i) that the appearance of AChE activity in the cytoplasm is the first sign of the differentiation of myogenic cells, and (ii) that in these myogenic cells the increase in AChE activity is based on the development of the ER.  相似文献   

3.
Synopsis Acetylcholinesterase (AChE) activity of primary sensory neurons of the cat has been quantitated and correlated with cell size. Dorsal root ganglia of the fourth and fifth thoracic spinal levels were studied. Frozen longitudinal and cross-sections were collected serially and stained with Cresyl Violet for total cell counts of the ganglia on the left; the average count was 3375 cells. Ganglia from the right were stained for AChE after the method of Karnovsky & Roots (1964) as modified by El Badawi & Schenk (1967), and counterstained with Haematoxylin. Cells were counted in every fourth section and the diameter of each was recorded. AChE-positive cells were classified as brown (B1, B2, B3) and AChE-negative ones as blue (BL).An inverse correlation exists between cell size and AChE activity. High activity was demonstrated in 29% of the cells (B1), moderate activity in 52% (B2), minimal activity in 15% (B3) and 4% were classified as AChE-negative (BL). Small cells with high activity were centrally located in the ganglia whereas large AChE-negative cells were peripherally distributed. Chi-Square analysis revealed that the size of the cell was not independent of the enzyme colour category.  相似文献   

4.
M Ahonen 《Histochemistry》1991,96(6):467-478
In this study, the ontogenetic appearance of three neuronal markers, tyrosine hydroxylase (TH), neurofilament (NF) proteins and acetylcholinesterase (AChE), have been compared in the neural tube and derivatives of the neural crest with special consideration on developing rat sympathetic tissues. The tree markers appeared for the first time on embryonic day E 12.5. At this age, NF immunoreactivity was located in the cells on the ventro- and dorsolateral edges of the neural tube, i.e., in the regions where the cells had reached the postmitotic stage. In addition, on day E 12.5, NF-immunoreactive fibers were located in the dorsal and ventral roots and the spinal and sympathetic ganglia. This suggests rapid extension of neurites. In contrast to NF, AChE first appeared on day E 12.5 in cell somata of spinal and sympathetic ganglia and only after that in axons. Thus, it can be considered as a marker of differentiating neuronal cell bodies. In the developing sympathoadrenal cells, TH is expressed before NF and AChE. However, the migrating TH immunoreactive sympathetic cells are constantly followed by NF immunoreactive fibers, suggesting that sympathetic tissues may receive innervation from preganglionic axons at the very beginning of their ontogeny. During the later development, all sympathetic tissues contain two major cell groups: 1) one with a moderate TH immunoreactivity, NF immunoreactivity and AChE activity and 2) the other with an intense TH immunoreactivity but lacking NF immunoreactivity or AChE activity. The former includes principal neurons, neuron-like cells of the paraganglia and noradrenaline cells of the adrenal medullae, and the latter includes ganglionic small intensely fluorescent (SIF) cells, paraganglionic cells and medullary adrenaline cells.  相似文献   

5.
Summary In this study, the ontogenetic appearance of three neuronal markers, tyrosine hydroxylase (TH), neurofilament (NF) proteins and acetylcholinesterase (AChE), have been compared in the neural tube and derivatives of the neural crest with special consideration on developing rat sympathetic tissues. The tree markers appeared for the first time on embryonic day E 12.5. At this age, NF immunoreactivity was located in the cells on the ventro- and dorsolateral edges of the neural tube, i.e., in the regions where the cells had reached the postmitotic stage. In addition, on day E 12.5, NF-immunoreactive fibers were located in the dorsal and ventral roots and the spinal and sympathetic ganglia. This suggests rapid extension of neurites. In contrast to NF, AChE first appeared on day E 12.5 in cell somata of spinal and sympathetic ganglia ond only after that in axons. Thus, it can be considered as a marker of differentiating neuronal cell bodies. In the developing sympathoadrenal cells, TH is expressed before NF and AChE. However, the migrating TH immunoreactive sympathetic cells are constantly followed by NF immunoreactive fibers, suggesting that sympathetic tissues may receive innervation from preganglionic axons at the very beginning of their ontogeny. During the later development, all sympathetic tissues contain two major cell groups: 1) one with a moderate TH immunoreactivity, NF immunoreactivity and AChE activity and 2) the other with an intense TH immunoreactivity but lacking NF immunoreactivity or AChE activity. The former includes principal neurons, neuron-like cells of the paraganglia and noradrenaline cells of the adrenal medullae, and the latter includes ganglionic small intensely fluorescent (SIF) cells, paraganglionic cells and medullary adrenaline cells.  相似文献   

6.
In the nine day old embryo, acetylcholinesterase (AChE) is found in the reticulum, i.e. the nuclear envelope, endoplasmic reticulum, and Golgi complex, of a few cells in the neural crest. When the neurite first enters the neural tube, reticulum-bound enzyme is present also in the varicosity of the growth cone of the bipolar neuroblast. At later stages, AChE in the neuroblast has a dual distribution; in addition to the reticulum, activity also appears at the axolemmal surface. The axolemmal activity is found initially on the distal portions of axons in the posterior fasciculus and then progressively appears along the nerve roots in a distal to proximal direction. Very little reticulum-bound enzyme is present within the axon proper. After the 13th day the levels of AChE activity in the posterior fasciculus greatly exceed those in the dorsal root or in the ganglion. Enzymatic activity in the dorsal root equals or exceeds that in the posterior fasciculus by day 16, and both areas are considerably more active than the ganglion.  相似文献   

7.
Brief treatment with 10(-4)M diisopropylfluorophosphate (DEP) irreversibly inactivates acetylcholinesterase (E.C.3.1.1.7; acetylcholine hydrolase) (AChE) activity in 10 day old chick embryonic muscle cultures. Electron microscopic cytochemistry was employed to follow the distribution of new AChE during recovery from DEP treatment. In normal 10 day cultures of embryo pectoralis muscles AChE is localized in the nuclear envelope, perinuclear sarcoplasm, sarcotubular system, subsurface vesicles and bound outside the cells. Immediately after DFP treatment AChE activity is absent in large myotubes. Within 15 min, activity is randomly present in small amounts in the sarcotubular system and nuclear envelope. There is a dramatic increase in activitv in the nuclear envelope during the 1st hr of recovery, and connections between the nuclear envelope and sarcotubular system are often seen. The next few hr of recovery show increased AChE activity. By 4 hr activity approaches that of controls. Six to 8 hr after treatment, AChE activity can be detected spectrophotometrically in the medium and can be seen bound outside the cells with the electron microscope. The spatial and temporal patterns of AChE activity demonstrate that the recovery of AChE and its mobilization and release from DFP-treated cells are not governed solely by the levels attained by the enzyme in the cultured embryo muscle.  相似文献   

8.
Ganglion cells and topographically related nerves in the vallate papilla/von Ebner gland complex were investigated in rat tongue by cytochemical, immunocytochemical, and ultrastructural methods to evaluate the possible presence of different neuronal subpopulations. Immunostaining for neurofilaments and protein gene product 9.5 revealed ganglionic cell bodies and nerve fibers. A large part of the neurons were positive at immunostaining for neuronal nitric oxide synthase (NOS), vesicular acetylcholine transporter (VAChT), or vasoactive intestinal peptide (VIP). A small subset of nerve fibers revealed immunoreactivity for cholecystokinin. Axons traveling under the lingual epithelium were evidenced by their content of calcitonin gene-related peptide (CGRP) or substance P (SP). Cell bodies positive for SP or CGRP were not detected. Using methods of co-localization, three different neuronal classes were detected. The main population was composed of AChE/NADPH-diaphorase (NADPHd)-positive cells. Small groups of acetylcholine esterase (AChE)-positive/NADPHd-negative cells were visible. Isolated neurons were AChE-negative/NADPHd-positive. The results of co-localization experiments for VAChT/NOS were consistent with those obtained by cytochemical co-localization of AChE and NADPHd. Experiments of co-localization for peptidergic and nitrergic structures revealed CGRP- and SP-immunoreactive fibers in the vallate papilla/von Ebner gland ganglion. In conclusion, the results demonstrated in the VP/VEG complex peptidergic, cholinergic, and nitrergic neurons. The presence of different neuronal subclasses suggests that a certain degree of functional specialization may exist.  相似文献   

9.
The localization of acetylcholinesterase (AChE) was studied in the cerebellar cortex of the crossbred trembler chickens by means of histo- and cytochemical methods. No essential differences between the crossbred normal and the crossbred trembler chickens were observed. The common results were as follows: Under a light microscope AChE activity was predominantly evident in the molecular layer, and secondly in the granular layer. AChE was ultrastructurally distributed principally in the cisternae of rough endoplasmic reticulum (ER) and in a part of nuclear envelope of the Purkinje, the Golgi and some of the basket and granule cells, and in a portion of the sacculus of the Golgi apparatus of the Purkinje cell only. In dendrites and the initial axon of the Purkinje cells the smooth ER also showed AChE activity. Although dendritic terminals of the Golgi cells contained AChE reaction products, the axon terminal did not. Some of the afferent terminal fibers forming the cerebellar glomerulus exhibited weakly a positive AChE reaction, while others in the vicinity did not show any AChE activity at all. However, the enzyme reaction product was localized in the intercellular spaces between a presynaptic afferent terminal and the postsynaptic granule cell dendritic terminals in the glomerulus. In addition, AChE activity was found in the form of spots in the intercellular spaces of both molecular and granular layers.  相似文献   

10.
The present study deals with the distribution of adenosine triphosphatase and 5'-nucleotidase in the various constituents of thoracic ganglia and associated nerve of Periplaneta americana. The localization of both the enzymes in the thoracic ganglia is identical. The neural lamella is devoid of any activity for both the enzymes. The ganglion cells are intensely positive at their borders. The neuronal cell surface and/or glial cell processes which envelope the neurons show intense activity for these enzymes. Adenosine triphosphatase and 5'-nucleotidase are present around "giant fibres" and small axons. The activity appears to confine itself in the sheaths. The cytoplasm and the nuclei of the neurons are devoid of enzymatic activity, whereas the nucleoli are slightly active. The nerves are positive for both the enzymes. The role of these enzymes at different sites has also been discussed.  相似文献   

11.
Summary Light- and electron-microscopic enzyme cytochemistry was used to localize acetylcholinesterase (AChE) activity in the synganglion (brain) of the tick Dermacentor variabilis. High AChE activity was observed throughout the neuropil as well as adjacent to most neuronal perikarya. Intracellular activity was not observed by light microscopy. By electron microscopy, reaction product was localized at the plasma membrane of glia and neurons. Enzyme activity was not associated with the olfactory globuli neurons. In other types of neurons, small amounts of reaction product were observed in the Golgi apparatus and nuclear envelope. Large neurosecretory neurons contained activity that appeared to be associated with deep invaginations of the plasma membrane as well as intracellular membranes. AChE activity was also associated with processes of both neurons and glia. In most peripheral nerves AChE activity was associated with virtually all axons. Clearly then, AChE is associated with glia and non-cholinergic neurons as well as with presumed cholinergic neurons. The widespread localization and large amounts of AChE in the tick brain exceeds that reported for other invertebrates and vertebrates. As has been suggested for other animals, AChE in the tick brain may have functions in addition to its known role in cholinergic neurotransmission.  相似文献   

12.
Gamma-aminobutyric acid (GABA) uptake and acetylcholinesterase (AChE) content were demonstrated concurrently in cortical neurons grown in tissue culture. Positive reactions either for GABA uptake or for AChE content were encountered in pyramidal and stellate, as well as spindle-shaped neurons. Neither reaction was confined to a specific morphological subtype. Nearly half the neurons were negative for either reaction. Most of the remaining neurons were positive only for GABA or only for AChE. However, a subpopulation of neurons showed not only a high AChE content, but also an avid GABA uptake. Thus, four types of neurons could be identified on the basis of these two reactions. The high AChE content in some of the cortical neurons that also showed GABA uptake indicates that there are at least two distinct types of GABAergic neurons.  相似文献   

13.
Summary To further evaluate the role of autonomic ganglia in the regulation of pelvic visceral activity, the neural elements in the major pelvic ganglion of the male rat have been studied with histochemical and electron microscopic techniques. The principal findings are that the ganglion is composed of cholinergic and adrenergic ganglion cells as well as small intensely fluorescent (SIF) cells. Polarity in the ganglion is indicated by clustering of small ganglion cells which stain intensely for acetylcholinesterase (AChE) along the pelvic nerve while larger cells, with weak to moderate AChE activity, collect near small branches of the hypogastric nerve. Some cholinergic ganglion cells are enclosed by a plexus of adrenergic terminals. SIF cells appear to be in contact with both cholinergic and adrenergic cells, although many of the fluorescent beads around adrenergic neurons may be short dendrites of ganglion cells, rather than processes of SIF cells. Two types of SIF cells may be distinguished on the basis of size and morphology of their granulated vesicles. Afferent synapses of the cholinergic type were common on SIF cells of the large granule and small granule type. Portions of SIF cells with large granules occur within the capsule of ganglion cells. Contacts seen here were interpreted as efferent synapses from SIF cells to the dendrites of ganglion cells.  相似文献   

14.
The brain of Tenebrio molitor exhibited marked fluctuations in acetylcholinesterase (AChE) activity throughout metamorphosis. This was true AChE activity, since it was inhibited by high substrate concentrations and by 10 μM of the specific AChE inhibitor BW284C51 [(1,5-bis'4-allyldimethylammoniumphenyl)-pentan-3-one dibromide] but not by iso-OMPA (tetraisopropylpyrophosphoramide), a cholinesterase (but not AChE) inhibitor. The histochemical AChE activity was localized in the neuropile and the nuclear envelope of neurons and glial cells. The enzyme extracted from brains with 1% Triton X-100 and 1 M NaCl sedimented as a single peak in a sucrose density gradient, with a sedimentation coefficient of 5.4S. This single AChE sedimentation peak was mainly due to an amphiphilic dimeric form. AChE activity per brain increased in newly ecdysed pupa. AChE activity per milligram of protein exhibited a peak in the mid-pupa which could be correlated to the increase in ecdysteroid titers. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Y Ito  S Sohma  H Hirano 《Histochemistry》1984,81(3):209-212
The distal portions of rat colon from 14-, 16-, 18-, and 21-day fetuses, newborns, and adults were histochemically examined for acetylcholinesterase (AChE) activity by light and electron microscopy. The specificity of AChE activity in Auerbach's plexus was confirmed by specific and/or nonspecific cholinesterase inhibition tests. Enzyme activity was first detectable after 18 days of gestation and became stronger with age. The reaction product was demonstrated by electron microscopy in and between the plasma membranes of the nerve fibers and their terminals. Ganglion cells also showed positive activity in the plasma membrane, nuclear envelope, and rough endoplasmic reticulum. The distribution pattern of the reaction product in fetal and newborn rat colons was basically the same as in adult rat colon. Therefore, the localization of AChE activity is considered to be a good marker for identifying premature ganglion cells in Auerbach's plexus, and the degree of AChE staining is a good indication of the degree of maturation of the plexus.  相似文献   

16.
Summary The distal portions of rat colon from 14-, 16-, 18-, and 21-day fetuses, newborns, and adults were histochemically examined for acetylcholinesterase (AChE) activity by light and electron microscopy. The specificity of AChE activity in Auerbach's plexus was confirmed by specific and/or nonspecific cholinesterase inhibition tests. Enzyme activity was first detectable after 18 days of gestation and became stronger with age. The reaction product was demonstrated by electron microscopy in and between the plasma membranes of the nerve fibers and their terminals. Ganglion cells also showed positive activity in the plasma membrane, nuclear envelope, and rough endoplasmic reticulum. The distribution pattern of the reaction product in fetal and newborn rat colons was basically the same as in adult rat colon. Therefore, the localization of AChE activity is considered to be a good marker for identifying premature ganglion cells in Auerbach's plexus, and the degree of AChE staining is a good indication of the degree of maturation of the plexus.  相似文献   

17.
Acetylcholine is found in the nervous system and also in other cell types (endothelium, lymphocytes, and epithelial and blood cells), which are globally termed the non-neuronal cholinergic system. In this study we investigated the expression and subcellular localization of acetylcholinesterase (AChE) in endothelial cells. Our results show the expression of the 70-kDa AChE in both cytoplasmic and nuclear compartments. We also describe, for the first time, a nuclear and cytoskeleton-bound AChE isoform with approximately 55 kDa detected in endothelial cells. This novel isoform is decreased in response to vascular endothelial growth factor via the proteosomes pathway, and it is down-regulated in human leukemic T-cells as compared with normal T-cells, suggesting that the decreased expression of the 55-kDa AChE protein may contribute to an angiogenic response and associate with tumorigenesis. Importantly, we show that its nuclear expression is not endothelial cell-specific but also evidenced in non-neuronal and neuronal cells. Concerning neuronal cells, we can distinguish an exclusively nuclear expression in postnatal neurons in contrast to a cytoplasmic and nuclear expression in embryonic neurons, suggesting that the cell compartmentalization of this new AChE isoform is changed during the development of nervous system. Overall, our studies suggest that the 55-kDa AChE may be involved in different biological processes such as neural development, tumor progression, and angiogenesis.  相似文献   

18.
The putative cholinergic and GABAergic elements of the pineal organ of lampreys were investigated with immunocytochemistry to choline acetyltransferase (ChAT) and γ-aminobutyric acid (GABA), and by acetylcholinesterase (AChE) histochemistry. For comparison we also carried out immunocytochemistry to serotonin (5-HT) and a tract-tracing investigation of the two types of projecting cells, i.e., ganglion cells and long-axon photoreceptors. Most photoreceptors were ChAT-immunoreactive (ChAT-ir) and AChE-positive, while ganglion cells and the pineal tract were ChAT-negative and AChE-negative or only faintly positive. These results strongly suggest the presence of a cholinergic system of photoreceptors in the lamprey pineal organ. GABA-ir fibers that appear to originate from faintly to moderately stained ganglion cells were observed in the pineal stalk. Immunocytochemistry to 5-HT indicated the presence of two types of 5-HT-ir cells, bipolar cells and ganglion-like cells. The connections of the ganglion cells and long-axon photoreceptors were also studied by application of DiI to the pineal stalk in fixed brains or of biotinylated dextran amine (BDA) to one of the main targets of pinealofugal fibers (optic tectum or mesencephalic tegmentum) in isolated brains in vitro. Some long-axon photoreceptors and ganglion cells were labeled from the optic tectum. However, BDA application to the tegmentum exclusively labeled ganglion cells in the pineal organ. These results indicate that the two morphological types of afferent pineal neuron have different projections. No labeled cells were observed in the parapineal organ in BDA experiments, indicating that this organ and the pineal organ are involved in different neural circuits.  相似文献   

19.
Using the electron-microscope technique of Lewis and Shute, we studied the localization of the acetylcholinesterase (AChE) activity in the hypoglossal, facial and spinal-cord motor nuclei of rats. The technique used selectively detects synapses with subsynaptic cisterns (type C synapses) as well as heavy deposits of reaction products in the rough endoplasmic reticulum, in fragments of the nuclear envelope, in some Golgi zones and on parts of the pericaryal plasma membrane, the axolemma and the dendritic membrane. In C synapses, AChE activity was located in the synaptic cleft and on the membrane of presynaptic boutons. Some C synapses exhibited distinct synaptic specialization in the form of multiple 'active zones'. These zones were characterized by dense presynaptic projections, short dilations of the synaptic cleft, and postsynaptic densities localized between the postsynaptic membrane and the outer membrane of the subsynaptic cistern. Within the postsynaptic densities, rows of rod- or channel-like structures were observed. The subsynaptic cisterns were continuous with the positive rough endoplasmic reticulum. The results are discussed in terms of the possible role of C synapses in the regulation of AChE synthesis in postsynaptic cholinergic neurons and/or in the regulation of AChE release into the extracellular space as well as in the establishment of new synaptic contacts.  相似文献   

20.
This study was undertaken to localize epidermal growth factor receptor (EGFR) during early development of Japanese medaka embryos using immunocytochemistry. Specific staining was observed in all stages studied. All of the cells of the embryonic disc from the germinal disc (1 cell) through the late high blastula stages stained moderately for EGFR. Beginning with the flat blastula stage, the surface and lateral cells of the embryonic disc and the cells migrating around the yolk stained intensely for EGFR, and this continued throughout the study period. The presence of the keel at the late gastrula stage did not affect the moderate staining of the majority of the embryonic disc cells. When somites first appeared, the keel region stained less intensely than before, but scattered individual cells stained intensely for EGFR. Embryos with 12 somites had a neural tube that was lightly stained except for a few intensely stained individual cells. The neural tube, notochord and somites in 24-somite embryos lacked immunostaining. However, the surface epithelium, aorta, intestinal epithelium and pronephric duct demonstrated EGFR immunostaining. This study demonstrates that EGFR is present during medaka development and supports the hypothesis that EGFR ligands are important during cleavage, gastrulation and early organogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号