首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
MOLT-4 cells undergo apoptosis after X irradiation. A radiosensitive variant, MOLT-4N1, and a radioresistant variant, MOLT-4N2, have been studied with respect to their radiosensitivity and its relationship to the levels of TP53 protein (formerly known as p53). X irradiation induces apoptosis in both cell lines with the following difference: The induction of apoptosis in MOLT-4N2 cells occurred later than in MOLT-4N1 cells as determined by the morphological changes and DNA fragmentation. The levels of cell death measured by the dye exclusion test coincided with the levels of apoptosis in both cell lines, suggesting that radiation-induced cell killing is determined by the induction of apoptosis. Unirradiated MOLT-4N1 cells contained a significantly higher intracellular level of TP53 protein and a much higher level of TP53 mRNA compared to MOLT-4N2 cells. X irradiation led to an accumulation of TP53 protein in both cell lines that was greater in MOLT-4N1 cells. This accumulation of TP53 protein preceded changes in DNA degradation and ladder formation and in nuclear morphology. These results strongly suggest that the radiosensitivity of MOLT-4 cells correlates well with the unirradiated control levels of TP53 mRNA and TP53 protein, and that the quantitative levels of TP53 protein must reach a threshold for the cells to undergo apoptosis.  相似文献   

2.
Apoptosis is characterised by a series of typical morphological features, such as nuclear and cellular convolution, chromatin condensation and the final disintegration of the cell into membrane-bound apoptotic bodies, which are phagocytosed, by neighbouring cells. Relocation of phosphatidylserine residues from the inner leaflet of the cellular membrane to being exposed on the cell surface is a necessary event for the phagocytic elimination of apoptotic cell debris. Using the MOLT-4 lymphoblastoid leukaemic cell line we investigated whether the formation of apoptotic bodies and loss of phosphatidylserine asymmetry were causally related. We have previously demonstrated that classical apoptotic morphology, including production of apoptotic bodies, was only possible in etoposide-treated MOLT-4 cells when administered in the presence of non-cytotoxic doses (200 M) of aurin tricarboxylic acid (ATA). Electron microscopic analysis, followed by the quantitation of the ultrastructural morphological features of apoptotic MOLT-4 cells, demonstrated that the etoposide and ATA co-treatment, which caused the cellular fragmentation into apoptotic bodies, was closely associated with extensive chromatin condensation in individual cells. In this model however, the addition of ATA to frank cytotoxic doses of etoposide (50 M), which we confirmed lead to formation of apoptotic bodies, caused no further increase in externalisation of phosphatidylserine moieties as determined by staining with fluorescence labelled annexin V. Consequently, in MOLT-4 cells undergoing etoposide-induced apoptosis, the mole-cular mechanisms leading to loss of phosphatidylserine asymmetry and the formation of apoptotic bodies are not causally related.  相似文献   

3.
The molecular events associated with apoptosis induced by two distinct triggers (1) serum withdrawal and (2) etoposide treatment were investigated in the human lung carcinoma cell line A549. Although both serum withdrawal and etoposide treatment resulted in internucleosomal DNA fragmentation, the morphologic features were distinct. Serum deprived apoptotic cells appeared small, round and refractile, with little evidence of nuclear fragmentation; etoposide-induced apoptotic cells appeared enlarged and flattened and displayed prominent nuclear fragmentation. p53 and p21/waf1 protein levels were elevated in etoposide-treated cells, but not in cells subjected to serum with-drawal. Apoptosis induced by both treatments was accompanied by a significant reduction in Rb protein levels. However, etoposide treatment led to hypo-phosphorylation of Rb, while serum withdrawal did not alter the Rb phosphorylation pattern. Serum withdrawal-induced apoptosis was correlated with activation of JNK and suppression of ERK activities, while both JNK and ERK activities were slightly elevated during etoposid- induced apoptosis. Together, these results support the hypothesis that apoptosis induced by serum withdrawal and etoposide treatment occurs through different pathways and involves distinct mediators.  相似文献   

4.
Epstein-Barr virus (EBV) is associated with a number of human malignancies. In vitro EBV infection transforms human lymphocytes into proliferating cell lines (EBV-lymphocytes). Etoposide, topoisomerase II inhibitor, induced apoptosis in EBV-lymphocytes as shown by expression of phosphatidylserine, loss of DNA and mitochondrial membrane potential, and cell shrinkage. In contrast, those cells, which had yet to display signs of apoptosis, grew to exceed their normal size. These EBV-lymphocytes had unusual cellular and nuclear morphology, higher mitochondrial membrane potential, increased expression of proteins and an amount of DNA that exceeded the maximum DNA content in normal EBV-lymphocytes by more than two-fold. Application of the caspase inhibitor Z-VAD-FMK in the presence of etoposide increased the numbers of such large cells. This data suggests that inhibition of topoisomerase II by etoposide does not inhibit DNA synthesis but rather overrides the G2/M check points of the cell cycle, resulting in cells growth over their genetically determined size. This may trigger apoptosis to eliminate cells, which failed to complete mitosis.  相似文献   

5.
6.
Monochloramine (NH(2)Cl) is a physiological oxidant produced by activated neutrophils, and it affects apoptosis signaling. We studied the effects of NH(2)Cl on the cell death induced by etoposide, a widely used anticancer agent that is directed to DNA topoisomerase II. Jurkat T cells, a human acute T cell leukemia cell line, were pretreated with 70 microM of NH(2)Cl for 10 min. After 24 h, 5-30 microM of etoposide was added to the NH(2)Cl pretreated and control cells, and their apoptosis, caspase activity, cell morphology, and cellular DNA contents were measured. NH(2)Cl pretreatment significantly inhibited apoptosis and caspase activation induced by etoposide or camptothecin, a DNA topoisomerase I poison, but not by staurosporine or Fas stimulation. The apoptosis inhibition actually resulted in the proliferation of the survived cells and, notably, the survived cells showed more aberrant morphology, such as variation in nuclear size, nuclear fragments, and multinucleated cells. DNA content analysis of the survived cells showed an increase in aneuploid nuclei. Cell cycle analysis after 24 h of NH(2)Cl treatment showed a significant decrease in S phase cells with a concurrent increase in G(0)/G(1) phase cells, which suggested that NH(2)Cl induced G(1) arrest. Using synchronized Jurkat cells, etoposide and camptothecin were found to be particularly cytotoxic to S phase cells, whereas staurosporine and Fas stimulation were not. Thus NH(2)Cl-induced G(1) arrest was a likely cause of the observed resistance to etoposide. These observations suggested that inflammation-derived oxidants may make the tumor cells more resistant to etoposide and increase the risk of tumor progression and the development of secondary tumors by increasing the survival of DNA damage-bearing cells.  相似文献   

7.
Exchange between the nucleus and the cytoplasm is controlled by nuclear pore complexes (NPCs). In animals, NPCs are anchored by the nuclear lamina, which ensures their even distribution and proper organization of chromosomes. Fungi do not possess a lamina and how they arrange their chromosomes and NPCs is unknown. Here, we show that motor-driven motility of NPCs organizes the fungal nucleus. In Ustilago maydis, Aspergillus nidulans, and Saccharomyces cerevisiae fluorescently labeled NPCs showed ATP-dependent movements at ~1.0 μm/s. In S. cerevisiae and U. maydis, NPC motility prevented NPCs from clustering. In budding yeast, NPC motility required F-actin, whereas in U. maydis, microtubules, kinesin-1, and dynein drove pore movements. In the latter, pore clustering resulted in chromatin organization defects and led to a significant reduction in both import and export of GFP reporter proteins. This suggests that fungi constantly rearrange their NPCs and corresponding chromosomes to ensure efficient nuclear transport and thereby overcome the need for a structural lamina.  相似文献   

8.
Bcr-Abl protein tyrosine kinase (PTK) activity is a feature of chronic myeloid leukaemia and confers a survival advantage on haemopoietic progenitor cells. We have expressed conditional mutant of the Bcr-Abl PTK in the FDCP-Mix A4 multipotent haematopoietic cell line in order to examine the molecular mechanisms whereby Bcr-Abl PTK leads to enhanced cell survival under conditions in which normal cells die. Activation of Bcr-Abl PTK does not phosphorylate or activate either ERK-1/2 or JAK-2/STAT-5b, suggesting that these signal transduction pathways are not involved in Abl PTK-mediated suppression of apoptosis in FDCP-Mix cells. However, protein kinase C (PKC) does have a role to play. Inhibition of PKC results in a reversal of Bcr-Abl PTK-mediated survival in the absence of growth factor and Bcr-Abl stimulates translocation of the PKCbetaII isoform to the nucleus. Furthermore, expression of a constitutively activated PKCbetaII in haemopoietic progenitor FDCP-Mix cells stimulates enhanced cell survival when IL-3 is withdrawn. However, expression of this constitutively activated PKC isoform does not suppress cytotoxic drug-induced apoptosis. Thus Bcr-Abl PTK has pleiotropic effects which can suppress cell death induced by a number of stimuli.  相似文献   

9.
Studies have suggested that recombinant tumor necrosis factor-alpha (TNF-alpha) may potentiate the killing of murine tumor cells by drugs targeted at DNA topoisomerase II. We have examined the combined cytotoxic effects of the topoisomerase-targeted drug etoposide and TNF in small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cell lines using clonogenic assays and a novel flow cytometry technique relying on differential uptake of fluorescein diacetate (FDA) and propidium iodide (PI) by viable and nonviable cells. Good correlation of IC50 determinations for etoposide were noted between clonogenic assays and the FDA/PI technique for both classic and variant SCLC cell lines. The effects of etoposide on the classic SCLC line H209 were potentiated by TNF with a decrease in the IC50 from 3.3 microM to 1.0 microM as determined by FDA/PI. Tumor necrosis factor alone had little effect on the growth or cloning efficiency of H209 cells. Tumor necrosis factor alone stimulated the growth and cloning of variant SCLC line N417, but the cytotoxicity of etoposide was not potentiated by TNF in N417 cells. Tumor necrosis factor alone inhibited the growth and cloning of the NSCLC line H125 but exerted a marked protective effect against higher concentrations of etoposide. It appears that the interaction of TNF with etoposide varies between cell lines and between subclasses of human lung cancer.  相似文献   

10.
The sensitivity of normal diploid Syrian hamster embryo (SHE) cells to apoptosis was tested after treatment with the topoisomerase inhibitors camptothecin and etoposide and after serum withdrawal. Programmed cell death (PCD) was identified through morphological, biochemical, and molecular changes and compared with that of HL60 cell line. The results showed that topoisomerase inhibitors, which were shown to be potent PCD inducers in the HL60 cell line, induced a weaker apoptotic response in SHE cells than after growth factor deprivation. In addition, serum-free medium, which rapidly induced apoptosis in SHE cells, did not affect the HL60 cell line. In both cell types, PCD was expressed by condensed chromatin, fragmented nuclei, and DNA laddering on electrophoretic gels, an indisputable sign of apoptosis. In apoptotic HL60 cells, the cleavage of 113-kDa poly(ADP-ribose)polymerase (PARP) resulted in the so-called apoptotic 89-kDa fragment and was associated with increased caspase-3 activity. In apoptotic SHE cells, PARP degraded early but the degradation profile was not characterized by the appearance of an 89-kDa fragment. Moreover, no activation of caspase-3 was noted. ZnCl(2), which is known to prevent protease activity responsible for apoptosis features, inhibited PARP cleavage and nuclear modifications induced by apoptotic stimuli in both cell types, but with a higher sensitivity in SHE cells. Apoptosis induced by serum deprivation was linked with c-myc negative regulation in SHE cells, but not with p53 protein accumulation, while topoisomerase inhibitors led to p53 stabilization without any change in c-myc expression. Serum-free medium and topoisomerase inhibitors did not modify c-myc expression in the HL60 cell line. The overall results demonstrated that apoptosis, which is a carefully regulated process of cell death, may proceed through mechanisms varying according to cell type or apoptosis inducer. In addition, markers which are generally considered hallmarks of apoptosis may fail to appear in some cell types.  相似文献   

11.
32D cells are a murine hemopoietic cell line that undergoes apoptosis upon withdrawal of interleukin-3 (IL-3) from the medium. 32D cells have low levels of the type 1 insulin-like growth factor (IGF-I) receptor and do not express insulin receptor substrate-1 (IRS-1) or IRS-2. Ectopic expression of IRS-1 delays apoptosis but cannot rescue 32D cells from IL-3 dependence. In 32D/IRS-1 cells, IRS-1 is detectable, as expected, in the cytosol/membrane compartment. The SV40 large T antigen is a nuclear protein that, by itself, also fails to protect 32D cells from apoptosis. Co-expression of IRS-1 with the SV40 T antigen in 32D cells results in nuclear translocation of IRS-1 and survival after IL-3 withdrawal. Expression of a human IGF-I receptor in 32D/IRS-1 cells also results in nuclear translocation of IRS-1 and IL-3 independence. The phosphotyrosine-binding domain, but not the pleckstrin domain, is necessary for IRS-1 nuclear translocation. Nuclear translocation of IRS-1 was confirmed in mouse embryo fibroblasts. These results suggest possible new roles for nuclear IRS-1 in IGF-I-mediated growth and anti-apoptotic signaling.  相似文献   

12.
核孔复合物(NPC)是一个巨型分子复合物,相对分子质量约125×106。脊椎动物的NPC由大约30种蛋白质组成,这些蛋白质的序列大多具有FG(苯丙氨酸-甘氨酸)重复序列。NPC锚定于双层核膜上,并且是物质跨核膜运输的惟一通道,它可快速介导小分子物质的被动运输以及大分子物质的主动运输过程。虽然NPC具有较大的相对分子质量和复杂的结构,但它可在细胞分裂过程中分离并重新组装。生物大分子经NPC的跨核膜运输直接影响真核细胞的生长、增殖、分化、发育等多种生命活动。本文重点介绍NPC的结构、组装及其功能特点。  相似文献   

13.

Background

Various forms of cell death, such as apoptotic, autophagic and non-lysosomal types, are implicated in normal physiological processes. Apoptotic protease activating factor 1 (Apaf1) is an important component of the intrinsic apoptotic pathway. Deficiency of Apaf1 results in an accumulation of neural progenitor cells (NPCs) in the developing central nervous system and thus, in perinatal lethality. A small percentage of the mutant mice, however, are viable and grow to maturity. The occurrence of such normal mutants implicates alternative cell death pathways during neurogenesis.

Methods

NPCs prepared from wild-type or Apaf1-deficient embryos were cultured in growth factor-deprived medium and examined for cell death, caspase activation and morphological alterations. Generation of reactive oxygen species (ROS) and the effects of antioxidants were examined.

Results

Wild-type NPCs underwent apoptosis within 24 hours of withdrawal of epidermal growth factor (EGF) or insulin, whereas Apaf1-deficient NPCs underwent cell death but showed no signs of apoptosis. Autophagy was not necessarily accompanied by cell death. Cell death of the Apaf1-deficient NPCs resembled necroptosis—necrosis-like programmed cell death. The necroptosis inhibitor necrostatin-1, however, failed to inhibit the cell death. ROS accumulation was detected in NPCs deprived of growth factors, and an antioxidant partially suppressed the non-apoptotic cell death of Apaf1-deficient NPCs.

Conclusions

These data indicate that after withdrawal EGF or insulin withdrawal, the Apaf1-deficient cells underwent non-apoptotic cell death. ROS generation may partially participate in the cell death.

General Significance

Non-apoptotic cell death in NPCs may be a compensatory mechanism in the developing CNS of Apaf1-deficient embryos.  相似文献   

14.
Hepatocyte growth factor (HGF) has opposite biological activities in regulating apoptosis, also underlying molecular mechanisms are not clearly defined. We investigated HGF ability to inhibit cell death, which was induced by Doxorubicin, a DNA damaging agent. Also Survivin and XIAP mRNA levels were compared in HGF treated and non-treated cells. Cell proliferation and death were assessed using MTT assay and dye exclusion tests. Quantitative real-time PCR was used to evaluate Survivin and XIAP expression levels after treatment with HGF. ELISA was performed to quantify HGF secretion in the selected cancer cell lines media. HGF appeared to have inhibitory effect on Doxorubicin induced cell death in all of the studied cell lines. It had minimal effect on XAIP and Survivin expression levels in MRC-5, MOLT-4 and AGS cell lines; except for XIAP expression level in AGS cell line, which was increased substantially after treatment. Surprisingly, in KG-1 cell line, XIAP and Survivin expression levels were significantly reduced after HGF treatment. Although several members of IAP gene family are reported to play role in HGF mediated cytoprotective pathway, we showed that XIAP and Survivin do not seem to be involved.  相似文献   

15.
Transforming growth factor-beta1 (TGF-beta1) can inhibit cell proliferation or induce apoptosis in multipotent hematopoietic cells. To study the mechanisms of TGF-beta1 action on primitive hematopoietic cells, we used the interleukin-3 (IL-3)-dependent, multipotent FDCP-Mix cell line. TGF-beta1-mediated growth inhibition was observed in high concentrations of IL-3, while at lower IL-3 concentrations TGF-beta1 induced apoptosis. The proapoptotic effects of TGF-beta1 occur via a p53-independent pathway, since p53(null) FDCP-Mix demonstrated the same responses to TGF-beta1. IL-3 has been suggested to enhance survival via an increase in (antiapoptotic) Bcl-x(L) expression. In FDCP-Mix cells, neither IL-3 nor TGF-beta1 induced any change in Bcl-x(L) protein levels or the proapoptotic proteins Bad or Bax. However, TGF-beta1 had a major effect on Bcl-2 levels, reducing them in the presence of high and low concentrations of IL-3. Overexpression of Bcl-2 in FDCP-Mix cells rescued them from TGF-beta1-induced apoptosis but was incapable of inhibiting TGF-beta1-mediated growth arrest. We conclude that TGF-beta1-induced cell death is independent of p53 and inhibited by Bcl-2, with no effect on Bcl-x(L). The significance of these results for stem cell survival in bone marrow are discussed.  相似文献   

16.
We have examined the ability of etoposide to induce apoptosis in two recently established rat salivary acinar cell lines. Etoposide induced apoptosis in the parotid C5 cell line as evidenced by the appearance of cytoplasmic blebbing and nuclear condensation, DNA fragmentation and cleavage of PARP. Etoposide also induced activation of c-jun N-terminal kinase (JNK) in parotid C5 cells by 4 h after treatment, with maximal activation at 8 - 10 h. Coincident with activation of JNK, the amount of activated ERK1 and ERK2 decreased in etoposide-treated parotid C5 cells. In contrast to the parotid C5 cells, the vast majority of submandibular C6 cells appeared to be resistant to etoposide-induced apoptosis. Likewise, activation of JNKs was not observed in etoposide-treated submandibular C6 cells, and the amount of activated ERK1 and ERK2 decreased only slightly. Etoposide treatment of either cell line had no effect upon the activation of p38. Treatment of the parotid C5 cells with Z-VAD-FMK, a caspase inhibitor, inhibited etoposide-induced activation of JNK and DNA fragmentation. These data suggest that etoposide may induce apoptosis in parotid C5 cells by activating JNKs and suppressing the activation of ERKs, thus creating an imbalance in these two signaling pathways.  相似文献   

17.
The granules which appear in the nucleolar area in apoptotic HL-60 cells after camptothecin administration (Zweyeret al., Exp. Cell Res.221, 27–40, 1995) were detected also in several other cell lines induced to undergo apoptosis by different stimuli, such as MOLT-4 treated with staurosporine, K-562 incubated with actinomycin D, P-815 exposed to temperature causing heat shock, Jurkat cells treated with EGTA, U-937 growing in the presence of cycloheximide and tumor necrosis factor-α, and HeLa cells treated with etoposide. Using immunoelectron microscopy techniques, we demonstrate that, besides the already described nuclear matrix proteins p125 and p160, these granules contain other nucleoskeletal polypeptides such as proliferating cell nuclear antigen, a component of ribonucleoprotein particles, a 105-kDa constituent of nuclear spliceosomes, and the 240-kDa nuclear mitotic apparatus-associated protein referred to as NuMA. Moreover, we also found in the granules SAF-A/hn-RNP-U and SATB1 proteins, two polypeptides that have been reported to bind scaffold-associated regions DNA sequencesin vitro,thus mediating the formation of looped DNA structuresin vivo.Fibrillarin and coilin are not present in these granules or the PML protein. Thus, the granules seen during the apoptotic process apparently are different from coiled bodies or other types of nuclear bodies. Furthermore, these granules do not contain chromatin components such as histones and DNA. Last, Western blotting analysis revealed that nuclear matrix proteins present in the granules are not proteolytically degraded except for the NuMA polypeptide. We propose that these granules might represent aggregates of nuclear matrix proteins forming during the apoptotic process. Moreover, since the granules are present in several cell lines undergoing apoptosis, they could be considered a previously unrecognized morphological hallmark of the apoptotic process.  相似文献   

18.
The nuclear pore complex (NPC) is the sole gateway between the nucleus and the cytoplasm of interphase eukaryotic cells, and it mediates all trafficking between these 2 cellular compartments. As such, the NPC and nuclear transport play central roles in translocating death signals from the cell membrane to the nucleus where they initiate biochemical and morphological changes occurring during apoptosis. Recent findings suggest that the correlation between the NPC, nuclear transport, and apoptosis goes beyond the simple fact that NPCs mediate nuclear transport of key players involved in the cell death program. In this context, the accessibility of key regulators of apoptosis appears to be highly modulated by nuclear transport (e.g., impaired nuclear import might be an apoptotic trigger). In this review, recent findings concerning the unexpected tight link between NPCs, nuclear transport, and apoptosis will be presented and critically discussed.  相似文献   

19.
In Vivo Dynamics of Nuclear Pore Complexes in Yeast   总被引:7,自引:1,他引:6       下载免费PDF全文
While much is known about the role of nuclear pore complexes (NPCs) in nucleocytoplasmic transport, the mechanism of NPC assembly into pores formed through the double lipid bilayer of the nuclear envelope is not well defined. To investigate the dynamics of NPCs, we developed a live-cell assay in the yeast Saccharomyces cerevisiae. The nucleoporin Nup49p was fused to the green fluorescent protein (GFP) of Aequorea victoria and expressed in nup49 null haploid yeast cells. When the GFP–Nup49p donor cell was mated with a recipient cell harboring only unlabeled Nup49p, the nuclei fused as a consequence of the normal mating process. By monitoring the distribution of the GFP–Nup49p, we could assess whether NPCs were able to move from the donor section of the nuclear envelope to that of the recipient nucleus. We observed that fluorescent NPCs moved and encircled the entire nucleus within 25 min after fusion. When assays were done in mutant kar1-1 strains, where nuclear fusion does not occur, GFP–Nup49p appearance in the recipient nucleus occurred at a very slow rate, presumably due to new NPC biogenesis or to exchange of GFP– Nup49p into existing recipient NPCs. Interestingly, in a number of existing mutant strains, NPCs are clustered together at permissive growth temperatures. This has been explained with two different hypotheses: by movement of NPCs through the double nuclear membranes with subsequent clustering at a central location; or, alternatively, by assembly of all NPCs at a central location (such as the spindle pole body) with NPCs in mutant cells unable to move away from this point. Using the GFP–Nup49p system with a mutant in the NPCassociated factor Gle2p that exhibits formation of NPC clusters only at 37°C, it was possible to distinguish between these two models for NPC dynamics. GFP– Nup49p-labeled NPCs, assembled at 23°C, moved into clusters when the cells were shifted to growth at 37°C. These results indicate that NPCs can move through the double nuclear membranes and, moreover, can do so to form NPC clusters in mutant strains. Such clusters may result by releasing NPCs from a nuclear tether, or by disappearance of a protein that normally prevents pore aggregation. This system represents a novel approach for identifying regulators of NPC assembly and movement in the future.  相似文献   

20.
Conformational changes of the in situ nuclear pore complex.   总被引:6,自引:0,他引:6       下载免费PDF全文
By bridging the double membrane separating the cell nucleus and cytoplasm, nuclear pore complexes (NPCs) are crucial pathways for the exchange of ions, proteins, and RNA between these two cellular compartments. A structure in the central lumen of the NPC, called the nuclear transport protein, central granule, or nuclear plug, appeared to gate diffusion of intermediate-sized molecules (10-40 kDa) across the nuclear membranes. Visualization of the NPC required drying and fixation of the specimen for electron and atomic force microscopy (AFM), a requirement that has raised doubts about the physiological relevance of the observation. Here we present AFM images of the outer nuclear membranes and NPCs of Xenopus laevis oocytes under more physiological conditions. Measured under a variety of Ca2+ depletion conditions, the central granule appeared to occupy and occlude the lumen of the pore in >80% of NPCs compared to <10% in controls. In a few instances images were obtained of the same NPCs as the solution was changed from control saline to store depletion conditions, and finally to store repletion conditions. We conclude that the central lumen of the nuclear pore complex undergoes a conformational change in response to depletion of nuclear cisternal Ca2+ levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号