首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonuclease P is the enzyme responsible for removing the 5'-leader segment of precursor transfer RNAs in all organisms. All eukaryotic nuclear RNase Ps are ribonucleoproteins in which multiple protein components and a single RNA species are required for activity in vitro as well as in vivo. It is not known, however, which subunits participate directly in phosphodiester-bond hydrolysis. The RNA subunit of nuclear RNase P is evolutionarily related to its catalytically active bacterial counterpart, prompting speculation that in eukaryotes the RNA may be the catalytic component. In the bacterial RNase P reaction, Mg(II) is required to coordinate the nonbridging phosphodiester oxygen(s) of the scissile bond. As a consequence, bacterial RNase P cannot cleave pre-tRNA in which the pro-Rp nonbridging oxygen of the scissile bond is replaced by sulfur. In contrast, the RNase P reaction in plant chloroplasts is catalyzed by a protein enzyme whose mechanism does not involve Mg(II) coordinated by the pro-Rp oxygen. To determine whether the mechanism of nuclear RNase P resembles more closely an RNA- or a protein-catalyzed reaction, we analyzed the ability of Saccharomyces cerevisiae nuclear RNase P to cleave pre-tRNA containing a sulfur substitution of the pro-Rp oxygen at the cleavage site. Sulfur substitution at this position prohibits correct cleavage of pre-tRNA. Cleavage by eukaryotic RNase P thus depends on the presence of a thio-sensitive ligand to the pro-Rp oxygen of the scissile bond, and is consistent with a common, RNA-based mechanism for the bacterial and eukaryal enzymes.  相似文献   

2.
The ribonuclease P ribozyme (RNase P RNA), like other large ribozymes, requires magnesium ions for folding and catalytic function; however, specific sites of metal ion coordination in RNase P RNA are not well defined. To identify and characterize individual nucleotide functional groups in the RNase P ribozyme that participate in catalytic function, we employed self-cleaving ribozyme-substrate conjugates that facilitate measurement of the effects of individual functional group modifications. The self-cleavage rates and pH dependence of two different ribozyme-substrate conjugates were determined and found to be similar to the single turnover kinetics of the native ribozyme. Using site-specific phosphorothioate substitutions, we provide evidence for metal ion coordination at the pro-Rp phosphate oxygen of A67, in the highly conserved helix P4, that was previously suggested by modification-interference experiments. In addition, we detect a new metal ion coordination site at the pro-Sp phosphate oxygen of A67. These findings, in combination with the proximity of A67 to the pre-tRNA cleavage site, support the conclusion that an important role of helix P4 in the RNase P ribozyme is to position divalent metal ions that are required for catalysis.  相似文献   

3.
Binding and cleavage of nucleic acids by the "hairpin" ribozyme   总被引:8,自引:0,他引:8  
B M Chowrira  J M Burke 《Biochemistry》1991,30(35):8518-8522
The "hairpin" ribozyme derived from the minus strand of tobacco ringspot virus satellite RNA [(-)sTRSV] efficiently catalyzes sequence-specific RNA hydrolysis in trans (Feldstein et al., 1989; Hampel & Triz, 1989; Haseloff & Gerlach, 1989). The ribozyme does not cleave DNA. An RNA substrate analogue containing a single deoxyribonucleotide residue 5' to the cleavage site (A-1) binds to the ribozyme efficiently but cannot be cleaved. A DNA substrate analogue with a ribonucleotide at A-1 is cleaved; thus A-1 provides the only 2'-OH required for cleavage. These results support cleavage via a transphosphorylation mechanism initiated by attack of the 2'-OH of A-1 on the scissile phosphodiester. The ribozyme discriminates between DNA and RNA in both binding and cleavage. Results indicate that the 2'-OH of A-1 functions in complex stabilization as well as cleavage. The ribozyme efficiently cleaves a phosphorothioate diester linkage, suggesting that the pro-Rp oxygen at the scissile phosphodiester does not coordinate Mg2+.  相似文献   

4.
Li D  Willkomm DK  Schön A  Hartmann RK 《Biochimie》2007,89(12):1528-1538
Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that generates the mature 5' ends of tRNAs. Ubiquitous across all three kingdoms of life, the composition and functional contributions of the RNA and protein components of RNase P differ between the kingdoms. RNA-alone catalytic activity has been reported throughout bacteria, but only for some archaea, and only as trace activity for eukarya. Available information for RNase P from photosynthetic organelles points to large differences to bacterial as well as to eukaryotic RNase P: for spinach chloroplasts, protein-alone activity has been discussed; for RNase P from the cyanelle of the glaucophyte Cyanophora paradoxa, a type of organelle sharing properties of both cyanobacteria and chloroplasts, the proportion of protein was found to be around 80% rather than the usual 10% in bacteria. Furthermore, the latter RNase P was previously found catalytically inactive in the absence of protein under a variety of conditions; however, the RNA could be activated by a cyanobacterial protein, but not by the bacterial RNase P protein from Escherichia coli. Here we demonstrate that, under very high enzyme concentrations, the RNase P RNA from the cyanelle of C. paradoxa displays RNA-alone activity well above the detection level. Moreover, the RNA can be complemented to a functional holoenzyme by the E. coli RNase P protein, further supporting its overall bacterial-like architecture. Mutational analysis and domain swaps revealed that this A,U-rich cyanelle RNase P RNA is globally optimized but conformationally unstable, since changes as little as a single point mutation or a base pair identity switch at positions that are not part of the universally conserved catalytic core led to a complete loss of RNA-alone activity. Likely related to this low robustness, extensive structural changes towards an E. coli-type P5-7/P15-17 subdomain as a canonical interaction site for tRNA 3'-CCA termini could not be coaxed into increased ribozyme activity.  相似文献   

5.
Haruki M  Tsunaka Y  Morikawa M  Iwai S  Kanaya S 《Biochemistry》2000,39(45):13939-13944
To investigate the role of the phosphate group 3' to the scissile phosphodiester bond of the substrate in the catalytic mechanism of Escherichia coli ribonuclease HI (RNase HI), we have used modified RNA-DNA hybrid substrates carrying a phosphorothioate substitution at this position or lacking this phosphate group for the cleavage reaction. Kinetic parameters of the H124A mutant enzyme, in which His(124) was substituted with Ala, as well as those of the wild-type RNase HI, were determined. Substitution of the pro-R(p)-oxygen of the phosphate group 3' to the scissile phosphodiester bond of the substrate with sulfur reduced the k(cat) value of the wild-type RNase HI by 6.9-fold and that of the H124A mutant enzyme by only 1. 9-fold. In contrast, substitution of the pro-S(p)-oxygen of the phosphate group at this position with sulfur had little effect on the k(cat) value of the wild-type and H124A mutant enzymes. The results obtained for the substrate lacking this phosphate group were consistent with those obtained for the substrates with the phosphorothioate substitutions. In addition, a severalfold increase in the K(m) value was observed by the substitution of the pro-R(p)-oxygen of the substrate with sulfur or by the substitution of His(124) of the enzyme with Ala, suggesting that a hydrogen bond is formed between the pro-R(p)-oxygen and His(124). These results allow us to propose that the pro-R(p)-oxygen contributes to orient His(124) to the best position for the catalytic function through the formation of a hydrogen bond.  相似文献   

6.
Modification interference is a powerful method to identify important functional groups in RNA molecules. We review here recent developments of techniques to screen for chemical modifications that interfere with (i) binding of(pre-)tRNA to bacterial RNase P RNA or (ii) pre-tRNA cleavage by this ribozyme. For example, two studies have analyzed positions at which a substitution of sulfur for thepro-Rp oxygen affects tRNA binding [1] or catalysis [2]. The results emphasize the functional key role of a central core element present in all known RNase P RNA subunits. The four sulfur substitutions identified in one study [2] to inhibit the catalytic step also interfered with binding of tRNA toE. coli RNase P RNA [1]. This suggests that losses in binding energy due to the modification at these positions affect the enzyme-substrate and the enzyme-transition state complex. In addition, the two studies have revealed, for the first time, sites of direct metal ion coordination in RNase P RNA. The potentials, limitations and interpretational ambiguities of modification interference experiments as well as factors influencing their outcome are discussed.Abbreviations nt nucleotide(s) - PAGE polyacrylamide gel electrophoresis  相似文献   

7.
Sun L  Harris ME 《RNA (New York, N.Y.)》2007,13(9):1505-1515
The RNA subunit (P RNA) of the bacterial RNase P ribonucleoprotein is a ribozyme that catalyzes the Mg-dependent hydrolysis of pre-tRNA, but it requires an essential protein cofactor (P protein) in vivo that enhances substrate binding affinities and catalytic rates in a substrate dependent manner. Previous studies of Bacillus subtilis RNase P, containing a Type B RNA subunit, showed that its cognate protein subunit increases the affinity of metal ions important for catalysis, but the functional role of these ions is unknown. Here, we demonstrate that the Mg2+ dependence of the catalytic step for Escherichia coli RNase P, which contains a more common Type A RNA subunit, is also modulated by its cognate protein subunit (C5), indicating that this property is fundamental to P protein. To monitor specifically the binding of active site metal ions, we analyzed quantitatively the rescue by Cd2+ of an inhibitory Rp phosphorothioate modification at the pre-tRNA cleavage site. The results show that binding of C5 protein increases the apparent affinity of the rescuing Cd2+, providing evidence that C5 protein enhances metal ion affinity in the active site, and thus is likely to contribute significantly to rate enhancement at physiological metal ion concentrations.  相似文献   

8.
The RNA subunit of ribonuclease P (RNase P RNA) is a catalytic RNA that cleaves precursor tRNAs to generate mature tRNA 5' ends. Little is known concerning the identity and arrangement of functional groups that constitute the active site of this ribozyme. We have used an RNase P RNA-substrate conjugate that undergoes rapid, accurate, and efficient self-cleavage in vitro to probe, by phosphorothioate modification-interference, functional groups required for catalysis. We identify four phosphate oxygens where substitution by sulfur significantly reduces the catalytic rate (50-200-fold). Interference at one site was partially rescued in the presence of manganese, suggesting a direct involvement in binding divalent metal ion cofactors required for catalysis. All sites are located in conserved sequence and secondary structure, and positioned adjacent to the substrate phosphate in a tertiary structure model of the ribozyme-substrate complex. The spatial arrangement of phosphorothioate-sensitive sites in RNase P RNA was found to resemble the distribution of analogous positions in the secondary and potential tertiary structures of other large catalytic RNAs.  相似文献   

9.
Kaye NM  Christian EL  Harris ME 《Biochemistry》2002,41(14):4533-4545
The tRNA processing endonuclease ribonuclease P contains an essential and highly conserved RNA molecule (RNase P RNA) that is the catalytic subunit of the enzyme. To identify and characterize functional groups involved in RNase P RNA catalysis, we applied self-cleaving ribozyme-substrate conjugates, on the basis of the RNase P RNA from Escherichia coli, in nucleotide analogue interference mapping (NAIM) and site-specific modification experiments. At high monovalent ion concentrations (3 M) that facilitate protein-independent substrate binding, we find that the ribozyme is largely insensitive to analogue substitution and that concentrations of Mg2+ (1.25 mM) well below that necessary for optimal catalytic rate (>100 mM) are required to produce interference effects because of modification of nucleotide bases. An examination of the pH dependence of the reaction rate at 1.25 mM Mg2+ indicates that the increased sensitivity to analogue interference is not due to a change in the rate-limiting step. The nucleotide positions detected by NAIM under these conditions are located exclusively in the catalytic domain, consistent with the proposed global structure of the ribozyme, and predominantly occur within the highly conserved P1-P4 multihelix junction. Several sensitive positions in J3/4 and J2/4 are proximal to a previously identified site of divalent metal ion binding in the P1-P4 element. Kinetic analysis of ribozymes with site-specific N7-deazaadenosine and deazaguanosine modifications in J3/4 was, in general, consistent with the interference results and also permitted the analysis of sites not accessible by NAIM. These results show that, in this region only, modification of the N7 positions of A62, A65, and A66 resulted in measurable effects on reaction rate and modification at each position displayed distinct sensitivities to Mg2+ concentration. These results reveal a restricted subset of individual functional groups within the catalytic domain that are particularly important for substrate cleavage and demonstrate a close association between catalytic function and metal ion-dependent structure in the highly conserved P1-P4 multihelix junction.  相似文献   

10.
M Koizumi  E Ohtsuka 《Biochemistry》1991,30(21):5145-5150
Mg2+ is important for the RNase activity of the hammerhead ribozyme. To investigate the binding properties of Mg2+ to the hammerhead ribozyme, cleavage rates and CD spectra for substrates containing inosine or guanosine at the cleavage site were measured. The 2-amino group of this guanosine interfered with the rate of the cleavage reaction and did not affect the amount of Mg2+ bound to the hammerhead RNA. The kinetics and CD spectra for chemically synthesized oligoribonucleotides with a Sp or Rp phosphorothioate diester bond at the cleavage site indicated that 1 mol of Mg2+ binds to the pro-R oxygen of phosphate. The binding constant for Mg2+ was about 10(4) M-1, which represents outer-sphere complexation. The hammerhead ribozyme catalyzes the cleavage reaction via an in-line pathway. This mechanism has been proved for RNA cleavage by RNase A by using a modified oligonucleotide that has an Sp phosphorothionate bond at the cleavage site. From these results, we present the reaction pathway and a model for Mg2+ binding to the hammerhead ribozyme.  相似文献   

11.
Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA–RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P.  相似文献   

12.
RNase P consists of both protein and RNA subunits in all organisms and organelles investigated so far, with the exception of chloroplasts and plant nuclei where no enzyme-associated RNA has been detected to date. Studies on substrate specificity revealed that cleavage by plant nuclear RNase P is critically dependent on a complete and intact structure of the substrate. No clearcut answer is yet possible regarding the order of processing events at the 5 or 3 end of tRNAs in the case of nuclear or chloroplast processing enzymes. RNase P from a phylogenetically ancient photosynthetic organelle will be discussed in greater detail: The enzyme from theCyanophora paradoxa cyanelle is the first RNase P from a photosynthetic organelle which has been shown to contain an essential RNA subunit. This RNA is strikingly similar to its counterpart from cyanobacteria, yet it lacks catalytic activity. Properties of the holoenzyme suggest an intermediate position in RNA enzyme evolution, with an eukaryotic-type, inactive RNA and a prokaryotic-type small protein subunit. The possible presence of an RNA component in RNase P from plant nuclei and modern chloroplasts will be discussed, including a critical evaluation of some criteria that have been frequently applied to elucidate the subunit composition of RNase P from different organisms.Abbreviations RNase P Ribonuclease P - (pre-)tRNA transfer ribonucleic acid (precursor) - tRNA Ser (- Tyr , - Phe ) transfer ribonucleic acid specific for serine (tyrosine, phenylalanine) - CyRP RNA RNA component of cyanelle RNase P  相似文献   

13.
Members of the RNase III family are the primary cellular agents of dsRNA (double-stranded RNA) processing. Bacterial RNases III function as homodimers and contain two dsRBDs (dsRNA-binding domains) and two catalytic sites. The potential for functional cross-talk between the catalytic sites and the requirement for both dsRBDs for processing activity are not known. It is shown that an Escherichia coli RNase III heterodimer that contains a single functional wt (wild-type) catalytic site and an inactive catalytic site (RNase III[E117A/wt]) cleaves a substrate with a single scissile bond with a k(cat) value that is one-half that of wt RNase III, but exhibits an unaltered K(m). Moreover, RNase III[E117A/wt] cleavage of a substrate containing two scissile bonds generates singly cleaved intermediates that are only slowly cleaved at the remaining phosphodiester linkage, and in a manner that is sensitive to excess unlabelled substrate. These results demonstrate the equal probability, during a single binding event, of placement of a scissile bond in a functional or nonfunctional catalytic site of the heterodimer and reveal a requirement for substrate dissociation and rebinding for cleavage of both phosphodiester linkages by the mutant heterodimer. The rate of phosphodiester hydrolysis by RNase III[E117A/wt] has the same dependence on Mg(2+) ion concentration as that of the wt enzyme, and exhibits a Hill coefficient (h) of 2.0+/-0.1, indicating that the metal ion dependence essentially reflects a single catalytic site that employs a two-Mg(2+)-ion mechanism. Whereas an E. coli RNase III mutant that lacks both dsRBDs is inactive, a heterodimer that contains a single dsRBD exhibits significant catalytic activity. These findings support a reaction pathway involving the largely independent action of the dsRBDs and the catalytic sites in substrate recognition and cleavage respectively.  相似文献   

14.
Divalent metal ions play a crucial role in RNA structure and catalysis. Phosphorothioate substitution and manganese rescue experiments can reveal phosphate oxygens interacting specifically with magnesium ions essential for structure and/or activity. In this study, phosphorothioate interference experiments in combination with structural sensitive circular dichroism spectroscopy have been used to probe molecular interactions underlying an important RNA structural motif. We have studied a synthetic model of the P4-P6 triple-helical domain in the bacteriophage T4 nrdB group I intron, which has a core sequence analogous to the Tetrahymena ribozyme. Rp and Sp sulfur substitutions were introduced into two adjacent nucleotides positioned at the 3' end of helix P6 (U452) and in the joining region J6/7 (U453). The effects of sulfur substitution on triple helix formation in the presence of different ratios of magnesium and manganese were studied by the use of difference circular dichroism spectroscopy. The results show that the pro-Sp oxygen of U452 acts as a ligand for a structurally important magnesium ion, whereas no such effect is seen for the pro-Rp oxygen of U452. The importance of the pro-Rp and pro-Sp oxygens of U453 is less clear, because addition of manganese could not significantly restore the triple-helical interactions within the isolated substituted model systems. The interpretation is that U453 is so sensitive to structural disturbance that any change at this position hinders the proper formation of the triple helix.  相似文献   

15.
The ubiquitous occurrence of ribonuclease P (RNase P) as a ribonucleoprotein and the catalytic properties of bacterial RNase P RNAs indicate that RNA fulfills an ancient and important role in the function of this enzyme. This review focuses on efforts to determine the structure of the bacterial RNase P RNA ribozyme. Phylogenetic comparative analysis of a library of bacterial RNase P RNA sequences has resulted in a well-developed secondary structure model and allowed identification of some elements of tertiary structure. The native structure has been redesigned by circular permutation to facilitate intra- and inter-molecular crosslinking experiments in order to gain further structural information. The crosslinking constraints, together with the constraints provided by comparative analyses, have been incorporated into a first-order model of the structure of the ribozyme-substrate complex. The developing structural perspective allows the design of self-cleaving pre-tRNA-RNase P RNA conjugates which are useful tools for additional structure-probing experiments.Abbreviations cpRNA circularly permuted RNA  相似文献   

16.
The varieties of ribonuclease P.   总被引:13,自引:0,他引:13  
Ribonuclease P is a ribozyme involved in tRNA processing that is present in all cells and organelles that synthesize tRNA. Most of our understanding of ribonuclease P derives from studies of the bacterial enzyme. This enzyme has been characterized biochemically and a secondary structure for the RNA subunit has been proposed. Isolation and characterization of ribonuclease P from diverse Archaea and Eukarya are now modifying and adding to our model of this unusual enzyme. The latter instances of RNase P differ from the bacterial version, but similarities are emerging.  相似文献   

17.
Folding of a universal ribozyme: the ribonuclease P RNA   总被引:1,自引:0,他引:1  
Ribonuclease P is among the first ribozymes discovered, and is the only ubiquitously occurring ribozyme besides the ribosome. The bacterial RNase P RNA is catalytically active without its protein subunit and has been studied for over two decades as a model system for RNA catalysis, structure and folding. This review focuses on the thermodynamic, kinetic and structural frameworks derived from the folding studies of bacterial RNase P RNA.  相似文献   

18.
Bacteria and archaea contain a 2'-5' RNA ligase that seals in vitro 2',3'-cyclic phosphodiester and 5'-hydroxyl RNA termini, generating a 2',5'-phosphodiester bond. In our search for an RNA ligase able to circularize the monomeric linear replication intermediates of viroids belonging to the family Avsunviroidae, which replicate in the chloroplast, we have identified in spinach (Spinacea oleracea L.) chloroplasts a new RNA ligase activity whose properties resemble those of the bacterial and archaeal 2'-5' RNA ligase. The spinach chloroplastic RNA ligase recognizes the 5'-hydroxyl and 2',3'-cyclic phosphodiester termini of Avocado sunblotch viroid and Eggplant latent viroid RNAs produced by hammerhead-mediated self-cleavage, yielding circular products linked through an atypical, most likely 2',5'-phosphodiester, bond. The enzyme neither requires divalent cations as cofactors, nor NTPs as substrate. The reaction apparently reaches equilibrium at a low ratio between the final circular product and the linear initial substrate. Even if its involvement in viroid replication seems unlikely, the identification of a 2'-5' RNA ligase activity in higher plant chloroplasts, with properties very similar to an analogous enzyme widely distributed in bacterial and archaeal proteomes, is intriguing and suggests an important biological role so far unknown.  相似文献   

19.
Although the Hammerhead ribozyme (HHRz) has long been used as a model system in the field of ribozyme enzymology, several details of its mechanism are still not well understood. In particular, significant questions remain concerning the disposition and role of catalytic metals in the HHRz. Previous metal-rescue experiments using a "minimal" HHRz resulted in prediction of a catalytic metal that is bound in the A9/G10.1 site in the ground state of the reaction and that bridges to the scissile phosphate further along the reaction pathway. "Native" or extended HHRz constructs contain tertiary contacts that stabilize a more compact structure at moderate ionic strength. We performed Cd(2+) rescue experiments on an extended HHRz from Schistosoma mansoni using stereo-pure scissile phosphorothioate-substituted substrates in order to determine whether a metal ion makes contact with the scissile phosphate in the ground state or further along the reaction coordinate. Inhibition in Ca(2+)/Mg(2+) and rescue by thiophilic Cd(2+) was specific for the R(p)-S stereoisomer of the scissile phosphate. The affinity of the rescuing Cd(2+), measured in two different ionic strength backgrounds, increased fourfold to 17-fold when the pro-R(p) oxygen is replaced by sulfur. These data support a model in which the rescuing metal ion makes a ground-state interaction with the scissile phosphate in the native HHRz. The resulting model for Mg(2+) activation in the HHRz places a metal ion in contact with the scissile phosphate, where it may provide ground-state electrostatic activation of the substrate.  相似文献   

20.
Kim K  Liu F 《Biochimica et biophysica acta》2007,1769(11-12):603-612
Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. This enzyme is a ribonucleoprotein complex for tRNA processing. In Escherichia coli, RNase P contains a catalytic RNA subunit (M1 ribozyme) and a protein subunit (C5 cofactor). EGSs, which are RNAs derived from natural tRNAs, bind to a target mRNA and render the mRNA susceptible to hydrolysis by RNase P and M1 ribozyme. When covalently linked with a guide sequence, M1 can be engineered into a sequence-specific endonuclease, M1GS ribozyme, which cleaves any target RNAs that base pair with the guide sequence. Studies have demonstrated efficient cleavage of mRNAs by M1GS and RNase P complexed with EGSs in vitro. Moreover, highly active M1GS and EGSs were successfully engineered using in vitro selection procedures. EGSs and M1GS ribozymes are effective in blocking gene expression in both bacteria and human cells, and exhibit promising activity for antimicrobial, antiviral, and anticancer applications. In this review, we highlight some recent results using the RNase P-based technology, and offer new insights into the future of using EGS and M1GS RNA as tools for basic research and as gene-targeting agents for clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号