首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Masai  T Asai  Y Kubota  K Arai    T Kogoma 《The EMBO journal》1994,13(22):5338-5345
Under certain conditions, Escherichia coli cells exhibit either of two altered modes of chromosomal DNA replication. These are inducible stable DNA replication (iSDR), seen in SOS-induced cells, and constitutive stable DNA replication (cSDR), seen in rnhA mutants. Both iSDR and cSDR can continue to occur in the absence of protein synthesis. They are dependent on RecA protein, but do not require DnaA protein or the oriC site. Here we report the requirement for PriA, a protein essential for assembly of the phi X174-type primosome, for both iSDR and cSDR. In priA1(Null)::kan mutant cells, iSDR is not observed after induction by thymine starvation. Replication from one of the origins (oriM1) specific to iSDR is greatly reduced by the priA1::kan mutation. cSDR in rnhA224 mutant cells deficient in RNase HI is also completely abolished by the same priA mutation. In both cases, SDR is restored by introduction of a plasmid carrying a wild-type priA gene. Furthermore, the viability of an rnhA::cat dnaA46 strain is lost at 42 degrees C upon inactivation of the priA gene, indicating the lethal effect of priA inactivation on those cells whose viability depends on cSDR. These results demonstrate that a function of PriA protein is essential for iSDR and cSDR and suggest the involvement of the PriA-dependent phi X174-type primosome in these DnaA/oriC-independent pathways of chromosome replication. Whereas ColE1-type plasmids, known to be independent of DnaA, absolutely require PriA function for replication, DnaA-dependent plasmid replicons such as pSC101, F, R6K, Rts1 and RK2 are able to transform and to be maintained in the priA1::kan strain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Y Cao  T Kogoma 《Journal of bacteriology》1993,175(22):7254-7259
In previous studies, we found that the requirement for RecA protein in constitutive stable DNA replication (cSDR) can be bypassed by derepression of the LexA regulon and that DNA polymerase I (DNA PolI) is essential for this Rip (RecA-independent process) pathway of cSDR (Y. Cao, R. R. Rowland, and T. Kogoma, J. Bacteriol. 175:7247-7253, 1993). In this study, the role of DNA PolI in the Rip pathway was further examined. By using F' plasmids carrying different parts of the polA gene, a series of complementation tests was carried out to investigate the requirement for the three enzymatic activities, polymerization, 3'-->5' exonuclease, and 5'-->3' exonuclease activities, of DNA PolI. The result indicated that both the 5'-->3' exonuclease and polymerization activities of DNA PolI are essential for bypassing the requirement for RecA in cSDR but that the 3'-->5' exonuclease activity can be dispensed with. Complementation experiments with rat DNA Pol beta also supported the hypothesis that a nick translation activity is probably involved in cSDR in the absence of RecA. An analysis of DNA synthesis suggested that DNA PolI is involved in the initiation but not the elongation stage of cSDR. Moreover, the dnaE293(Ts) mutation was shown to render the bypass replication temperature sensitive despite the presence of active DNA PolI, suggesting that DNA PolIII is responsible for the elongation stage of the Rip pathway. A model which describes the possible roles of RecA in cSDR and the possible function of DNA PolI in the Rip pathway is proposed.  相似文献   

3.
Y Cao  R R Rowland    T Kogoma 《Journal of bacteriology》1993,175(22):7247-7253
In Escherichia coli rnhA mutants, several normally repressed origins (oriK sites) of DNA replication are activated. The type of DNA replication initiated from these origins, termed constitutive stable DNA replication, does not require DnaA protein or the oriC site, which are essential for normal DNA replication. It requires active RecA protein. We previously found that the lexA71(Def)::Tn5 mutation can suppress this RecA requirement and postulated that the derepression of a LexA regulon gene(s) leads to the activation of a bypass pathway, Rip (for RecA-independent process). In this study, we isolated a miniTn10spc insertion mutant that abolishes the ability of the lexA(Def) mutation to suppress the RecA requirement of constitutive stable DNA replication. Cloning and DNA sequencing analysis of the mutant revealed that the insertion occurs at the 3' end of the coding region of the polA gene, which encodes DNA polymerase I. The mutant allele, designated polA25::miniTn10spc, is expected to abolish the polymerization activity but not the 5'-->3' or 3'-->5' exonuclease activity. Thus, the Rip bypass pathway requires active DNA polymerase I. Since the lethal combination of recA(Def) and polA25::miniTn10spc could be suppressed by derepression of the LexA regulon only when DNA replication is driven by the oriC system, it was suggested that the bypass pathway has a specific requirement for DNA polymerase I at the initiation step in the absence of RecA. An accompanying paper (Y. Cao and T. Kogoma, J. Bacteriol. 175:7254-7259, 1993) describes experiments to determine which activities of DNA polymerase I are required at the initiation step and discusses possible roles for DNA polymerase in the Rip bypass pathway.  相似文献   

4.
Summary The replication of the bacteriocinogenic factor Clo DF13 was studied in Escherichia coli mutants which lack either DNA polymerase I (polA1 and resA1 mutants), DNA polymerase II (polB1 mutant) or DNA polymerase III (dnaE mutant). DNA polymerase I is required for Clo DF13 replication. The Clo DF13 factor, however, can be maintained in a strain carrying the polA107 mutation and thus lacking the 53 exonucleolytic activity of DNA polymerase I. DNA polymerase II is not required for transfer replication and maintenance of the Clo DF13 plasmid. In the temperature sensitive dnaE mutant, Clo DF13 can replicate at the nonpermissive temperature during the first two hours after the temperature shift from 30°C to 43°C. During this period DNA polymerase III seems not to be essential for Clo DF13 replication.  相似文献   

5.
Type 1A topoisomerases (topos) are ubiquitous enzymes involved in supercoiling regulation and in the maintenance of genome stability. Escherichia coli possesses two type 1A enzymes, topo I (topA) and topo III (topB). Cells lacking both enzymes form very long filaments and have severe chromosome segregation and growth defects. We previously found that RNase HI overproduction or a dnaT::aph mutation could significantly correct these phenotypes. This leads us to hypothesize that they were related to unregulated replication originating from R-loops, i.e. constitutive stable DNA replication (cSDR). cSDR, first observed in rnhA (RNase HI) mutants, is characterized by its persistence for several hours following protein synthesis inhibition and by its requirement for primosome components, including DnaT. Here, to visualize and measure cSDR, the incorporation of the nucleotide analog ethynyl deoxyuridine (EdU) during replication in E. coli cells pre-treated with protein synthesis inhibitors, was revealed by “click” labeling with Alexa Fluor® 488 in fixed cells, and flow cytometry analysis. cSDR was detected in rnhA mutants, but not in wild-type strains, and the number of cells undergoing cSDR was significantly reduced by the introduction of the dnaT::aph mutation. cSDR was also found in topA, double topA topB but not in topB null cells. This result is consistent with the established function of topo I in the inhibition of R-loop formation. Moreover, our finding that topB rnhA mutants are perfectly viable demonstrates that topo III is not uniquely required during cSDR. Thus, either topo I or III can provide the type 1A topo activity that is specifically required during cSDR to allow chromosome segregation.  相似文献   

6.
It is shown here that plasmids containing the replication origin of Escherichia coli (oriC) cannot replicate in an extrachromosomal state in E. coli cells with the polA1hip3 double mutation. This E. coli mutant is deficient in the polymerizing function of DNA polymerase I (Pol I) and is unable to produce functional IHF protein. The inability of the oriC minichromosomes to replicate in the absence of IHF is dependent on the absence of Pol I; cells with the polA+himA- or polA+hip- mutation, which are deficient in the alpha and beta subunits of the IHF heterodimer, respectively, can support replication of the oriC replicons. We propose that IHF-deficient cells utilize an alternative pathway of the DNA replication in which Pol I is required. In vitro DNA binding assays revealed that the IHF binding site resides between the oriC coordinates 110 and 122 and is adjacent to the DnaA "box" 1. Within the area protected by IHF we found at least 1 out of 11 GATC methylation sites present in oriC. The consequences of lack of IHF protein binding to the oriC and the indirect effects of the IHF deficiency on the oriC replication are discussed.  相似文献   

7.
8.
DNA polymerase activities in fractionated cell extract of Aeropyrum pernix, a hyperthermophilic crenarchaeote, were investigated. Aphidicolin-sensitive (fraction I) and aphidicolin-resistant (fraction II) activities were detected. The activity in fraction I was more heat stable than that in fraction II. Two different genes (polA and polB) encoding family B DNA polymerases were cloned from the organism by PCR using degenerated primers based on the two conserved motifs (motif A and B). The deduced amino acid sequences from their entire coding regions contained all of the motifs identified in family B DNA polymerases for 3'-->5' exonuclease and polymerase activities. The product of polA gene (Pol I) was aphidicolin resistant and heat stable up to 80 degrees C. In contrast, the product of polB gene (Pol II) was aphidicolin sensitive and stable at 95 degrees C. These properties of Pol I and Pol II are similar to those of fractions II and I, respectively, and moreover, those of Pol I and Pol II of Pyrodictium occultum. The deduced amino acid sequence of A. pernix Pol I exhibited the highest identities to archaeal family B DNA polymerase homologs found only in the crenarchaeotes (group I), while Pol II exhibited identities to homologs found in both euryarchaeotes and crenarchaeotes (group II). These results provide further evidence that the subdomain Crenarchaeota has two family B DNA polymerases. Furthermore, at least two DNA polymerases work in the crenarchaeal cells, as found in euryarchaeotes, which contain one family B DNA polymerase and one heterodimeric DNA polymerase of a novel family.  相似文献   

9.
Masai H  Deneke J  Furui Y  Tanaka T  Arai KI 《Biochimie》1999,81(8-9):847-857
The E. coli PriA protein, a DEXH-type DNA helicase with unique zinc finger-like motifs interrupting the helicase domains, is an essential component of the phiX174-type primosome and plays critical roles in RecA-dependent inducible and constitutive stable DNA replication (iSDR and cSDR, respectively) as well as in recombination-dependent repair of double-stranded DNA breaks. B. subtilis PriA (BsPriA) protein contains the conserved helicase domains as well as zinc finger-like motifs with 34% overall identity with the E. coli counterpart. We overexpressed and purified BsPriA and examined its biochemical properties. BsPriA binds specifically to both n'-pas (primosome assembly site) and D-loop and hydrolyzes ATP in the presence of n'-pas albeit with a specific activity about 30% of that of E. coli PriA. However, it is not capable of supporting n'-pas-dependent replication in vitro, nor is it able to support ColE1-type plasmid replication in vivo which requires the function of the phiX174-type primosome. We also show that a zinc finger mutant is not able to support recombination-dependent DNA replication, as measured by the level of iSDR after a period of thymine starvation, nor wild-type level of growth, cell morphology and UV resistance. Unexpectedly, we discovered that an ATPase-deficient mutant (K230D) is not able to support iSDR to a full extent, although it can restore normal growth rate and UV resistance as well as non-filamentous morphology in priA1::kan mutant. K230D was previously reported to be fully functional in assembly of the phiX174-type primosome at a single-stranded n'-pas. Our results indicate that ATP hydrolysis/ helicase activity of PriA may be specifically required for DNA replication from recombination intermediates in vivo.  相似文献   

10.
T R Magee  T Asai  D Malka    T Kogoma 《The EMBO journal》1992,11(11):4219-4225
  相似文献   

11.
Summary We have found that the cells possessing the polA6 mutation affecting DNA polymerase I are unable to accept another mutation (uvr502) leading to UV-sensitivity. The introduction of the polA12 mutation determining the synthesis of a temperature sensitive DNA polymerase I into the uvr502 mutant results in the temperature sensitivity of colony forming ability of the double mutant. These data show that the uvr502 derivatives lacking DNA polymerase I are inviable. Reversions to temperature resistance in the population of the double mutant uvr502 polA12 may occur because of reverse mutations at one of the mutated sites or because of mutations suppressing DNA polymerase I deficiency but not UV- or MMS-sensitivity of revertants. DNA and protein synthesis in uvr502 polA12 cells continues after a shift to 45°C with rates almost indistinguishable from those in single mutants or wild type cells. No differences in DNA degradation were observed during incubation of single and double mutants at 45°C. The single strand molecular weight distribution of parent DNA from the double mutant as well as that from wild type cells is not affected by the shift to 45°C and 3 hours incubation at this temperature. We suggest that DNA polymerase I and/or the product altered by the uvr502 mutation are required for some step(s) of discontinuous DNA replication nonessential for the formation of acid insoluble DNA. The DNA polymerase I and the uvr gene product seem to be able to substitute for each other in accomplishing this process.  相似文献   

12.
Using strains of Escherichia coli K-12 that are deleted for the polA gene, we have reexamined the role of DNA polymerase I (encoded by polA) in postreplication repair after UV irradiation. The polA deletion (in contrast to the polA1 mutation) made uvrA cells very sensitive to UV radiation; the UV radiation sensitivity of a uvrA delta polA strain was about the same as that of a uvrA recF strain, a strain known to be grossly deficient in postreplication repair. The delta polA mutation interacted synergistically with a recF mutation in UV radiation sensitization, suggesting that the polA gene functions in pathways of postreplication repair that are largely independent of the recF gene. When compared to a uvrA strain, a uvrA delta polA strain was deficient in the repair of DNA daughter strand gaps, but not as deficient as a uvrA recF strain. Introduction of the delta polA mutation into uvrA recF cells made them deficient in the repair of DNA double-strand breaks after UV irradiation. The UV radiation sensitivity of a uvrA polA546(Ts) strain (defective in the 5'----3' exonuclease of DNA polymerase I) determined at the restrictive temperature was very close to that of a uvrA delta polA strain. These results suggest a major role for the 5'----3' exonuclease activity of DNA polymerase I in postreplication repair, in the repair of both DNA daughter strand gaps and double-strand breaks.  相似文献   

13.
Y. Cao  T. Kogoma 《Genetics》1995,139(4):1483-1494
The mechanism of recA polA lethality in Escherichia coli has been studied. Complementation tests have indicated that both the 5' -> 3' exonuclease and the polymerization activities of DNA polymerase I are essential for viability in the absence of RecA protein, whereas the viability and DNA replication of DNA polymerase I-defective cells depend on the recombinase activity of RecA. An alkaline sucrose gradient sedimentation analysis has indicated that RecA has only a minor role in Okazaki fragment processing. Double-strand break repair is proposed for the major role of RecA in the absence of DNA polymerase I. The lexA(Def)::Tn5 mutation has previously been shown to suppress the temperature-sensitive growth of recA200(Ts) polA25::spc mutants. The lexA(Def) mutation can alleviate impaired DNA synthesis in the recA200(Ts) polA25::spc mutant cells at the restrictive temperature. recF(+) is essential for this suppression pathway. recJ and recQ mutations have minor but significant adverse effects on the suppression. The recA200(Ts) allele in the recA200(Ts) polA25::spc lexA(Def) mutant can be replaced by δrecA, indicating that the lexA(Def)-induced suppression is RecA independent. lexA(Def) reduces the sensitivity of δrecA polA25::spc cells to UV damage by ~10(4)-fold. lexA(Def) also restores P1 transduction proficiency to the δrecA polA25::spc mutant to a level that is 7.3% of the recA(+) wild type. These results suggest that lexA(Def) activates a RecA-independent, RecF-dependent recombination repair pathway that suppresses the defect in DNA replication in recA polA double mutants.  相似文献   

14.
15.
Constitutive stable DNA replication (cSDR), which uniquely occurs inEscherichia coli rnhA mutants deficient in ribonuclease HI activity, requires RecA function. TherecA428 mutation, which inactivates the recombinase activity but imparts a constitutive coprotease activity, blocks cSDR inrnhA mutants. The result indicates that the recombinase activity of RecA, which promotes homologous pairing and strand exchange, is essential for cSDR. Despite the requirement for RecA recombinase activity, mutations inrecB, recD, recJ, ruvA andruvC neither inhibit nor stimulate cSDR. It was proposed that the property of RecA essential for homologous pairing and strand exchange is uniquely required for initiation of cSDR inrnhA mutants without involving the homologous recombination process. The possibility that RecA protein is necessary to counteract the action of Tus protein, a contra-helicase which stalls replication forks in theter region of the chromosome, was ruled out because introduction of thetus : :kan mutation, which inactivates Tus protein, did not alleviate the RecA requirement for cSDR.  相似文献   

16.
DNA replication is frequently hindered because of the presence of DNA lesions induced by endogenous and exogenous genotoxic agents. To circumvent the replication block, cells are endowed with multiple specialized DNA polymerases that can bypass a variety of DNA damage. To better understand the specificity of specialized DNA polymerases to bypass lesions, we have constructed a set of derivatives of Salmonella typhimurium TA1538 harboring plasmids carrying the polB, dinB or mucAB genes encoding Escherichia coli DNA polymerase II, DNA polymerase IV or DNA polymerase RI, respectively, and examined the mutability to 30 chemicals. The parent strain TA1538 possesses CGCGCGCG hotspot sequence for -2 frameshift. Interestingly, the chemicals could be classified into four groups based on the mutagenicity to the derivatives: group I whose mutagenicity was highest in strain YG5161 harboring plasmid carrying dinB; group II whose mutagenicity was almost equally high in strain YG5161 and strain TA98 harboring plasmid carrying mucAB; group III whose mutagenicity was highest in strain TA98; group IV whose mutagenicity was not affected by the introduction of any of the plasmids. Introduction of plasmid carrying polB did not enhance the mutagenicity except for benz[a]anthracene. We also introduced a plasmid carrying polA encoding E. coli DNA polymerase I to strain TA1538. Strikingly, the introduction of the plasmid reduced the mutagenicity of chemicals belonging to groups I, II and III, but not the chemicals of group IV, to the levels observed in the derivative whose SOS-inducible DNA polymerases were all deleted. These results suggest that (i) DNA polymerase IV and DNA polymerase RI possess distinct but partly overlapping specificity to bypass lesions leading to -2 frameshift, (ii) the replicative DNA polymerase, i.e., DNA polymerase III, participates in the mutagenesis and (iii) the enhanced expression of E. coli polA may suppress the access of Y-family DNA polymerases to the replication complex.  相似文献   

17.
Summary The induction of prophage by ultraviolet light has been measured inE. coli K12 lysogenic cells deficient in DNA polymerase I. The efficiency of the induction process was greater inpolA1 polC(dnaE) double mutants incubated at the temperature that blocks DNA replication than inpolA + polC single mutants. Similarly, thepolA1 mutation sensitizedtif-promoted lysogenic induction in apolA1 tif strain at 42°. In strains bearing thepolA12 mutation, which growth normally at 30°, induction of the prophage occured after the shift to 42°. It is concluded that dissapearance of the DNA polymerase I activity leads to changes in DNA replication that are able, per se, to trigger the prophage induction process.  相似文献   

18.
Escherichia coli RecG and RecA proteins in R-loop formation.   总被引:10,自引:2,他引:10       下载免费PDF全文
X Hong  G W Cadwell    T Kogoma 《The EMBO journal》1995,14(10):2385-2392
  相似文献   

19.
E. coli strains bearing the recA441 mutation and various mutations in the polA gene resulting in enzymatically well-defined deficiencies of DNA polymerase I have been constructed. It was found that the recA441 strains bearing either the polA1 or polA12 mutation causing deficiency of the polymerase activity of pol I are unable to grow at 42 degrees C on minimal medium supplemented with adenine, i.e., when the SOS response is continuously induced in strains bearing the recA441 mutation. Under these conditions the inhibition of DNA synthesis is followed in recA441 polA12 by DNA degradation and loss of cell viability. A similar lethal effect is observed with the recA730 polA12 mutant. The recA441 strain bearing the polA107 mutation resulting in the deficiency of the 5'-3' exonuclease activity of pol I shows normal growth under conditions of continuous SOS response. We postulate that constitutive expression of the SOS response leads to an altered requirement for the polymerase activity of pol I.  相似文献   

20.
Alternate pathways of DNA replication in Escherichia coli   总被引:2,自引:0,他引:2  
We have described the pcbA1 mutation which enables E. coli cells to replicate DNA in the absence of a functional dnaE gene product if DNA polymerase I (the polA gene product) is present. The pcbA1 mutation phenotypically suppresses multiple dnaEts and dnaEam alleles. The pcbA1/PolI replication pathway differs from normal in sensitivity to certain DNA-damaging agents such as methylmethane sulfonate (MMS) and a lack of damage-directed mutagenesis. We report here cloning of the pcbA1 gene in a multicopy plasmid. The pcbA1 mutation is detected only in cis; therefore, cloning necessitated gene eviction. The pcbA1 gene lies closely- linked to gyrB. We have demonstrated the physical presence of DNA polymerase I in the replicating holoenzyme complex by immunoblotting using dnaEam strains. We conclude that E. coli has two alternate replisome structures: REP-A, in which DNA polymerase I is the functional synthetic subunit; and REP-E, in which the alpha-subunit, product of the dnaE gene, is functional. To investigate further the role of individual DNA polymerases in replication, we have isolated the polB gene on multicopy plasmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号