首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice.  相似文献   

2.
In vivo imaging of apoptosis in a preclinical setting in anticancer drug development could provide remarkable advantages in terms of translational medicine. So far, several imaging technologies with different probes have been used to achieve this goal. Here we describe a bioluminescence imaging approach that uses a new formulation of Z-DEVD-aminoluciferin, a caspase 3/7 substrate, to monitor in vivo apoptosis in tumor cells engineered to express luciferase. Upon apoptosis induction, Z-DEVD-aminoluciferin is cleaved by caspase 3/7 releasing aminoluciferin that is now free to react with luciferase generating measurable light. Thus, the activation of caspase 3/7 can be measured by quantifying the bioluminescent signal. Using this approach, we have been able to monitor caspase-3 activation and subsequent apoptosis induction after camptothecin and temozolomide treatment on xenograft mouse models of colon cancer and glioblastoma, respectively. Treated mice showed more than 2-fold induction of Z-DEVD-aminoluciferin luminescent signal when compared to the untreated group. Combining D-luciferin that measures the total tumor burden, with Z-DEVD-aminoluciferin that assesses apoptosis induction via caspase activation, we confirmed that it is possible to follow non-invasively tumor growth inhibition and induction of apoptosis after treatment in the same animal over time. Moreover, here we have proved that following early apoptosis induction by caspase 3 activation is a good biomarker that accurately predicts tumor growth inhibition by anti-cancer drugs in engineered colon cancer and glioblastoma cell lines and in their respective mouse xenograft models.  相似文献   

3.
目的:利用生物发光成像技术非侵入性地监测活体裸鼠原位肝癌发展过程。方法:将包含有萤火虫萤光素酶基因的pCI-neo-Luc载体转染人肝癌HepG2细胞系,筛选获得具有高萤光素酶活性的细胞克隆;利用流式细胞仪对萤光素酶表达的稳定性进行初步研究,并分析细胞的生物发光情况;持续表达萤光素酶的肿瘤细胞培养扩增后被植入裸鼠皮下,2周后以形成的异体瘤作为供体瘤,进行肝脏原位移植手术;对建立的肝癌原位移植模型,用影像学资料显示肿瘤部位,用IVIS成像系统动态监测肿瘤生长情况。结果:体外影像的结果显示,表达萤光素酶细胞的数量与发光强度呈正相关;活体成像的结果显示。成功地建立了萤光素酶标记的原位肝癌动物模型。结论:生物发光成像可以监测活体内肝癌演进过程,为抗肿瘤药物的筛选和评价提供了新的手段和工具。  相似文献   

4.
To promote cancer research and to develop innovative therapies, refined pre-clinical mouse tumor models that mimic the actual disease in humans are of dire need. A number of neoplasms along the B cell lineage are commonly initiated by a translocation recombining c-myc with the immunoglobulin heavy-chain gene locus. The translocation is modeled in the C.129S1-Ighatm1(Myc)Janz/J mouse which has been previously engineered to express c-myc under the control of the endogenous IgH promoter. This transgenic mouse exhibits B cell hyperplasia and develops diverse B cell tumors. We have isolated tumor cells from the spleen of a C.129S1-Ighatm1(Myc)Janz/J mouse that spontaneously developed a plasmablastic lymphoma-like disease. These cells were cultured, transduced to express eGFP and firefly luciferase, and gave rise to a highly aggressive, transplantable B cell lymphoma cell line, termed IM380. This model bears several advantages over other models as it is genetically induced and mimics the translocation that is detectable in a number of human B cell lymphomas. The growth of the tumor cells, their dissemination, and response to treatment within immunocompetent hosts can be imaged non-invasively in vivo due to their expression of firefly luciferase. IM380 cells are radioresistant in vivo and mice with established tumors can be allogeneically transplanted to analyze graft-versus-tumor effects of transplanted T cells. Allogeneic hematopoietic stem cell transplantation of tumor-bearing mice results in prolonged survival. These traits make the IM380 model very valuable for the study of B cell lymphoma pathophysiology and for the development of innovative cancer therapies.  相似文献   

5.
目的:验证双标记生物发光成像活体观测MSCs在肝癌裸鼠模型向肿瘤病灶的趋化作用的可行性。方法:应用fluorescence(荧光)与bioluminescence(生物发光)两种成像方法,对MSCs进行CM-Di I荧光标记及对人肝癌细胞Hep G2进行Fluc-慢病毒感染并由此建立裸鼠肝癌模型,构建双标记成像系统,应用精诺真小动物光学成像仪在裸鼠肝癌模型中观测间充质干细胞向肿瘤的趋化作用。结果:在鼠尾静脉注射标记MSCs细胞后21天荧光成像可见MSCs主要积聚于肿瘤病灶处及肝脏。生物发光成像后可监测到病灶处由luciferase标记肿瘤细胞(Hep G2)发出荧光;将荧光成像与生物发光成像所得图像经后处理融合后,可见证间充质干细胞像肿瘤病灶定向迁徙的生物过程。经肿瘤病理切片证实间充质干细胞成功迁徙至肿瘤病灶中。结论:应用间充质干细胞双标记光学成像系统实现MSCs在活体内对肿瘤的趋化过程进行观测是可行的。这种成像方法可作为下一步以MSCs为载体的肿瘤基因治疗的有效监测手段。  相似文献   

6.
Orthotopic models of various types of tumors are widely used in anti-tumor therapeutic experiments in preclinical studies. However, there are few ways to appropriately monitor therapeutic effect in orthotopic tumor models, especially for tumors invisible from the outside. In this study we aimed to establish a non-invasive semi-quantitative bioluminescent imaging method of monitoring an orthotopic esophageal cancer mouse model. We confirmed that the TE8 esophageal cancer cell line implanted orthotopically into the abdominal esophagus of nu/nu mice (n = 5) developed not only a main tumor at the implanted site, but also local lymph node metastases and peritoneal disseminations within 6 weeks after inoculation. We established a TE8 cell line that stably expressed the firefly luciferase gene (TE8-Luc). We showed that TE8-Luc cells implanted subcutaneously into nu/nu mice (n = 5) grew over time until 5 weeks after inoculation. Tumor volume was strongly correlated with luminescent intensity emitted from the tumor, which was quantified using the IVIS imaging system. We then showed that TE8-Luc cells implanted orthotopically into the mouse abdominal esophagus (n = 8) also formed a tumor and that the luminescent intensity of such a tumor, as detected by IVIS, increased over time until 7 weeks after inoculation and was therefore likely to reflect tumor progression. We therefore propose that this orthotopic esophageal cancer model, monitored using the non-invasive semi-quantitative IVIS imaging system, will be useful for in vivo therapeutic experiments against esophageal cancer. This experimental setting is expected to contribute to the development of novel therapeutic technologies for esophageal cancer in preclinical studies.  相似文献   

7.
目的:细胞再增殖是导致胰腺癌放化疗失败的主要原因之一,但缺乏合适的用于研究胰腺癌再增殖的细胞模型。本研究拟建立简便、实用的胰腺癌细胞再增殖体外模型。方法:表达绿色荧光蛋白-荧光素酶(GFP-Luc)的慢病毒感染人胰腺癌细胞,经嘌呤霉素筛选,用荧光显微镜和流式细胞仪观察双标记细胞GFP表达情况,用生物成像检测双标记细胞Luc活性及分析细胞数量与Luc活性之间的关系。以X-线照射胰腺癌细胞制备饲养细胞,以相应的双标记肿瘤细胞为报告细胞进行共培养。对共培养细胞进行荧光显微镜观察和生物成像,以判断饲养细胞对报告细胞的生长促进作用。结果:通过表达GFP-Luc的慢病毒感染获得双标记人胰腺癌细胞,经荧光显微术、流式细胞术和生物成像术证实这些双标记的人胰腺癌细胞能有效地表达GFP和Luc活性,可作为报告细胞用于建立人胰腺癌再增殖细胞模型。将经X-线照射的饲养细胞和相应的报告细胞共培养,经荧光显微镜观察和生物成像分析,结果显示X-线照射过的饲养细胞对报告细胞的生长具有显著的促进作用。结论:成功建立了简便、实用的人胰腺癌再增殖体外模型,该模型能很好地模拟人体内胰腺癌细胞再增殖过程,为进一步研究胰腺癌细胞再增殖的分子机制提供了新的技术手段。  相似文献   

8.
4T1 mouse mammary tumor cells can be implanted sub-cutaneously in nu/nu mice to form palpable tumors in 15 to 20 days. This xenograft tumor model system is valuable for the pre-clinical in vivo evaluation of putative antitumor compounds.The 4T1 cell line has been engineered to constitutively express the firefly luciferase gene (luc2). When mice carrying 4T1-luc2 tumors are injected with Luciferin the tumors emit a visual light signal that can be monitored using a sensitive optical imaging system like the IVIS Spectrum. The photon flux from the tumor is proportional to the number of light emitting cells and the signal can be measured to monitor tumor growth and development. IVIS is calibrated to enable absolute quantitation of the bioluminescent signal and longitudinal studies can be performed over many months and over several orders of signal magnitude without compromising the quantitative result.Tumor growth can be monitored for several days by bioluminescence before the tumor size becomes palpable or measurable by traditional physical means. This rapid monitoring can provide insight into early events in tumor development or lead to shorter experimental procedures.Tumor cell death and necrosis due to hypoxia or drug treatment is indicated early by a reduction in the bioluminescent signal. This cell death might not be accompanied by a reduction in tumor size as measured by physical means. The ability to see early events in tumor necrosis has significant impact on the selection and development of therapeutic agents.Quantitative imaging of tumor growth using IVIS provides precise quantitation and accelerates the experimental process to generate results.Open in a separate windowClick here to view.(48M, flv)  相似文献   

9.
The function of ten-eleven translocation methylcytosine dioxygenase 1 (TET1) in cancer is background dependent and may be involved in the initial step of active DNA demethylation, while there is little research to decipher the role of TET1 in DNA methylation-sensitive colon cancer. Downregulated TET1 expression assayed by quantitative real-time PCR (qRT-PCR) was observed in both colon cancer samples and cancer cell lines of HT29, HCT116, and SW48. Such downregulation could promote colon cancer cells proliferation as indicated by the fact that shTET1 could increase the viability of HT29 and HCT116 cells determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and cell count assay accompanied with upregulation of β-catenin (CTNNB1) and WNT luciferase activity, which was further confirmed as shTET1 could increase the tumor volume and tumor weight, and decrease the body weight in HT29 cells inoculated BALB/C nude mice. The CTNNB1 transfection could rescue the cell growth diminished by normal expression of TET1. shTET1 could promote axis inhibition protein1 (AXIN1) expression and the cell proliferation effect induced by TET1 short hairpin RNA was attenuated by co-inhibition of AXIN1. All of these indicate that TET1 can suppress colon cancer proliferation and the inhibition of the β-catenin pathway is AXIN1 dependent.  相似文献   

10.
目的:建立-种基于分泌型萤光素酶的实时定量检测实验动物体内肿瘤大小的方法。方法:以分泌型Gaussia萤光素酶(Gluc)为报告基因,以嘌呤霉素为筛选基因,将两者用T2A元件连接后克隆到慢病毒载体,包装慢病毒后感染乳腺癌MCF-7细胞,经嘌呤霉素筛选得到稳定转染细胞MCF-7-Gluc,并检测细胞上清中Gluc活性随时问和细胞数目的变化;将MCF-7-Gluc扩大培养后经皮下注射到雌性BALB/c裸鼠前肢腋下,待肿瘤形成后,检测外周血液中Gluc活性与肿瘤体积的相关性。结果:体外实验显示稳定转染细胞MCF-7-Gluc分泌到细胞上清的Gluc活性与时间和细胞数量在-定范围内均呈现良好的线性关系,体内实验显示裸鼠血液中的Gluc活性与肿瘤体积呈正相关。结论:Gluc技术可作为-种灵活、方便、实时定量检测活体动物体内肿瘤大小的有效工具。  相似文献   

11.
Secreted reporter molecules offer a means to evaluate biological processes in real time without the need to sacrifice samples at pre-determined endpoints. Here we have adapted the secreted bioluminescent reporter gene, Metridia luciferase, for use in a real-time viability assay for mammalian cells. The coding region of the marine copepod gene has been codon optimized for expression in human cells (hMLuc) and placed under the control of the human β-actin promoter and enhancer. Metridia luciferase activity of stably transfected cell models corresponded linearly with cell number over a 4-log dynamic range, detecting as few as 40 cells. When compared to standard endpoint viability assays, which measure the mitochondrial dehydrogenase reduction of tetrazolium salts, the hMLuc viability assay had a broader linear range of detection, was applicable to large tissue culture vessels, and allowed the same sample to be repeatedly measured over several days. Additional studies confirmed that MLuc activity was inhibited by serum, but demonstrated that assay activity remained linear and was measurable in the serum of mice bearing subcutaneous hMLuc-expressing tumors. In summary, these comparative studies demonstrate the value of humanized Metridia luciferase as an inexpensive and non-invasive method for analyzing viable cell number, growth, tumor volume, and therapeutic response in real time.  相似文献   

12.
Mice have been employed as models of cancer for over a century, providing significant advances in our understanding of this multifaceted family of diseases. In particular, orthotopic tumor xenograft mouse models are emerging as the preference for cancer research due to increased clinical relevance over subcutaneous mouse models. In the current study, we developed orthotopic pancreatic cancer xenograft models in mice by a minimally invasive method, ultrasound guided injection (USGI) comparable to highly invasive surgical orthotopic injection (SOI) methods. This optimized method prevented injection complications such as recoil of cells through the injection canal or leakage of cells out of the pancreas into the peritoneal cavity. Tumor growth was monitored in vivo and quantified by ultrasound imaging weekly, tumors were also detected by in vivo fluorescence imaging using a tumor targeted molecular probe. The mean tumor volumes for the USGI and SOI models after 2 weeks of tumor growth were 205 mm(3) and 178 mm(3) respectively. By USGI of human pancreatic cancer cell lines, human orthotopic pancreatic cancer xenografts were established. Based on ultrasound imaging, the orthotopic human pancreatic cancer xenograft take rate was 100% for both human pancreatic cancer cell lines used, MiaPaCa-2 and Su86.86, with mean tumor volumes of 28 mm(3)and 30 mm(3). We demonstrated that this USGI method is feasible, reproducible, facile, minimally invasive and improved compared to the highly-invasive SOI method for establishing orthotopic pancreatic tumor xenograft models suitable for molecular imaging.  相似文献   

13.
14.
目的 采用活体成像技术比较四种剂量荧光素酶标记肿瘤细胞在小鼠体内生长及肺转移情况,为光学标记肿瘤模型的药物筛选或机制研究提供参考资料.方法 以荧光素酶作为报告基因导人小鼠乳腺癌细胞4T1中,经G418筛选获得稳定表达荧光素酶的细胞克隆并扩大培养.标记细胞稀释成1×107细胞/mL,2×107细胞/mL,5×107细胞/mL和1×108细胞/mL四种剂量,取0.1 mL接种子BALB/c小鼠右侧第二对乳腺脂肪垫内,制作小鼠原位乳腺癌模型,比较肿瘤细胞在小鼠体内生长及肺转移情况.结果获得稳定表达荧光素酶基因的细胞克隆,在致瘤性方面和亲代细胞无明显差别,四种剂量细胞接种BALB/c小鼠后,均有肿瘤生长,接种第28天时,四种剂量接种的原位移植瘤大小没有明显差别,但接种两个高剂量肿瘤细胞的小鼠组各有2只小鼠死亡;接种后31 d,发现四种剂量接种的原位移植瘤均发生不同程度的转移,随着观察天数的增加,转移程度逐渐严重,接种后42 d,小鼠陆续发生死亡.结论 根据转移和死亡情况,确定接种1×106个细胞/只不仅肺转移明显,而且存活时间一般超过45 d,比高剂量接种存活时间长,为最佳肺转移剂量.  相似文献   

15.
Over the last decades, some members of the protein tyrosine phosphatase family have emerged as cancer promoters. Among them, the Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) has been described to be associated with colorectal cancer liver metastasis and poor prostate cancer prognosis. Of importance in the process of cancer progression and metastasis is the interaction between tumor cells and platelets, as the latter are thought to promote several tumor hallmarks. Here, we examine to what extent LMWPTP expression in tumor cells affects their interaction with platelets. We demonstrate that the gene encoding LMWPTP is overexpressed in upper gastrointestinal (GI) cancer cell as well as colorectal cancer, and subsequently employ cell line models to show that the level of this phosphatase may be further augmented in the presence of platelets. We demonstrate that tumor-platelet interaction promotes GI tumor cell proliferation. Additionally, using know-down/-out models we show that LMWPTP expression in cancer cells contributes to a more efficient interaction with platelets and drives platelet-induced proliferation. These data are the first to demonstrate that phosphatases play a positive role in the tumor-promoting activities of platelets, with LMWPTP emerging as a key player promoting oncogenic phenotypic changes in tumor cells.  相似文献   

16.
目的建立荧光素酶标记人胃癌原位异种移植模型。方法将萤火虫荧光素酶作为标记基因导入人胃癌MGC803细胞,建立稳定表达荧光素酶的细胞,将其接种裸鼠胃壁浆膜下,建立胃癌裸鼠原位肿瘤模型。用活体荧光成像系统检测肿瘤的发生发展,并进行小动物超声影像和病理学分析。结果裸鼠原位成瘤率为100%,活体荧光成像观察发现在接种第7天,就可以观察到肿瘤发光。21 d后肿瘤进入对数生长期,28 d后肿瘤出现明显坏死,平均荧光光子数呈现下降趋势。超声成像发现小鼠胃部有直径为8.39 mm,面积为28.92 mm2瘤块。结论荧光素酶标记可以实时监测原位异种移植人胃癌生长状况。  相似文献   

17.
Luciferase transfected cell lines are used extensively for cancer models, revealing valuable biological information about disease mechanisms. However, these genetically encoded reporters, while useful for monitoring tumor response in cancer models, can impact cell metabolism. Indeed firefly luciferase and fatty acyl-CoA synthetases differ by a single amino acid, raising the possibility that luciferase activity might alter metabolism and introduce experimental artifacts. Therefore knowledge of the metabolic response to luciferase transfection is of significant importance, especially given the thousands of research studies using luciferase as an in vivo bioluminescence imaging reporter. Untargeted metabolomics experiments were performed to examine three different types of lymphoblastic leukemia cell lines (Ramos, Raji and SUP-T1) commonly used in cancer research, each were analyzed with and without vector transduction. The Raji model was also tested under perturbed starvation conditions to examine potential luciferase-mediated stress responses. The results showed that no significant metabolic differences were observed between parental and luciferase transduced cells for each cell line, and that luciferase overexpression does not alter cell metabolism under basal or perturbed conditions.  相似文献   

18.
Loss of function of metastasis suppressor genes is an important step in the progression to a malignant tumor type. Studies in cell culture and animal models have suggested a role of Raf kinase inhibitor protein (RKIP) in suppressing the metastatic spread of prostate cancer, breast cancer, and melanoma cells. However, the function of RKIP in ovarian cancer (OVCA) has not been reported. To explore the potential role of RKIP in epithelial OVCA metastasis, we detected the expression levels of RKIP protein in tissue samples from patients with epithelial OVCA. Consequently, the expression of RKIP is reduced in the poorly differentiated OVCA than in the well-differentiated and moderately differentiated OVCA. In addition, in vitro cell invasion assay indicated that the RKIP expression was inversely associated with the invasiveness of five OVCA cell lines. Consistent with this result, the cell proliferation, anchorage-independent growth, cell adhesion, and invasion were decreased in RKIP overexpressed cells but increased in RKIP down-regulated cells. Further investigation indicated that RKIP inhibited OVCA cell proliferation by altering cell cycle progression rather than promoting apoptosis. Furthermore, the overexpression of RKIP suppressed the ability of human OVCA cells to metastasize when the tumor cells were transplanted into nude mice. Our data show the effect of RKIP on the proliferation, migration, or adhesion of OVCA cells. These results indicate that RKIP is also a metastasis suppressor gene of human epithelial OVCA.  相似文献   

19.
20.
Our pilot study using miRNA arrays found that miRNA-29c (miR-29c) is differentially expressed in the paired low-metastatic lung cancer cell line 95C compared to the high-metastatic lung cancer cell line 95D. Bioinformatics analysis shows that integrin β1 and matrix metalloproteinase 2 (MMP2) could be important target genes of miR-29c. Therefore, we hypothesized that miR-29c suppresses lung cancer cell adhesion to extracellular matrix (ECM) and metastasis by targeting integrin β1 and MMP2. The gain-of-function studies that raised miR-29c expression in 95D cells by using its mimics showed reductions in cell proliferation, adhesion to ECM, invasion and migration. In contrasts, loss-of-function studies that reduced miR-29c by using its inhibitor in 95C cells promoted proliferation, adhesion to ECM, invasion and migration. Furthermore, the dual-luciferase reporter assay demonstrated that miR-29c inhibited the expression of the luciferase gene containing the 3′-UTRs of integrin β1 and MMP2 mRNA. Western blotting indicated that miR-29c downregulated the expression of integrin β1 and MMP2 at the protein level. Gelatin zymography analysis further confirmed that miR-29c decreased MMP2 enzyme activity. Nude mice with xenograft models of lung cancer cells confirmed that miR-29c inhibited lung cancer metastasis in vivo, including bone and liver metastasis. Taken together, our results demonstrate that miR-29c serves as a tumor metastasis suppressor, which suppresses lung cancer cell adhesion to ECM and metastasis by directly inhibiting integrin β1 and MMP2 expression and by further reducing MMP2 enzyme activity. The results show that miR-29c may be a novel therapeutic candidate target to slow lung cancer metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号