首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies show that the epsilon subunit of bacterial and chloroplast F(1)F(0) ATPases is a component of the central stalk that links the F(1) and F(0) parts. This subunit interacts with alpha, beta and gamma subunits of F(1) and the c subunit ring of F(0). Along with the gamma subunit, epsilon is a part of the rotor that couples events at the three catalytic sites sequentially with proton translocation through the F(0) part. Structural data on the epsilon subunit when separated from the complex and in situ are reviewed, and the functioning of this polypeptide in coupling within the ATP synthase is considered.  相似文献   

2.
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.  相似文献   

3.
Dicyclohexylcarbodiimide (DCCD) specifically inhibits the F1F0-H+-ATP synthase complex of Escherichia coli by covalently modifying a proteolipid subunit that is embedded in the membrane. Multiple copies of the DCCD-reactive protein, also known as subunit c, are found in the F1F0 complex. In order to determine the minimum stoichiometry of reaction, we have treated E. coli membranes with DCCD, at varying concentrations and for varying times, and correlated inhibition of ATPase activity with the degree of modification of subunit c. Subunit c was purified from the membrane, and the degree of modification was determined by two methods. In the "specific radioactivity" method, the moles of [14C]DCCD per total mole of subunit c was calculated from the radioactivity incorporated per mg of protein, and conversion of mg of protein to mol of protein based upon amino acid analysis. In the "high performance liquid chromatography (HPLC) peak area" method, the DCCD-modified subunit c was separated from unmodified subunit c on an anion exchange AX300 HPLC column, and the areas of the peaks from the chromatogram quantitated. The shape of the modification versus inhibition curve indicated that modification of a single subunit c per F0 was sufficient to abolish ATPase activity. The titration data were fit by nonlinear regression analysis to a single hit mathematical model, A = Un(1 - r) + r, where A is the relative activity, U is the ratio of unmodified/total subunit c, n is the number of subunit c per F0, and r is a residual fraction of ATPase activity that was resistant to inhibition by DCCD. The two methods gave values for n equal to 10 by the specific radioactivity method and 14 by the HPLC peak area method, and values for r of 0.28 and 0.30, respectively. Most of the r value was accounted for by the observed dissociation of 15-20% of the F1-ATPase from the membrane under ATPase assay conditions. When the minimal, experimentally justified value of r = 0.15 was used in the equation above, the calculated values of n were reduced to 8 and 11, respectively. The value of n determined here, with a probable range of uncertainty of 8-14, is consistent with, and provides an independent type of experimental support for, the suggested stoichiometry of 10 +/- 1 subunit c per F1F0, which was determined by a more precise radiolabeling method (Foster, D. L., and Fillingame, R. H. (1982) J. Biol. Chem. 257, 2009-2015).  相似文献   

4.
The subunit arrangement of the F0 sector of the Escherichia coli ATP synthase is examined using hydrophilic and hydrophobic (cleavable) cross-linking reagents and the water-soluble labeling reagent [35S] diazoniumbenzenesulfonate ( [35S]DABS). Cross-linking is performed on purified ATP synthase and inverted minicell membranes. ATP synthase incorporated into liposomes is labeled with [35S]DABS. Three cross-linked products involving the F0 subunits (a, b, and c) are observed with the purified ATP synthase in solution: a-b, b2, and c2 dimers. A cross-link between the F0 and F1 is detected and occurs between the a and beta subunits. A cross-linker independent association between the b and beta subunits is also evident, suggesting that the two subunits are close enough to form a disulfide bridge. A cross-linking reagent stable to reducing agents produces a b-beta dimer, as detected by immunoblotting with anti-beta serum. The c subunit does not cross-link with any F1 polypeptide. Minicell membranes containing ATP synthase polypeptides radioactively labeled in vivo similarly show b2 and c2 dimers after cross-linking. [35S]DABS labels the a and b, but not c, subunits, showing that the a and b, but not c, subunits possess hydrophilic domains. Thus, certain domains of subunits a and b extend from the membrane and are in close proximity to one another and the F1 catalytic subunit beta.  相似文献   

5.
Previous work has shown that eukaryotic initiation factor (eIF)-4B from wheat germ is a complex containing two subunits, 80 and 28 kDa, and eIF-4F from wheat germ is a complex containing two subunits, 220 and 26 kDa (Lax, S., Fritz, W., Browning, K., and Ravel, J. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 330-333). Here we show that both the 28-kDa subunit of eIF-4B and the 26-kDa subunit of eIF-4F cross-link to the 5' terminus of capped and oxidized satellite tobacco necrosis virus RNA in the absence of ATP and that the cross-linking of both polypeptides is inhibited by m7GDP. Several lines of evidence indicate that the 28-kDa and the 26-kDa cap binding proteins of eIF-4B and eIF-4F are antigenically distinct polypeptides. Rabbit polyclonal antibodies raised to intact eIF-4B or to the isolated 28-kDa subunit of eIF-4B react strongly with the 28-kDa subunit of eIF-4B on immunoblots, but show only a very weak reaction with the 26-kDa subunit of eIF-4F under the same conditions. In addition, a mouse monoclonal antibody was obtained that reacts strongly with the 26-kDa subunit of eIF-4F but does not react with the 28-kDa subunit of eIF-4B. Evidence is presented also which indicates that the higher molecular weight subunits of eIF-4B and eIF-4F are antigenically distinct. Rabbit polyclonal antibodies raised to intact eIF-4B or the isolated 80-kDa subunit inhibit eIF-4B-dependent polypeptide synthesis but do not inhibit eIF-4F-dependent polypeptide synthesis. Rabbit polyclonal antibodies raised to eIF-4F inhibit eIF-4F-dependent polypeptide synthesis but do not inhibit eIF-4B-dependent polypeptide synthesis.  相似文献   

6.
By means of a yeast genome database search, we have identified an open reading frame located on chromosome XVI of Saccharomyces cerevisiae that encodes a protein with 53% amino acid similarity to the 11.3-kDa subunit g of bovine mitochondrial F1F0-ATP synthase. We have designated this ORF ATP20, and its product subunit g. A null mutant strain, constructed by insertion of the HIS3 gene into the coding region of ATP20, retained oxidative phosphorylation function. Assembly of F1F0-ATP synthase in the atp20-null strain was not affected in the absence of subunit g and levels of oligomycin-sensitive ATP hydrolase activity in mitochondria were normal. Immunoprecipitation of F1F0-ATP synthase from mitochondrial lysates prepared from atp20-null cells expressing a variant of subunit g with a hexahistidine motif indicated that this polypeptide was associated with other well-characterized subunits of the yeast complex. Whilst mitochondria isolated from the atp20-null strain had the same oxidative phosphorylation efficiency (ATP : O) as that of the control strain, the atp20-null strain displayed approximately a 30% reduction in both respiratory capacity and ATP synthetic rate. The absence of subunit g also reduced the activity of cytochrome c oxidase, and altered the kinetic control of this complex as demonstrated by experiments titrating ATP synthetic activity with cyanide. These results indicate that subunit g is associated with F1F0-ATP synthase and is required for maximal levels of respiration, ATP synthesis and cytochrome c oxidase activity in yeast.  相似文献   

7.
Four different sets of proteoliposomes were prepared from F0, subunit c, a complex of subunits a and c (ac complex) and an ac complex supplemented with subunit b. Only liposomes containing intact F0 or all subunits of F0 were active in proton translocation and F1 binding [Schneider, E. and Altendorf, K. (1985) EMBO J. 4, 515-518]. The conformation of subunit c in the different preparations was analyzed by labelling the proteoliposomes with the hydrophobic photoactivatable reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). Subsequent isolation and Edman degradation of this polypeptide revealed distinct radioactive labelling patterns over the entire amino acid sequence. In the F0 complex and in the ac complex subunit c retains a labelling pattern which is related to that found in TID-labelled membrane vesicles of Escherichia coli [Hoppe et al. (1984) Biochemistry 23, 5610-5616]. In the absence of subunit a, considerably more and different amino acid residues of subunit c are modified. The labelling data are discussed in relation to structural aspects of F0 and functional properties of proteoliposomes reconstituted with F0 or individual subunits.  相似文献   

8.
F(1)F(0) ATP synthases are known to synthesize ATP by rotary catalysis in the F(1) sector of the enzyme. Proton translocation through the F(0) membrane sector is now proposed to drive rotation of an oligomer of c subunits, which in turn drives rotation of subunit gamma in F(1). The primary emphasis of this review will be on recent work from our laboratory on the structural organization of F(0), which proves to be consistent with the concept of a c(12) oligomeric rotor. From the NMR structure of subunit c and cross-linking studies, we can now suggest a detailed model for the organization of the c(12) oligomer in F(0) and some of the transmembrane interactions with subunits a and b. The structural model indicates that the H(+)-carrying carboxyl of subunit c is located between subunits of the c(12) oligomer and that two c subunits pack in a front-to-back manner to form the proton (cation) binding site. The proton carrying Asp61 side chain is occluded between subunits and access to it, for protonation and deprotonation via alternate entrance and exit half-channels, requires a swiveled opening of the packed c subunits and stepwise association with different transmembrane helices of subunit a. We suggest how some of the structural information can be incorporated into models of rotary movement of the c(12) oligomer during coupled synthesis of ATP in the F(1) portion of the molecule.  相似文献   

9.
Ngai PH  Ng TB 《Peptides》2004,25(2):171-176
Napins are 1:1 disulfide-linked complexes of a smaller (ca. 4kDa) subunit and a larger (ca. 10kDa) subunit. The intent of the present study was to ascertain the production of napin by the seeds of a Brassica species that has not been examined previously, and also to explore new biological activities of the napin. A heterodimeric 11-kDa napin-like polypeptide has been isolated from Chinese white cabbage (Brassica chinensis cv dwarf) seeds with a protocol comprising ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, fast protein liquid chromatography (FPLC)-ion exchange chromatography on Mono S and FPLC-gel filtration on Superdex 75. The N-terminal sequence of the 7-kDa subunit manifests striking similarity to napin large chain, albumin and trypsin inhibitor. The N-terminal sequence of the 4-kDa subunit is homologous to napin large chain and an antimicrobial peptide. The napin-like polypeptide inhibited translation in the rabbit reticulocyte system with an IC50 of 18.5nM. This translation-inhibitory activity was stable between pH 4 and 11, and between 10 and 40 degrees C. The polypeptide inhibited trypsin with a higher potency ( IC50 = 8.5 microM) than it inhibited chymotrypsin (IC50 = 220 microM), but was devoid of ribonuclease and antifungal activities. It manifested antibacterial activity against Pseudomonas aeruginosia, Bacillus subtilis, Bacillus cereus, and Bacillus megaterium. The results revealed that the napin-like polypeptide from Chinese white cabbage seeds exhibited some potentially exploitable activities.  相似文献   

10.
Two aa3-type cytochromes were purified from membranes of sporulating Bacillus cereus. One of them, an aa3 complex, was found to be composed of two subunits (51 and 31 kDa), two a hemes and three copper atoms, thus being similar to the cytochrome aa3 previously purified from vegetative B. cereus [García-Horsman, J. A., Barquera, B., González-Halphen, D. & Escamilla, J. E. (1991) Mol. Microbiol. 5, 197-205]. The second isoform, a caa3 complex, was expressed in sporulating cells only, and was found to be composed of two subunits (51 and 37 kDa). The 37-kDa subunit (subunit II) is a heme-c-containing polypeptide as shown by its peroxidase activity in SDS/PAGE gels and by its spectral features. Both subunits of the caa3 complex immunologically cross-reacted with antiserum raised against B. cereus cytochrome aa3, suggesting homology between the two enzymes. Also, the heme-c-containing subunit of the caa3 complex was reactive with anti-(bovine cytochrome c) antiserum, but not with anti-(bovine cytochrome c1) antiserum. In addition to one heme c and two hemes a, the caa3 complex contained three copper atoms. Kinetic comparison of aa3 and caa3 complexes revealed that the latter is slightly more active (k = 150 s-1) and has a lower affinity to yeast cytochrome c (Km = 76 microM) and to oxygen (Km = 2 microM) as compared with cytochrome aa3 (100 s-1, 10 microM, and 5 microM, respectively).  相似文献   

11.
A fimbrial adhesin, designated F1845, was found to be responsible for the diffuse HEp-2 cell adherence of a diarrheal Escherichia coli isolate. The genetic determinant of F1845 was cloned, and the order of the genes necessary for production of F1845 was determined by maxicell analysis. Five polypeptides with apparent sizes of 10, 95, 27, 15.5, and 14.3 kilodaltons (kDa) were found to be encoded in that order by the F1845 determinant. The nucleotide sequence of the 14.3-kDa subunit gene was determined and found to share extensive homology in its signal sequence with the gene encoding the structural subunit of the AFA-1 hemagglutinin of a uropathogenic E. coli strain (A. Labigne-Roussel, M.A. Schmidt, W. Walz, and S. Falkow, J. Bacteriol. 162:1285-1292, 1985) but not in the region encoding the mature protein. Southern blot hybridizations indicated that the F1845 determinants are of chromosomal origin. Hybridization studies using a probe from the region encoding the 95-kDa polypeptide indicated that related sequences may be plasmid associated in some strains and chromosomal in others. Additional hybridization studies of E. coli isolates possessing sequence homology to the F1845 determinant suggest that the sequences in the 5' region of the F1845 structural subunit gene are more highly conserved than sequences in the 3' region.  相似文献   

12.
Synthesis of F pilin.   总被引:9,自引:5,他引:4       下载免费PDF全文
Transfer of the Escherichia coli fertility plasmid, F, is dependent on expression of F pili. Synthesis of F-pilin subunits is known to involve three F plasmid transfer (tra) region products: traA encodes the 13-kDa precursor protein, TraQ permits this to be processed to the 7-kDa pilin polypeptide, and TraX catalyzes acetylation of the pilin amino terminus. Using cloned tra sequences, we performed a series of pulse-chase experiments to investigate the effect of TraQ and TraX on the fate of the traA product. In TraQ- cells, the traA gene product was found to be very unstable. While traA polypeptides of various sizes were detected early in the chase period, almost all were degraded within 5 min. Rapid traA product degradation was also observed in TraX+ cells, although an increased percentage of these products persisted during the chase. In TraQ+ cells, most of the traA product was processed to the 7-kDa pilin polypeptide within the 1-min pulse period; this product [7(Q)] was not degraded but was increasingly converted to an 8-kDa form [8(Q)] as the chase continued, suggesting that host enzymes can modify the pilin polypeptide. Similar results were observed in TraQ+ TraX+ cells, but the primary 7-kDa product appeared to be N-acetylated pilin (Ac-7). An 8-kDa product (Ac-8) was also detected, but this band did not increase in intensity during the chase. We suggest a pathway in which TraQ prevents the traA product from folding to a readily degradable conformation and assists its entry into the membrane, Leader peptidase I cleaves the traA product signal sequence, and a subset of the pilin polypeptides becomes modified by host enzymes; TraX then acetylates the N terminal of both the modified and unmodified pilin polypeptides.  相似文献   

13.
It was reported by Frasch et al. (Frasch, W. D., Green, J., Caguiat, J., and Mejia, A. (1989) J. Biol. Chem. 264, 5064-5069) that washing spinach thylakoid membranes with 1 M LiCl caused the release of the beta subunit of chloroplast F1 (CF1) which, existing as 180-kDa complexes of beta 3, retained considerable ATPase activity. We repeated their procedures and confirmed that a CF1 beta-like 55-kDa polypeptide was a major constituent of the 1 M LiCl-washed extract. However, the extract contained another polypeptide of which the Mr was 14,000, and these two polypeptides comprised a complex with approximate Mr 550,000 that had the same mobility in native polyacrylamide gel electrophoresis as that of ribulose-1,5-bisphosphate carboxylase. Only very low ATPase activity, less than 1% of the reported value, was detected for the extract and the purified complex. Antibody against the beta subunit of F1 from a thermophilic bacterium PS3 showed a clear cross-reactivity with the CF1 beta subunit but not with the 55-kDa polypeptide. Analysis of the N-terminal amino acid sequences of the 55- and 14-kDa polypeptides and the whole complex revealed that the complex was ribulose-1,5-bisphosphate carboxylase and that the 55- and 14-kDa polypeptides were its large and small subunits, respectively.  相似文献   

14.
The ATP synthase of Propionigenium modestum encloses a rotary motor involved in the production of ATP from ADP and inorganic phosphate utilizing the free energy of an electrochemical Na(+) ion gradient. This enzyme clearly belongs to the family of F(1)F(0) ATP synthases and uses exclusively Na(+) ions as the physiological coupling ion. The motor domain, F(0), comprises subunit a and the b subunit dimer which are part of the stator and the subunit c oligomer acting as part of the rotor. During ATP synthesis, Na(+) translocation through F(0) proceeds from the periplasm via the stator channel (subunit a) onto a Na(+) binding site of the rotor (subunit c). Upon rotation of the subunit c oligomer versus subunit a, the occupied rotor site leaves the interface with the stator and the Na(+) ion can freely dissociate into the cytoplasm. Recent experiments demonstrate that the membrane potential is crucial for ATP synthesis under physiological conditions. These findings support the view that voltage generates torque in F(0), which drives the rotation of the gamma subunit thus liberating tightly bound ATP from the catalytic sites in F(1). We suggest a mechanochemical model for the transduction of transmembrane Na(+)-motive force into rotary torque by the F(0) motor that can account quantitatively for the experimental data.  相似文献   

15.
The Na(+)-F(1)F(0)-ATPase operon of Acetobacterium woodii was recently shown to contain, among eleven atp genes, those genes that encode subunit a and b, a gene encoding a 16-kDa proteolipid (subunit c(1)), and two genes encoding 8-kDa proteolipids (subunits c(2) and c(3)). Because subunits a, b, and c(1) were not found in previous enzyme preparations, we re-determined the subunit composition of the enzyme. The genes were overproduced, and specific antibodies were raised. Western blots revealed that subunits a, b, and c(1) are produced and localized in the cytoplasmic membrane. Membrane protein complexes were solubilized by dodecylmaltoside and separated by blue native-polyacrylamide gel electrophoresis, and the ATPase subunits were resolved by SDS-polyacrylamide gel electrophoresis. N-terminal sequence analyses revealed the presence of subunits a, c(2), c(3), b, delta, alpha, gamma, beta, and epsilon. Biochemical and immunological analyses revealed that subunits c(1), c(2), and c(3) are all part of the c-oligomer, the first of a F(1)F(0)-ATPase that contains 8- and 16-kDa proteolipids.  相似文献   

16.
Vasoactive intestinal polypeptide (VIP)-immunoreactive nerves have been demonstrated in close association with the islets of Langerhans, and VIP has been shown to stimulate insulin and somatostatin secretion. Using [125I]VIP and membranes prepared from rat insulinoma (RIN) cells, i.e., the subclones m5F (m5F; mainly insulin-secreting) and 14B (14B; mainly somatostatin-secreting), it was found that VIP (10(-10)-10(-7) M) competitively inhibited the binding of [125I]VIP. A single class of high affinity binding sites with Kd values of 0.40 +/- 0.06 nM and 0.36 +/- 0.08 nM for m5F and 14B, respectively, with a corresponding number of binding sites (Bmax) of 163 +/- 20 and 254 +/- 51 fmol/mg protein was observed. The rank order of potency in inhibiting [125I]VIP binding was in both cell lines: VIP greater than helodermin greater than pituitary adenylate cyclase activating polypeptide 1-27 (PACAP27) greater than peptide histidine isoleucine (PHI) greater than secretin. VIP caused a dose-dependent increase in cAMP-formation in both m5F and 14B cell membranes with EC50 values of 3.0 and 3.5 nM, respectively, but VIP (1.10(-9)-3.10(-6) M) had no effect on insulin secretion (over 2 h) from the m5F cells. Thus, the data suggest that the VIP-receptors in these neoplastic rat cell lines, despite an apparent coupling to adenylate cyclase activity, seem to be functionally uncoupled to an effect on insulin secretion following an acute exposure to VIP.  相似文献   

17.
The membrane-integrated, proton-translocating F0 portion of the ATP synthase (F1F0) from Escherichia coli is built up from three kinds of subunits a, b and c with the proposed stoichiometry of 1:2:10 +/- 1. We have dissociated the F0 complex by treatment with trichloroacetate (3 M) at pH 8.0, in the presence of deoxycholate (1%) and N-tetradecyl-N, N-dimethyl-3-ammonio-1-propanesulfonate (Zwittergent 3-14, 5%). The subunits were separated by gel filtration with trichloroacetate (1 M) included in the elution buffer. The homogeneity of the fractions was checked by rechromatography and SDS-gel electrophoresis. After integration into phospholipid vesicles each subunit alone as well as all possible combinations were tested for H+ translocating activity and binding of F1. A functional H+ channel could only be reconstituted by the combination a1b2c10 which corresponds to that of native F0.  相似文献   

18.
By using a hydroxyapatite column, the five major Photosystem I (PSI) subunits (PsaA,-B,-C,-D,-E) solubilized by sodium dodecyl sulfate (SDS) were fractionated from a spinach PSI reaction center preparation. Another small (5-6 kDa) polypeptide was also separated, and purified to homogeneity. Mass spectroscopy yielded its molecular weight to be 5942 +/- 10. This polypeptide had an N-terminal sequence homologous to those of previously reported 5-kDa subunits from spinach and wheat and a 6.1-kDa subunit of Chlamydomonas, which had all been assigned to Photosystem II (PSII) and designated as PsbW. However, we found similar 5-kDa polypeptides with highly conserved N-terminal sequences ubiquitously in PSI particles from other plants including Daikon (Raphanus sativus, Japanese radish), Chingensai (Brassica parachinensis, Chinese cabbage), parsley and Shungiku (Chrysanthemum coronarium, Garland chrysanthemum) as well. Preparations of spinach PSI particles prepared by using a mild detergent (digitonin) had this 5-kDa subunit, while PSII particles did not. Moreover, a bare-bone PSI reaction center preparation consisting of PsaA/B alone had a more than stoichiometric amount of this 5-kDa polypeptide. A mechanically (without detergent) fractionated stroma thylakoid preparation from Phytolacca americana, which lacked other PSII subunits, also contained this 5-kDa subunit. Thus, we propose that this 5-kDa polypeptide, previously designated as a PSII subunit (PsbW), is an integral subunit of PSI as well.  相似文献   

19.
The purified tonoplast H+-ATPase from oat roots (Avena sativa L. var. Lang) consists of at least three different polypeptides with masses 72, 60, and 16 kDa. We have used covalent modifiers (inhibitors) and polyclonal antibodies to identify the catalytic subunit of the H+-pumping ATPase. The inactivation of ATPase activity by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (Nbd-Cl, an adenine analog) was protected by MgATP or MgADP, and showed kinetic properties consistent with active site-directed inhibition. Under similar conditions, [14C]Nbd-Cl preferentially labeled the 72-kDa polypeptide of the purified ATPase. This binding was reduced by MgATP or 2' (3')-)O-(2,4,6-trinitrophenyl) ATP. Nbd-Cl probably modified cysteinyl--SH or tyrosyl--OH groups, as dithiothreitol reversed both ATPase inactivation and [14C]Nbd-Cl binding to the 72-kDa subunit. The finding that N-ethylmaleimide inhibition of ATPase activity was protectable by nucleotides is consistent with the idea of sulfhydryl groups in the ATP-binding site. Polyclonal antibody made to the 72-kDa polypeptide specifically reacted (Western blot) with a 72-kDa polypeptide from both tonoplast-enriched membranes and the purified tonoplast ATPase, but it did not cross-react with the mitochondrial or Escherichia coli F1-ATPase. The antibody inhibited tonoplast ATPase and H+-pumping activities. We conclude from these results that the 72-kDa polypeptide of the tonoplast H+-ATPase contains an ATP- (or nucleotide-) binding site that may constitute the catalytic domain.  相似文献   

20.
H Heinrich  J E Azevedo  S Werner 《Biochemistry》1992,31(46):11420-11424
A small polypeptide subunit of the NADH:ubiquinone reductase (complex I) from Neurospora crassa has been identified by photoaffinity labeling to participate in the binding of ubiquinone [Heinrich, H., & Werner, S. (1992) Biochemistry (preceding paper in this issue)]. This polypeptide is further characterized by its primary structure and by an assessment of its localization within complex I. A lambda gt11 cDNA expression library was screened using a specific antibody directed against this individual subunit of complex I. Two groups of clones, coding for polypeptide subunits of the appropriate apparent molecular weight, were isolated. One group was shown to contain the relevant recombinants. The derived amino acid sequence for the 9.5-kDa ubiquinone-binding polypeptide shows a similarity with a putative ubiquinol-binding subunit (also a 9.5-kDa polypeptide) from complex III of bovine heart [Usui, S., Yu, L., & Tu, C.-A. (1990) Biochemistry 29, 4618-4626]. The polypeptide has a hydrophobic stretch of a sufficient length to span the membrane. It resists against extraction with NaBr or Na2CO3, and therefore probably is buried in the so-called hydrophobic membrane portion of complex I. This nuclearly-encoded subunit lacks a typical cleavable presequence and is imported into isolated mitochondria by a membrane potential-dependent process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号