首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow cytometry (FCM) is a rapid and sensitive technique that can determine cell numbers and measure various physiological characteristics of individual cells by using appropriate fluorescent probes. Previously, we developed an FCM assay with the viability probes carboxyfluorescein diacetate (cFDA) and TOTO-1 {1′-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-methyl-2,3dihydro(benzo-1,3-oxazole)-2-methylidene]-1-(3′-trimethylammoniumpropyl)-pyridinium tetraiodide} for (stressed) lactic acid bacteria (C. J. Bunthof, K. Bloemen, P. Breeuwer, F. M. Rombouts, and T. Abee, Appl. Environ. Microbiol. 67:2326-2335, 2001). cFDA stains intact cells with enzymatic activity, and TOTO-1 stains membrane-permeabilized cells. Here we used this assay to study the viability of bacterial suspensions in milk, dairy fermentation starters, and probiotic products. To facilitate FCM analysis of bacteria in milk, a commercially available milk-clearing solution was used. The procedure was optimized to increase the signal-to-noise ratio. FCM enumerations were accurate down to a concentration of 105 cells ml−1. The level of retrieval of Lactobacillus plantarum WCFS 1 suspended in milk was high, and viability was not affected by the procedure. The plate counts for cleared samples of untreated cell suspensions were nearly as high as the total FCM counts, and the correlation was strong (r > 0.99). In dairy fermentation starters and in probiotic products the FCM total cell counts were substantially higher than the numbers of CFU. Three functional populations could be distinguished: culturable cells, cells that are intact and metabolically active but not culturable, and permeabilized cells. The proportions of the populations differed in the products tested. This FCM method provides tools to assess the functionality of different populations in fermentation starters and probiotic products.  相似文献   

2.
Flow cytometric assessment of viability of lactic acid bacteria   总被引:3,自引:0,他引:3  
The viability of lactic acid bacteria is crucial for their applications as dairy starters and as probiotics. We investigated the usefulness of flow cytometry (FCM) for viability assessment of lactic acid bacteria. The esterase substrate carboxyfluorescein diacetate (cFDA) and the dye exclusion DNA binding probes propidium iodide (PI) and TOTO-1 were tested for live/dead discrimination using a Lactococcus, a Streptococcus, three Lactobacillus, two Leuconostoc, an Enterococcus, and a Pediococcus species. Plate count experiments were performed to validate the results of the FCM assays. The results showed that cFDA was an accurate stain for live cells; in exponential-phase cultures almost all cells were labeled, while 70 degrees C heat-killed cultures were left unstained. PI did not give clear live/dead discrimination for some of the species. TOTO-1, on the other hand, gave clear discrimination between live and dead cells. The combination of cFDA and TOTO-1 gave the best results. Well-separated subpopulations of live and dead cells could be detected with FCM. Cell sorting of the subpopulations and subsequent plating on agar medium provided direct evidence that cFDA labels the culturable subpopulation and that TOTO-1 labels the nonculturable subpopulation. Applied to cultures exposed to deconjugated bile salts or to acid, cFDA and TOTO-1 proved to be accurate indicators of culturability. Our experiments with lactic acid bacteria demonstrated that the combination of cFDA and TOTO-1 makes an excellent live/dead assay with versatile applications.  相似文献   

3.
Flow Cytometric Assessment of Viability of Lactic Acid Bacteria   总被引:4,自引:0,他引:4       下载免费PDF全文
The viability of lactic acid bacteria is crucial for their applications as dairy starters and as probiotics. We investigated the usefulness of flow cytometry (FCM) for viability assessment of lactic acid bacteria. The esterase substrate carboxyfluorescein diacetate (cFDA) and the dye exclusion DNA binding probes propidium iodide (PI) and TOTO-1 were tested for live/dead discrimination using a Lactococcus, a Streptococcus, three Lactobacillus, two Leuconostoc, an Enterococcus, and a Pediococcus species. Plate count experiments were performed to validate the results of the FCM assays. The results showed that cFDA was an accurate stain for live cells; in exponential-phase cultures almost all cells were labeled, while 70°C heat-killed cultures were left unstained. PI did not give clear live/dead discrimination for some of the species. TOTO-1, on the other hand, gave clear discrimination between live and dead cells. The combination of cFDA and TOTO-1 gave the best results. Well-separated subpopulations of live and dead cells could be detected with FCM. Cell sorting of the subpopulations and subsequent plating on agar medium provided direct evidence that cFDA labels the culturable subpopulation and that TOTO-1 labels the nonculturable subpopulation. Applied to cultures exposed to deconjugated bile salts or to acid, cFDA and TOTO-1 proved to be accurate indicators of culturability. Our experiments with lactic acid bacteria demonstrated that the combination of cFDA and TOTO-1 makes an excellent live/dead assay with versatile applications.  相似文献   

4.
流式细胞术在乳酸菌自溶检测中的应用   总被引:3,自引:0,他引:3  
【目的】使用流式细胞术(Flow Cytometric)建立一种新的检测方法,可快速筛选自溶度不同的乳酸菌菌株。【方法】菌悬液经20mmol/L的PI-PBS染液在4℃条件下避光染色30min,上流式细胞仪进行测定,检测器激发光波长488nm,检测波长630nm,每个样品收集1×105个细胞,联机使用CellQuest软件分析结果。【结果】阳性染色细胞数与细胞总数之比很好地反映菌液中自溶细胞与非自溶细胞的比例关系,整个检测过程耗时仅为1h左右。【结论】与传统检测方法比较,FCM测定结果稳定可靠,检测时间短,为乳酸菌的自溶特性研究及筛选自溶度不同的菌株用作商业发酵剂提供了便利条件。  相似文献   

5.
AIMS: The aim of this study was to improve knowledge about the dynamics of the physiological states of Lactococcus lactis ssp. cremoris SK11, a chain-forming bacterium, during growth, and to evaluate whether flow cytometry (FCM) combined with fluorescent probes can assess these different physiological states. METHODS AND RESULTS: Cellular viability was assessed using double labelling with carboxyfluorescein diacetate and propidium iodide. FCM makes it possible to discriminate between three cell populations: viable cells, dead cells and cells in an intermediate physiological state. During exponential and stationary phases, the cells in the intermediate physiological state were culturable, whereas this population was no longer culturable at the end of the stationary phase. CONCLUSIONS, AND IMPACT OF THE STUDY: We introduced a new parameter, the ratio of the means of the fluorescence cytometric index to discriminate between viable culturable and viable nonculturable cells. Finally, this work confirms the relevance of FCM combined with two fluorescent stains to evaluate the physiological states of L. lactis SK11 cells during their growth and to distinguish viable cells from viable but not culturable cells.  相似文献   

6.
Strains of Lactobacillus isolated from dairy products and genital tract competed with Candida albicans through a membrane of 12000 dalton cut-off. This inhibition was due to hydrogen peroxide and was trypsin-stable, heat-sensitive and antagonized by catalase. Lactobacillus coming from "starters" showed antimicrobial activity against fungus isolated in a yogurt factory. Penicillium, Alternaria, Phialophora, Microsporum and Candida spp. were inhibited when 10(2) spores were inoculated in the assay. No inhibition was observed with 10(5) spores. Besides, one of 21 Lactobacillus strains isolated from the vaginas of healthy women inhibited pathogenic bacteria by means a bacteriocin trypsin-sensitive, heat-stable and retained by dialysis membrane. Tablets for future probiotic use were prepared and the viability of bacteria was assayed using media with different compositions. Pharmaceutical preparations with polyethyleneglycol was the best formulation for the Lactobacillus viability, the counts remained between 10(7) and 10(6) cfu/tablet for up to 1 year.  相似文献   

7.
Aims: To assess the survival of Mycobacterium avium ssp. paratuberculosis (MAP) in yoghurt and commercial fermented milk products containing probiotic strains. Methods and Results: Whole and skimmed UHT milk artificially inoculated with MAP were used to manufacture yoghurt, using two different yoghurt starter cultures. Five commercial fermented milk products were inoculated with MAP. Two different MAP strains were studied. The survival of MAP in all products was monitored by culture over a 6‐week storage period at 6°C. In yoghurt, MAP counts did not change appreciably during the storage period. Fat content and type of yoghurt starter culture had no consistent effect on the survival of MAP. In the fermented milk products, survival patterns varied but resulted in a 1·5 to ≥3·8 log reduction for the Niebüll strain and a 1·2–2·2 log reduction for the NIZO strain after 6 weeks, depending on the probiotic starters present in the product. Conclusions: MAP easily survived in yoghurt but MAP numbers decreased in fermented milk products containing probiotic cultures. Significance and Impact of the Study: The results contribute to the lack of knowledge on the behaviour of MAP in yoghurt and fermented milk products containing probiotic cultures. This knowledge is valuable in the context of the risk of MAP transmission to humans via yoghurt and the possible contribution of probiotic fermented milk products to the elimination of MAP.  相似文献   

8.
The basic requirement for probiotic bacteria to be able to exert expected positive effects is to be alive; therefore, appropriate quantification methods are crucial. Due to disadvantages of conventional microbiological methods, the bacterial quantification based on the nucleic acid detection is increasingly used. The objective of this study was to evaluate the possibility to use propidium monoazide (PMA) in combination with real-time polymerase chain reaction (PCR) method or LIVE/DEAD BacLight viability kit in combination with flow cytometry (FCM) for determination of probiotic bacteria in a lyophilised product containing Lactobacillus acidophilus LA-5 and Bifidobacterium animalis ssp. lactis BB-12. In addition, the viability of probiotic bacteria in lyophilised product during 3 months storage was investigated. In the product, the results of real-time PCR quantification of PMA-treated cells did not differ significantly from those of non-treated cells, which indicate that most of the bacterial cells retained the membrane integrity although they have lost the culturability. The results obtained by FCM analysis were comparable with those by PMA real-time PCR. In conclusion, the PMA real-time PCR and FCM determination of the viability of probiotic bacteria could complement the plate count method which considers only the culturable part of the population.  相似文献   

9.
AIMS: This work was undertaken to study the feasibility and the characteristics of a fermented product made of goat milk, using a mixed starter culture of Bifidobacterium animalis and Lactobacillus acidophilus under controlled conditions, and to determine their survival in the fermented milk during refrigerated storage. METHODS AND RESULTS: Goat milk was inoculated with Lact. acidophilus and Bif. animalis mixed starter, fermented in a glass bioreactor with controlled temperature (37 degrees C) and anaerobiosis, and monitored for growth and acidification. The fermented milk was then stored for 10 days under refrigeration, and monitored daily for starter microflora survival and pH changes. Lact. acidophilus viable counts reached a maximum of 7.1 x 10(8) colony-forming units (CFU) ml(-1), and Bif. animalis a maximum of 6.3 x 10(7) CFU ml(-1) by 20 h of fermentation. During refrigerated storage, both strains exhibited a good survival, with viable numbers remaining essentially constant throughout the experiment, whereas the pH of the fermented milk dropped slightly. CONCLUSIONS: Mixed cultures of Bif. animalis and Lact. acidophilus may be used to produce fermented goat milk with high counts of both probiotic strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Goat milk fermented with Bif. animalis and Lact. acidophilus can be manufactured as an alternative probiotic dairy product.  相似文献   

10.
AIMS: The aim of this work was to study the viability and cultivability of microbial populations of different natural whey starters and to evaluate their resistance to thermal treatments (such as exposure to high or low temperatures). METHODS AND RESULTS: Twenty-three natural whey starters for Grana Padano cheese were investigated and subsequently pH measurement, plate count agar using Man-Rogasa-Sharpe (MRS) pH 5.4 agar and whey agar medium (WAM) were performed using these samples. LIVE/DEAD BacLight bacterial viability kit was used. Total count and viability of all the 23 samples were high and similar to each other (CV 20%). However, the cultivable population was lower in terms of cfu ml(-1) and number of cells per millilitre than the viable fraction and highly variable, although its count value was higher in WAM than in MRS pH 5.4. The heating (60 degrees C for 5 min and 54 degrees C for 1 h) and freezing (-20 and -80 degrees C) treatments affected the cultivability and viability of the microbial population. CONCLUSIONS: This study demonstrated the effectiveness of LIVE/DEAD BacLight bacterial viability kit, which has already been used to evaluate bacterial populations, in investigating microbial viability in a complex ecosystem such as a natural whey starter. Significance and Impact of the Study: The aim of this study was to quantify the presence of damaged nonviable bacterial cells in natural whey starters. The Thoma Glass is a useful method to obtain fluorescence microscopy counts to evaluate the technological performance of natural whey starters.  相似文献   

11.
The draft genome sequence of Lactobacillus salivarius GJ-24 isolated from the feces of healthy adults was determined. Its properties, including milk fermentation activity and bacteriocin production, suggest its potential uses as a probiotic lactic acid bacterium and start culture for dairy products.  相似文献   

12.
The viability of the human probiotic strains Lactobacillus paracasei NFBC 338 and Bifidobacterium sp. strain UCC 35612 in reconstituted skim milk was assessed by confocal scanning laser microscopy using the LIVE/DEAD BacLight viability stain. The technique was rapid (<30 min) and clearly differentiated live from heat-killed bacteria. The microscopic enumeration of various proportions of viable to heat-killed bacteria was then compared with conventional plating on nutrient agar. Direct microscopic enumeration of bacteria indicated that plate counting led to an underestimation of bacterial numbers, which was most likely related to clumping. Similarly, LIVE/DEAD BacLight staining yielded bacterial counts that were higher than cell numbers obtained by plate counting (CFU) in milk and fermented milk. These results indicate the value of the microscopic approach for rapid viability testing of such probiotic products. In contrast, the numbers obtained by direct microscopic counting for Cheddar cheese and spray-dried probiotic milk powder were lower than those obtained by plate counting. These results highlight the limitations of LIVE/DEAD BacLight staining and the need to optimize the technique for different strain-product combinations. The minimum detection limit for in situ viability staining in conjunction with confocal scanning laser microscopy enumeration was approximately 10(8) bacteria/ml (equivalent to approximately 10(7) CFU/ml), based on Bifidobacterium sp. strain UCC 35612 counts in maximum-recovery diluent.  相似文献   

13.
Summary A simple technique for rapid determination of fermentation starters vitality which eliminates the need for determination of viable cells counts is described. The mathematical relationship between cell number and oxygen consumption of eight strains of Saccharomyces cerevisiae was studied. Results confirmed the possibility of utilizing a pO2 probe as an indicator of cell viability for fermentation starter.  相似文献   

14.
We endeavored to develop a method for viability determination of solventogenic clostridia and to apply it for monitoring acetone–butanol–ethanol (ABE) fermentation. Six fluorescent probes (propidium iodide [PI], ethidium bromide, fluorescein diacetate, carboxyfluorescein diacetate [cFDA], rhodamine 123, bis-(1,3-dibutylbarbituric acid)trimethine oxonol [BOX]) were tested in order to distinguish two subpopulations of live and dead clostridial cells in suspension. Three of them were found to be appropriate (PI, BOX and cFDA) for this purpose. Developed fluorescent staining methods were applied to batch fermentation processes of Clostridium pasteurianum and C. beijerinckii carried out in a laboratory bioreactor under anaerobic conditions. Whereas PI was found to be applicable to both strains, BOX was convenient only for viability determination of C. pasteurianum. Although cFDA can distinguish two cell subpopulations in suspension, it was found to be unsuitable for viability determination under tested conditions, since it reflected more variable esterase activity during sporulation cell cycle than viability. Flow cytometry in combination with convenient fluorescent probe has been proved to be a valuable tool for viability determination. We assume this rapid and simple method can help to obtain more complex and precise information about ABE fermentation.  相似文献   

15.
Beneficial health effects of milk and fermented dairy products — Review   总被引:1,自引:1,他引:0  
Milk is a complex physiological liquid that simultaneously provides nutrients and bioactive components that facilitate the successful postnatal adaptation of the newborn infant by stimulating cellular growth and digestive maturation, the establishment of symbiotic microflora, and the development of gut-associated lymphoid tissues. The number, the potency, and the importance of bioactive compounds in milk and especially in fermented milk products are probably greater than previously thought. They include certain vitamins, specific proteins, bioactive peptides, oligosaccharides, organic (including fatty) acids. Some of them are normal milk components, others emerge during digestive or fermentation processes. Fermented dairy products and probiotic bacteria decrease the absorption of cholesterol. Whey proteins, medium-chain fatty acids and in particular calcium and other minerals may contribute to the beneficial effect of dairy food on body fat and body mass. There has been growing evidence of the role that dairy proteins play in the regulation of satiety, food intake and obesity-related metabolic disorders. Milk proteins, peptides, probiotic lactic acid bacteria, calcium and other minerals can significantly reduce blood pressure. Milk fat contains a number of components having functional properties. Sphingolipids and their active metabolites may exert antimicrobial effects either directly or upon digestion.  相似文献   

16.
The aim of this research was to produce concentrated biomasses of thermophilic lactic starters using immobilized cell technology (ICT). Fermentations were carried out in milk using pH control with cells microentrapped in alginate beads. In the ICT fermentations, beads represented 17% of the weight. Some assays were carried out with free cells without pH control, in order to compare the ICT populations with those of classical starters. With Streptococcus thermophilus, overall populations in the fermentor were similar, but maximum bead population for (8.2 x 10(9) cfu/g beads) was 13 times higher than that obtained in a traditional starter (4.9 x 10(8) cfu/ml). For both Lactobacillus helveticus strains studied, immobilized-cell populations were about 3 x 10(9) cfu/g beads. Production of immobilized Lb. bulgaricus 210R strain was not possible, since no increases in viable counts occurred in beads. Therefore, production of concentrated cell suspension in alginate beads was more effective for S. thermophilus. Photomicrographs of cells in alginate beads demonstrated that, while the morphology of S. thermophilus remained unchanged during the ICT fermentation, immobilized cells of Lb. helveticus appeared wider. In addition, cells of Lb. bulgaricus were curved and elongated. These morphological changes would also impair the growth of immobilized lactobacilli.  相似文献   

17.
AIMS: The effects of medium-composition and fermentation parameters on the properties of mixed mesophilic starters were studied. The starter was composed of Lactococcus lactis ssp. lactis (L. lactis), Lactococcus lactis ssp. cremoris (L. cremoris), Lactobacillus rhamnosus (Lact. rhamnosus) and Leuconostoc mesenteroides ssp. cremoris (Leuc. cremoris). METHODS AND RESULTS: The media used were reconstituted skim milk (RSM), and whey-based media with either citrate or phosphate buffers. The fermentation parameters were incubation temperature (22 degrees C or 32 degrees C), no pH control, and pH control in pH zones of either pH 6.0-5.8 or pH 6.0-5.2. The starter properties were strain ratio, specific acidifying activity (SAA), total population, residual carbohydrates and organic acids produced. The growth of L. lactis was favoured under pH control in whey-based media. High concentrations of Lact. rhamnosus were favoured in whey-based media prepared at 32 degrees C. The highest contents of Leuc. cremoris were obtained in starters prepared in RSM at 22 degrees C without pH control. Starters prepared under pH control gave the highest populations and made it possible for significantly lower inoculation rates (IR) to be used to carry out subsequent milk fermentations. However, the SAA of starters prepared under pH control were lower than the SAA of starters grown without any pH control. CONCLUSIONS: None of the conditions enabled the strain ratio at inoculation to be maintained. The data show that it is possible to prepare a mesophilic starter that has a significant probiotic Lact. rhamnosus content; this starter could be used in the preparation of probiotic-containing cheeses or in Leuc. cremoris for aroma production in fermented milks. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides data on what should be expected with respect to strain ratios and IR if cheesemakers decide to shift their aroma-producing starter production method from the traditional 'milk-based without pH control' method to whey-based media used with pH-zone control strategies.  相似文献   

18.
The viability of the human probiotic strains Lactobacillus paracasei NFBC 338 and Bifidobacterium sp. strain UCC 35612 in reconstituted skim milk was assessed by confocal scanning laser microscopy using the LIVE/DEAD BacLight viability stain. The technique was rapid (<30 min) and clearly differentiated live from heat-killed bacteria. The microscopic enumeration of various proportions of viable to heat-killed bacteria was then compared with conventional plating on nutrient agar. Direct microscopic enumeration of bacteria indicated that plate counting led to an underestimation of bacterial numbers, which was most likely related to clumping. Similarly, LIVE/DEAD BacLight staining yielded bacterial counts that were higher than cell numbers obtained by plate counting (CFU) in milk and fermented milk. These results indicate the value of the microscopic approach for rapid viability testing of such probiotic products. In contrast, the numbers obtained by direct microscopic counting for Cheddar cheese and spray-dried probiotic milk powder were lower than those obtained by plate counting. These results highlight the limitations of LIVE/DEAD BacLight staining and the need to optimize the technique for different strain-product combinations. The minimum detection limit for in situ viability staining in conjunction with confocal scanning laser microscopy enumeration was ~108 bacteria/ml (equivalent to ~107 CFU/ml), based on Bifidobacterium sp. strain UCC 35612 counts in maximum-recovery diluent.  相似文献   

19.
Aims:  To study the ability of the probiotic culture Lactobacillus acidophilus La-5 to produce conjugated linoleic acid (CLA), which is a potent anti-carcinogenic agent.
Methods and Results:  The conversion of linoleic acid to CLA was studied both by fermentation in a synthetic medium and by incubation of washed cells. Accumulation of CLA was monitored by gas chromatography analysis of the biomass and supernatants. While the fermentation conditions applied may not be optimal to observe CLA production in growing La-5 cells, the total CLA surpassed 50% of the original content in the washed cells after 48 h under both aerobic and micro-aerobic conditions. The restriction of oxygen did not increase the yield, but favoured the formation of trans, trans isomers.
Conclusions:  The capability of L. acidophilus La-5 to produce CLA is not dependant on the presence of milk fat or anaerobic conditions. Regulation of CLA production in this strain needs to be further investigated to exploit the CLA potential in fermented foods.
Significance and Impact of the study:  Knowledge gained through the conditions on the accumulation of CLA would provide further insight into the fermentation of probiotic dairy products. The capacity of the nongrowing cells to produce CLA is also of great relevance for the emerging nonfermented probiotic foods.  相似文献   

20.
Synthesis of oligosaccharides during milk fermentation was attempted by inoculating Leuconostoc citreum with Lactobacillus casei, Lb. delbrueckii subsp. bulgaricus, and Streptococcus thermophilus as starters. Dextransucrase of Ln. citreum worked as a catalyst for the transglycosylation reaction of sugars; sucrose was added as the glucose donor, and lactose or maltose acted as the acceptor compound for the reaction. When 4% sucrose was added in milk, glucosyl-lactose was synthesized (about 1%, w/v) after 1-2 days of fermentation at 15 or 25 degrees C. Alternatively, when sucrose and maltose (2% each, w/v) were added, panose (about 1%, w/v) and other isomaltooligosaccharides were made in a day at 15-35 degrees C. Growth patterns of lactobacilli and streptococci starters were not affected by the coculture of leuconostoc starter, but the rate of acid synthesis was slightly slowed at every temperature. Addition of sugars in milk did not give any adverse effect on the lactate fermentation. Accordingly, the use of leuconostoc starter and addition of sugars in milk allowed the production of oligosaccharides-containing fermented milk, and application of this method will facilitate the extensive development of synbiotic lactate foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号