首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonequilibrium response spectroscopy (NRS) has been proposed recently to complement standard electrophysiological techniques used to investigate ion channels. It involves application of rapidly oscillating potentials that drive the ion channel ensemble far from equilibrium. It is argued that new, so far undiscovered features of ion channel gating kinetics may become apparent under such nonequilibrium conditions. In this paper we explore the possibility of using regular, sinusoidal voltages with the NRS protocols to facilitate Markov model selection for ion channels. As a test case we consider the Shaker potassium channel for which various Markov models have been proposed recently. We concentrate on certain classes of such models and show that while some models might be virtually indistinguishable using standard methods, they show marked differences when driven with an oscillating voltage. Model currents are compared to experimental data obtained for the Shaker K+ channel expressed in mammalian cells (tsA 201).  相似文献   

2.
Standard electrophysiology techniques study relaxation transients in voltage-gated ion channels generated by discrete voltage steps. The nonequilibrium response spectroscopy involves analyzing responses to fluctuating potentials. We apply the ensemble NRS method to gating kinetics of Shaker potassium ion channels. We evaluate various proposed Markov models of channel gating from the nonequilibrium response viewpoint. These new NRS protocols can be used to test otherwise indistinguishable models or improve estimates for parameters of channel kinetics models.  相似文献   

3.
A novel experimental technique known as non-equilibrium response spectroscopy (NRS) based on ion channel responses to rapidly fluctuating voltage waveforms was recently described (Millonas & Hanck, 1998a). It was demonstrated that such responses can be affected by subtle details of the kinetics that are otherwise invisible when conventional stepped pulses are applied. As a consequence, the kinetics can be probed in a much more sensitive way by supplementing conventional techniques with measurements of the responses to more complex voltage waveforms. In this paper we provide an analysis of the problem of the design and optimization of such waveforms. We introduce some methods for determination of the parametric uncertainty of a class of kinetic models for a particular data set. The parametric uncertainty allows for a characterization of the amount of kinetic information acquired through a set of experiments which can in turn be used to design new experiments that increase this information. We revisit the application of dichotomous noise (Millonas & Hanck, 1998a, b), and further consider applications of a more general class of continuous wavelet -based waveforms. A controlled illustration of these methods is provided by making use of a simplified "toy" model for the potassium channel kinetics.  相似文献   

4.
We describe a new electrophysiological technique called nonequilibrium response spectroscopy, which involves application of rapidly fluctuating (as high as 14 kHz) large-amplitude voltage clamp waveforms to ion channels. As a consequence of the irreversible (in the sense of Carnot) exchange of energy between the fluctuating field and the channel protein, the gating response is exquisitely sensitive to features of the kinetics that are difficult or impossible to adequately resolve by means of traditional stepped potential protocols. Here we focus on the application of dichotomous (telegraph) noise voltage fluctuations, a broadband Markovian colored noise that fluctuates between two values. Because Markov kinetic models of channel gating can be embedded within higher-dimensional Markov models that take into account the effects of the voltage fluctuations, many features of the response of the channels can be calculated algebraically. This makes dichotomous noise and its generalizations uniquely suitable for model selection and kinetic analysis. Although we describe its application to macroscopic ionic current measurements, the nonequilibrium response method can also be applied to gating and single channel current recording techniques. We show how data from the human cardiac isoform (hH1a) of the Na+ channel expressed in mammalian cells can be acquired and analyzed, and how these data reveal hidden aspects of the molecular kinetics that are not revealed by conventional methods.  相似文献   

5.
Population patch clamp (PPC) is a novel high throughput planar array electrophysiology technique that allows ionic currents to be recorded from populations of cells under voltage clamp. For the drug discovery pharmacologist, PPC promises greater speed and precision than existing methods for screening compounds at voltage-gated ion channel targets. Moreover, certain constitutively active or slow-ligand gated channels that have hitherto proved challenging to screen with planar array electrophysiology (e.g. SK/IK channels) are now more accessible. In this article we review early findings using PPC and provide a perspective on its likely impact on ion channel drug discovery. To support this, we include some new data on ion channel assay duplexing and on modulator assays, approaches that have thus far not been described.  相似文献   

6.
Dynamic activation of ion channels formed by colicin Ia incorporated into a planar bilayer lipid membrane (BLM) was investigated by the voltage clamp technique using different step voltage stimuli. We have demonstrated a critical resting interval, Deltat(c), between two identical successive voltage pulses. If the second pulse is applied within Deltat(c), it produces a predictable current response. On the contrary, if the second pulse is applied after Deltat(c), the current response cannot be reliably predicted. Computer simulations based on an idealized mathematical model, developed in this paper, qualitatively reproduce the system's dynamic responses to stimulus trains. The behavior of the ion channels, when the resting period exceeds Deltat(c), may be interpreted as a transient gain or loss or resetting of memory, as revealed by a specific sequence of electrical pulses used for stimulation.  相似文献   

7.
Kinetics of light-sensitive channels in vertebrate photoreceptors   总被引:9,自引:0,他引:9  
We have studied the ion channels mediating the light response of vertebrate rod photoreceptors by analysing fluctuations in the current across the rod membrane, using the whole cell patch-clamp technique on rods isolated from the axolotl retina. Light decreases the membrane current fluctuations. Noise analysis reveals two components to this decrease: a low frequency component due to biochemical noise in the transduction mechanism, and a high frequency component we attribute to the random opening and closing of the ion channels in the dark. The probability of any one channel being open in the dark is low. The spectrum of the high frequency component of the current fluctuations indicates that the current through an open channel is 4 X 10(-15)A, that the mean channel open time is 2 ms, and that about 10000 channels are open in each rod in the dark. The effect of light is to reduce the opening rate constant of these channels, with no effect on the closing rate constant.  相似文献   

8.
Slow currents through single sodium channels of the adult rat heart   总被引:18,自引:6,他引:12       下载免费PDF全文
The currents through single Na+ channels from the sarcolemma of ventricular cells dissociated from adult rat hearts were studied using the patch-clamp technique. All patches had several Na+ channels; most had 5-10, while some had up to 50 channels. At 10 degrees C, the conductance of the channel was 9.8 pS. The mean current for sets of many identical pulses inactivated exponentially with a time constant of 1.7 +/- 0.6 ms at -40 mV. Careful examination of the mean currents revealed a small, slow component of inactivation at pulse potentials ranging from -60 to -30 mV. The time constant of the slow component was between 8 and 14 ms. The channels that caused the slow component had the same conductance and reversal potential as the fast Na+ currents and were blocked by tetrodotoxin. The slow currents appear to have been caused by repeated openings of one or more channels. The holding potential influenced the frequency with which such channel reopening occurred. The slow component was prominent during pulses from a holding potential of -100 mV, while it was very small during pulses from -140 mV. Ultraslow currents through the Na+ channel were observed occasionally in patches that had large numbers of channels. They consisted of bursts of 10 or more sequential openings of a single channel and lasted for up to 150 ms. We conclude that the single channel data cannot be explained by standard models, even those that have two inactivated states or two open states of the channel. Our results suggest that Na+ channels can function in several different "modes," each with a different inactivation rate.  相似文献   

9.
Nod factor [NodRm-IV(Ac,S)], isolated from the bacterium Rhizobium meliloti, induces a well-known depolarization in Medicago sativa (cv Sitel) root hairs. Analysis of this membrane response using the discontinuous single-electrode voltage-clamp technique (dSEVC) shows that anion channel, K+ channel and H+-ATPase pump currents are involved in young growing root hairs. The early Nod-factor-induced depolarization is due to increase of the inward ion current and inhibition of the H+ pump. It involved an instantaneous inward anion current (IIAC) and/or a time-dependent inward K+ current (IRKC). These two ion currents are then down-regulated while the H+ pump is stimulated, allowing long-term rectification of the membrane potential (Em). Our results support the idea that the regulation of inward current plays a primary role in the Nod-factor-induced electrical response, the nature of the ions carried by these currents depending on the activated anion and/or K+ channels at the plasma membrane.  相似文献   

10.
Magnetically sensitive ion channels would allow researchers to better study how specific brain cells affect behavior in freely moving animals; however, recent reports of “magnetogenetic” ion channels based on biogenic ferritin nanoparticles have been questioned because known biophysical mechanisms cannot explain experimental observations. Here, we reproduce a weak magnetically mediated calcium response in HEK cells expressing a previously published TRPV4-ferritin fusion protein. We find that this magnetic sensitivity is attenuated when we reduce the temperature sensitivity of the channel but not when we reduce the mechanical sensitivity of the channel, suggesting that the magnetic sensitivity of this channel is thermally mediated. As a potential mechanism for this thermally mediated magnetic response, we propose that changes in the magnetic entropy of the ferritin particle can generate heat via the magnetocaloric effect and consequently gate the associated temperature-sensitive ion channel. Unlike other forms of magnetic heating, the magnetocaloric mechanism can cool magnetic particles during demagnetization. To test this prediction, we constructed a magnetogenetic channel based on the cold-sensitive TRPM8 channel. Our observation of a magnetic response in cold-gated channels is consistent with the magnetocaloric hypothesis. Together, these new data and our proposed mechanism of action provide additional resources for understanding how ion channels could be activated by low-frequency magnetic fields.  相似文献   

11.
So far the determination of unitary permeability (p(f)) of water channels that are expressed in polarized cells is subject to large errors because the opening of a single water channel does not noticeably increase the water permeability of a membrane patch above the background. That is, in contrast to the patch clamp technique, where the single ion channel conductance may be derived from a single experiment, two experiments separated in time and/or space are required to obtain the single-channel water permeability p(f) as a function of the incremental water permeability (P(f,c)) and the number (n) of water channels that contributed to P(f,c). Although the unitary conductance of ion channels is measured in the native environment of the channel, p(f) is so far derived from reconstituted channels or channels expressed in oocytes. To determine the p(f) of channels from live epithelial monolayers, we exploit the fact that osmotic volume flow alters the concentration of aqueous reporter dyes adjacent to the epithelia. We measure these changes by fluorescence correlation spectroscopy, which allows the calculation of both P(f,c) and osmolyte dilution within the unstirred layer. Shifting the focus of the laser from the aqueous solution to the apical and basolateral membranes allowed the FCS-based determination of n. Here we validate the new technique by determining the p(f) of aquaporin 5 in Madin-Darby canine kidney cell monolayers. Because inhibition and subsequent activity rescue are monitored on the same sample, drug effects on exocytosis or endocytosis can be dissected from those on p(f).  相似文献   

12.
A statistical mechanical model for voltage-gated ion channels in cell membranes is proposed using the transfer matrix method. Equilibrium behavior of the system is studied. Representing the distribution of channels over the cellular membrane on a one-dimensional array with each channel having two states (open and closed) and incorporating channel–channel cooperative interactions, we calculate the fraction of channels in the open state at equilibrium. Experimental data obtained from batrachotoxin-modified sodium channels in the squid giant axon, using the cut-open axon technique, is best fit by the model when there is no interaction between the channels.  相似文献   

13.
Ion channels are allosteric membrane proteins that open and close an ion-permeable pore in response to various stimuli. This gating process provides the regulation that underlies electrical signaling events such as action potentials, postsynaptic potentials, and sensory receptor potentials. Recently, the molecular structures of a number of ion channels and channel domains have been solved by x-ray crystallography. These structures have highlighted a gap in our understanding of the relationship between a channel's function and its structure. Here we introduce a new technique to fill this gap by simultaneously measuring the channel function with the inside-out patch-clamp technique and the channel structure with fluorescence spectroscopy. The structure and dynamics of short-range interactions in the channel can be measured by the presence of quenching of a covalently attached bimane fluorophore by a nearby tryptophan residue in the channel. This approach was applied to study the gating rearrangements in the bovine rod cyclic nucleotide-gated ion channel CNGA1 where it was found that C481 moves towards A461 during the opening allosteric transition induced by cyclic nucleotide. The approach offers new hope for elucidating the gating rearrangements in channels of known structure.  相似文献   

14.
15.
Zeng J  Shu SY  Bao X  Zou F  Ji A  Ye J 《Neurochemical research》1999,24(12):1571-1575
Cell-attached mode of patch clamp technique was employed to investigate the properties of acetylcholine (ACh)-induced ion channels in acutely dissociated neurons from the marginal division (MrD) of rat striatum. Two types of conductance states (25 pS and 60 pS) were recorded. The 25 pS channel (more than 80%) was the main type in the neurons of MrD and was described here. The amplitudes of inward currents increased with hyperpolorization and the reversing potential was about 0 mV. Both single short opening and long burst openings were observed in MrD neurons. Two time constants of these two kinds of ion channels are 0.29 ms, 1.84 ms and 1.96 ms, 18.24 ms, respectively. Average close time can be fitted with two exponential functions, the two time constants are 1.7 ms and 54 ms. Probability of channel opening is about 0.012 and no voltage-dependence was found. The properties of reversing potential, voltage-independence and the form of agonist to the ion channels indicated that the recorded channel currents flow through AChR channels. The mAChR is involved in slow synaptic transmission and Ach can not induce the opening of mAChR ion channel. The binding site of ACh to AChR and the nAChR ion channel are the same protein, ACh can only activate nAChR ion channel directly. Therefore, the recorded ion channels in the present study are nAChR ion channels. The results suggest that nAChR ion channels exist in the neurons of MrD and the MrD probably is involved in learning and memory mechanism of the brain.  相似文献   

16.
Ion channels open and close in a stochastic fashion, following the laws of probability. However, distinct from tossing a coin or a die, the probability of finding the channel closed or open is not a fixed number but can be modified (i.e., we can cheat) by some external stimulus, such as the voltage. Single-channel records can be obtained using the appropriate electrophysiological technique (e.g., patch clamp), and from these records the open probability and the channel conductance can be calculated. Gathering these parameters from a membrane containing many channels is not straightforward, as the macroscopic current I = iNP(o), where i is the single-channel current, N the number of channels, and P(o) the probability of finding the channel open, cannot be split into its individual components. In this tutorial, using the probabilistic nature of ion channels, we discuss in detail how i, N, and P(o max) (the maximum open probability) can be obtained using fluctuation (nonstationary noise) analysis (Sigworth FJ. G Gen Physiol 307: 97-129, 1980). We also analyze the sources of possible artifacts in the determination of i and N, such as channel rundown, inadequate filtering, and limited resolution of digital data acquisition by use of a simulation computer program (available at www.cecs.cl).  相似文献   

17.
Munck S  Uhl R  Harz H 《Cell calcium》2002,31(1):27-35
A heterogeneous distribution of ion channels on the cell surface is a prerequisite for several cellular functions. Thus, there has been considerable interest in methods allowing the mapping of ion channel distributions. Here we report on a novel ratiometric imaging technique appropriate to measure spatially resolved ion flux signals by using ion sensitive dyes. However, given that certain relevant cell properties like the surface to volume ratio may exhibit significant spatial heterogeneities, the local influx signal cannot be interpreted as a measure of the local open channel concentration or flux density. To overcome this problem, we suggest an internal normalization procedure, which, in analogy to, but clearly distinct from, well-established ratioing techniques, eliminates effects which would otherwise obscure the desired result. Ratioing is performed on flux signals from a given cell, triggered by two different, subsequent stimuli. If the two stimuli address different ion channels, the flux density distribution caused by two channel types can be determined relative to each other. In cases where one of the stimuli triggers a spatially homogeneous flux signal, ratioing yields an ion flux density map for a given channel type. Thus distribution patterns of ion channels active during a given stimulus may be derived.  相似文献   

18.
Mechanosensitive (MS) ion channels, with 560 pS conductance, opened transiently by rapid application of suction pulses to patches of E. coli protoplast membrane. The adaptation phase of the response was voltage-independent. Application of strong suction pulses, which were sufficient to cause saturation of the MS current, did not abolish the adaptation. Multiple-pulse experimental protocols revealed that once MS channels had fully adapted, they could be reactivated by a second suction pulse of similar amplitude, providing the time between pulses was long enough and suction had been released between pulses. Limited proteolysis (0.2 mg/ml pronase applied to the cytoplasmic side of the membrane patch) reduced the number of open channels without affecting the adaptation. Exposing patches to higher levels of pronase (1 mg/ml) removed responsiveness of the channel to suction and abolished adaptation consistent with disruption of the tension transmission mechanism responsible for activating the MS channel. Based on these data we discuss a mechanism for mechanosensitivity mediated by a cytoplasmic domain of the MS channel molecule or associated protein. Received: 29 January 1998/Revised: 16 April 1998  相似文献   

19.
One major goal of ion channel research is to delineate the molecular events from the detection of the stimuli to the movement of channel gates. For ligand-gated channels, it is challenging to separate ligand binding from channel gating. Here we studied the cyclic adenosine monophosphate (cAMP)-dependent gating in hyperpolarization-activated cAMP-regulated (HCN) channel by simultaneously recording channel opening and ligand binding, using the patch-clamp fluorometry technique with a unique fluorescent cAMP analog that fluoresces strongly in the hydrophobic binding pocket and exerts regulatory effects on HCN channels similar to those imposed by cAMP. Corresponding to voltage-dependent channel activation, we observed a robust, close-to-threefold increase in ligand binding, which was more pronounced at subsaturating ligand concentrations than higher concentrations. This observation supported the cyclic allosteric models and indicated that protein allostery can be implemented through differentiating ligand binding affinities between resting and active states. The kinetics of ligand binding largely matched channel activation. However, during channel deactivation, ligand unbinding was slower than channel closing, suggesting a delayed response to membrane potential by the ligand binding machinery. Our results provide what we believe to be new insights into the cAMP-dependent gating in HCN channel and the interpretation of protein allostery for general ligand-gated channels and receptors.  相似文献   

20.
Voltage-gated ion channels are essential for electrical signaling in neurons and other excitable cells. Among them, voltage-gated sodium and calcium channels are four-domain proteins, and ion selectivity is strongly influenced by a ring of amino acids in the pore regions of these channels. Sodium channels contain a DEKA motif (i.e., amino acids D, E, K, and A at the pore positions of domains I, II, III, and IV, respectively), whereas voltage-gated calcium channels contain an EEEE motif (i.e., acidic residues, E, at all four positions). Recently, a novel family of ion channel proteins that contain an intermediate DEEA motif has been found in a variety of invertebrate species. However, the physiological role of this new family of ion channels in animal biology remains elusive. DSC1 in Drosophila melanogaster is a prototype of this new family of ion channels. In this study, we generated two DSC1 knockout lines using ends-out gene targeting via homologous recombination. DSC1 mutant flies exhibited impaired olfaction and a distinct jumpy phenotype that is intensified by heat shock and starvation. Electrophysiological analysis of the giant fiber system (GFS), a well-defined central neural circuit, revealed that DSC1 mutants are altered in the activities of the GFS, including the ability of the GFS to follow repetitive stimulation (i.e., following ability) and response to heat shock, starvation, and pyrethroid insecticides. These results reveal an important role of the DSC1 channel in modulating the stability of neural circuits, particularly under environmental stresses, likely by maintaining the sustainability of synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号