首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RCK-containing MthK channel undergoes two inactivation processes: activation-coupled desensitization and acid-induced inactivation. The acid inactivation is mediated by the C-terminal RCK domain assembly. Here, we report that the desensitization gating is governed by a desensitization domain (DD) of the cytoplasmic N-terminal 17 residues. Deletion of DD completely removes the desensitization, and the process can be fully restored by a synthetic DD peptide added in trans. Mutagenesis analyses reveal a sequence-specific determinant for desensitization within the initial hydrophobic segment of DD. Proton nuclear magnetic resonance ((1)H NMR) spectroscopy analyses with synthetic peptides and isolated RCK show interactions between the two terminal domains. Additionally, we show that deletion of DD does not affect the acid-induced inactivation, indicating that the two inactivation processes are mutually independent. Our results demonstrate that the short N-terminal DD of MthK functions as a complete moveable module responsible for the desensitization. Its interaction with the C-terminal RCK domain may play a role in the gating process.  相似文献   

2.
MthK is a Ca2+-gated K+ channel from Methanobacterium autotrophicum. The crystal structure of the MthK channel in a Ca2+-bound open state was previously determined at 3.3 A and revealed an octameric gating ring composed of eight intracellular ligand-binding RCK (regulate the conductance of K+) domains. It was suggested that Ca2+ binding regulates the gating ring conformation, which in turn leads to the opening and closing of the channel. However, at 3.3 AA resolution, the molecular details of the structure are not well defined, and many of the conclusions drawn from that structure were hypothetical. Here we have presented high resolution structures of the MthK RCK domain with and without Ca2+ bound from three different crystals. These structures revealed a dimeric architecture of the RCK domain and allowed us to visualize the Ca2+ binding and protein-protein contacts at atomic detail. The dimerization of RCK domains is also conserved in other RCK-regulated K+ channels and transporters, suggesting that the RCK dimer serves as a basic unit in the gating ring assembly. A comparison of these dimer structures confirmed that the dimer interface is indeed flexible as suggested previously. However, the conformational change at the flexible interface is of an extent smaller than the previously hypothesized gating ring movement, and a reconstruction of these dimers into octamers by applying protein-protein contacts at the fixed interface did not generate enclosed gating rings. This indicated that there is a high probability that the previously defined fixed interface may not be fixed during channel gating. In addition to the structural studies, we have also carried out biochemical analyses and have shown that near physiological pH, isolated RCK domains form a stable octamer in solution, supporting the notion that the formation of octameric gating ring is a functionally relevant event in MthK gating. Additionally, our stability studies indicated that Ca2+ binding stabilizes the RCK domains in this octameric state.  相似文献   

3.
RCK (regulator of conductance of potassium) domains form a family of ligand-binding domains found in many prokaryotic K+ channels and transport proteins. Although many RCK domains contain an apparent nucleotide binding motif, some are known instead to bind Ca2+, which can then facilitate channel opening. Here we report on the molecular architecture and ligand activation properties of an RCK-containing potassium channel cloned from the prokaryote Thermoplasma volcanium. This channel, called TvoK, is of an apparent molecular mass and subunit composition that is consistent with the hetero-octameric configuration hypothesized for the related MthK (Methanobacterium thermoautotrophicum potassium) channel, in which four channel-tethered RCK domains coassemble with four soluble (untethered) RCK domains. The expression of soluble TvoK RCK subunits arises from an unconventional UUG start codon within the TvoK gene; silent mutagenesis of this alternative start codon abolishes expression of the soluble form of the TvoK RCK domain. Using single channel recording of purified, reconstituted TvoK, we found that the channel is activated by Ca2+ as well as Mg2+, Mn2+, and Ni2+. This non-selective divalent activation is in contrast with the activation properties of MthK, which is selectively activated by Ca2+. Transplantation of the TvoK RCK domain into MthK generates a channel that can be activated by Mg2+, illustrating that the Mg2+ binding site is likely contained within the RCK domain. We present a working hypothesis for TvoK gating in which the binding of either Ca2+ or Mg2+ can contribute approximately 5 kcal/mol toward stabilization of the open conformation of the channel.  相似文献   

4.
In MthK, a Ca2+-gated K+ channel from Methanobacterium thermoautotrophicum, eight cytoplasmic RCK domains form an octameric gating ring that controls the intracellular gate of the ion conduction pore. The binding of Ca2+ ions to the RCK domains alters the conformation of the gating ring, thereby opening the gate. In the present study, we examined the Ca2+- and pH-regulated gating and the rectifying conduction properties of MthK at the single-channel level. The open probability (Po) of MthK exhibits a sigmoidal relationship with intracellular [Ca2+], and a Hill coefficient >1 is required to describe the dependence of Po on [Ca2+], suggesting cooperative Ca2+ activation of the channel. Additionally, intracellular Ca2+ also blocks the MthK pore in a voltage-dependent manner, rendering an apparently inwardly rectifying I-V relation. Intracellular pH has a dual effect on MthK gating. Below pH 7.5, the channel becomes insensitive to Ca2+. This occurs because the gating ring is structurally unstable at this pH and tends to disassemble (Ye, S., Y. Li, L. Chen, and Y. Jiang. 2006. Cell. 126:1161-1173). In contrast, above pH 7.5, a further increase in pH shifts the Po-[Ca2+] relation towards a lower Ca2+ concentration, augments Po at saturating [Ca2+], and activates the channel even in the absence of Ca2+. Channel activity is marked by bursts of rapid openings and closings separated by relatively longer interburst closings. The duration of interburst closing and the burst length are highly Ca2+ and pH dependent, whereas the kinetics of intraburst events is Ca2+ and pH independent. The rapid intraburst openings and closings are also observed with the isolated MthK pore lacking the attached intracellular gating ring. The fast kinetic events, independent of both Ca2+ and pH, therefore appear to be determined by processes occurring within the ion conduction pore, whereas the slow events reflect the gating process controlled by Ca2+ and pH through the gating ring.  相似文献   

5.
Ye S  Li Y  Chen L  Jiang Y 《Cell》2006,126(6):1161-1173
MthK is a prokaryotic Ca(2+)-gated K(+) channel that, like other ligand-gated channels, converts the chemical energy of ligand binding to the mechanical force of channel opening. The channel's eight ligand-binding domains, the RCK domains, form an octameric gating ring in which Ca(2+) binding induces conformational changes that open the channel. Here we present the crystal structures of the MthK gating ring in closed and partially open states at 2.8 A, both obtained from the same crystal grown in the absence of Ca(2+). Furthermore, our biochemical and electrophysiological analyses demonstrate that MthK is regulated by both Ca(2+) and pH. Ca(2+) regulates the channel by changing the equilibrium of the gating ring between closed and open states, while pH regulates channel gating by affecting gating-ring stability. Our findings, along with the previously determined open MthK structure, allow us to elucidate the ligand gating mechanism of RCK-regulated K(+) channels.  相似文献   

6.
Large conductance, voltage- and Ca2+-activated K+ (BK(Ca)) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca2+. Similar to an archeon Ca2+-activated K+ channel, MthK, each of four alpha subunits of BK(Ca) may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of the MthK channel suggests that the RCK domains reorient with one another upon Ca2+ binding to change the gating ring conformation and open the activation gate. Here we report that the conformational changes of the NH2 terminus of RCK1 (AC region) modulate BK(Ca) gating. Such modulation depends on Ca2+ occupancy and activation states, but is not directly related to the Ca2+ binding sites. These results demonstrate that AC region is important in the allosteric coupling between Ca2+ binding and channel opening. Thus, the conformational changes of the AC region within each RCK domain is likely to be an important step in addition to the reorientation of RCK domains leading to the opening of the BK(Ca) activation gate. Our observations are consistent with a mechanism for Ca2+-dependent activation of BK(Ca) channels such that the AC region inhibits channel activation when the channel is at the closed state in the absence of Ca2+; Ca2+ binding and depolarization relieve this inhibition.  相似文献   

7.
It has been suggested that the large conductance Ca(2)+-activated K(+) channel contains one or more domains known as regulators of K(+) conductance (RCK) in its cytosolic C terminus. Here, we show that the second RCK domain (RCK2) is functionally important and that it forms a heterodimer with RCK1 via a hydrophobic interface. Mutant channels lacking RCK2 are nonfunctional despite their tetramerization and surface expression. The hydrophobic residues that are expected to form an interface between RCK1 and RCK2, based on the crystal structure of the bacterial MthK channel, are well conserved, and the interactions of these residues were confirmed by mutant cycle analysis. The hydrophobic interaction appears to be critical for the Ca(2+)-dependent gating of the large conductance Ca(2+)-activated K(+) channel.  相似文献   

8.
Swapping of functional domains in voltage-gated K+ channels.   总被引:5,自引:0,他引:5  
Functionally significant properties of domains in the amino acid sequence of potassium (K+) channel-forming proteins have been investigated by constructing chimeric K+ channels. The N-terminal domain of ShA2 channels was responsible for the fast inactivation (IKA) and also determined a shift in the threshold of activation whereas the membrane domain determined the timecourse of slow inactivation. The binding site for dendrotoxin (DTX), but not for mast cell degranulating peptide (MCDP), is completely located on the loop between the membrane spanning segments S5 and S6 in RCK1 channels. A certain part of this region which has recently been designated as a narrow part of the pore was found to be not responsible for the differences in the single-channel current amplitude between RCK4 and RCK2 K+ channels. Interchange of the C-terminal domain did not influence activation or inactivation of the channels.  相似文献   

9.
Albright RA  Ibar JL  Kim CU  Gruner SM  Morais-Cabral JH 《Cell》2006,126(6):1147-1159
The KtrAB ion transporter is a complex of the KtrB membrane protein and KtrA, an RCK domain. RCK domains regulate eukaryotic and prokaryotic membrane proteins involved in K(+) transport. Conflicting functional models have proposed two different oligomeric arrangements for RCK domains, tetramer versus octamer. Our results for the KtrAB RCK domain clearly show an octamer in solution and in the crystal. We determined the structure of this protein in three different octameric ring conformations that resemble the RCK-domain octamer observed in the MthK potassium channel but show striking differences in size and symmetry. We present experimental evidence for the association between one RCK octameric ring and two KtrB membrane proteins. These results provide insights into the quaternary organization of the KtrAB transporter and its mechanism of activation and show that the RCK-domain octameric ring model is generally applicable to other ion-transport systems.  相似文献   

10.
Eag (Kv10) and Erg (Kv11) belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH). While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N)-terminal region such as the eag domain is not required for the C-type inactivation of Erg channels, an N-terminal deletion in mouse Eag1 has been shown to produce a voltage-dependent inactivation. To further discern the role of the eag domain in the inactivation of Eag1 channels, we generated N-terminal chimeras between rat Eag (rEag1) and human Erg (hERG1) channels that involved swapping the eag domain alone or the complete cytoplasmic N-terminal region. Functional analyses indicated that introduction of the homologous hERG1 eag domain led to both a fast phase and a slow phase of channel inactivation in the rEag1 chimeras. By contrast, the inactivation features were retained in the reverse hERG1 chimeras. Furthermore, an eag domain-lacking rEag1 deletion mutant also showed the fast phase of inactivation that was notably attenuated upon co-expression with the rEag1 eag domain fragment, but not with the hERG1 eag domain fragment. Additionally, we have identified a point mutation in the S4–S5 linker region of rEag1 that resulted in a similar inactivation phenotype. Biophysical analyses of these mutant constructs suggested that the inactivation gating of rEag1 was distinctly different from that of hERG1. Overall, our findings are consistent with the notion that the eag domain plays a critical role in regulating the inactivation gating of rEag1. We propose that the eag domain may destabilize or mask an inherent voltage-dependent inactivation of rEag1 K+ channels.  相似文献   

11.
In addition to establishing symbiotic relationships with arbuscular mycorrhizal fungi, legumes also enter into a nitrogen-fixing symbiosis with rhizobial bacteria that results in the formation of root nodules. Several genes involved in the development of both arbuscular mycorrhiza and legume nodulation have been cloned in model legumes. Among them, Medicago truncatula DMI1 (DOESN'T MAKE INFECTIONS1) is required for the generation of nucleus-associated calcium spikes in response to the rhizobial signaling molecule Nod factor. DMI1 encodes a membrane protein with striking similarities to the Methanobacterium thermoautotrophicum potassium channel (MthK). The cytosolic C terminus of DMI1 contains a RCK (regulator of the conductance of K(+)) domain that in MthK acts as a calcium-regulated gating ring controlling the activity of the channel. Here we show that a dmi1 mutant lacking the entire C terminus acts as a dominant-negative allele interfering with the formation of nitrogen-fixing nodules and abolishing the induction of calcium spikes by the G-protein agonist Mastoparan. Using both the full-length DMI1 and this dominant-negative mutant protein we show that DMI1 increases the sensitivity of a sodium- and lithium-hypersensitive yeast (Saccharomyces cerevisiae) mutant toward those ions and that the C-terminal domain plays a central role in regulating this response. We also show that DMI1 greatly reduces the release of calcium from internal stores in yeast, while the dominant-negative allele appears to have the opposite effect. This work suggests that DMI1 is not directly responsible for Nod factor-induced calcium changes, but does have the capacity to regulate calcium channels in both yeast and plants.  相似文献   

12.
The activation of BK channels by Ca(2+) is highly cooperative, with small changes in intracellular Ca(2+) concentration having large effects on open probability (Po). Here we examine the mechanism of cooperative activation of BK channels by Ca(2+). Each of the four subunits of BK channels has a large intracellular COOH terminus with two different high-affinity Ca(2+) sensors: an RCK1 sensor (D362/D367) located on the RCK1 (regulator of conductance of K(+)) domain and a Ca-bowl sensor located on or after the RCK2 domain. To determine interactions among these Ca(2+) sensors, we examine channels with eight different configurations of functional high-affinity Ca(2+) sensors on the four subunits. We find that the RCK1 sensor and Ca bowl contribute about equally to Ca(2+) activation of the channel when there is only one high-affinity Ca(2+) sensor per subunit. We also find that an RCK1 sensor and a Ca bowl on the same subunit are much more effective in increasing Po than when they are on different subunits, indicating positive intrasubunit cooperativity. If it is assumed that BK channels have a gating ring similar to MthK channels with alternating RCK1 and RCK2 domains and that the Ca(2+) sensors act at the flexible (rather than fixed) interfaces between RCK domains, then a comparison of the distribution of Ca(2+) sensors with the observed responses suggest that the interface between RCK1 and RCK2 domains on the same subunit is flexible. On this basis, intrasubunit cooperativity arises because two high-affinity Ca(2+) sensors acting across a flexible interface are more effective in opening the channel than when acting at separate interfaces. An allosteric model incorporating intrasubunit cooperativity nested within intersubunit cooperativity could approximate the Po vs. Ca(2+) response for eight possible subunit configurations of the high-affinity Ca(2+) sensors as well as for three additional configurations from a previous study.  相似文献   

13.
Voltage-dependent K(+) channels can undergo a gating process known as C-type inactivation, which involves entry into a nonconducting state through conformational changes near the channel's selectivity filter. C-type inactivation may involve movements of transmembrane voltage sensor domains, although the mechanisms underlying this form of inactivation may be heterogeneous and are often unclear. Here, we report on a form of voltage-dependent inactivation gating observed in MthK, a prokaryotic K(+) channel that lacks a canonical voltage sensor and may thus provide a reduced system to inform on mechanism. In single-channel recordings, we observe that Po decreases with depolarization, with a half-maximal voltage of 96 ± 3 mV. This gating is kinetically distinct from blockade by internal Ca(2+) or Ba(2+), suggesting that it may arise from an intrinsic inactivation mechanism. Inactivation gating was shifted toward more positive voltages by increasing external [K(+)] (47 mV per 10-fold increase in [K(+)]), suggesting that K(+) binding at the extracellular side of the channel stabilizes the open-conductive state. The open-conductive state was stabilized by other external cations, and selectivity of the stabilizing site followed the sequence: K(+) ≈ Rb(+) > Cs(+) > Na(+) > Li(+) ≈ NMG(+). Selectivity of the stabilizing site is weaker than that of sites that determine permeability of these ions, suggesting that the site may lie toward the external end of the MthK selectivity filter. We could describe MthK gating over a wide range of positive voltages and external [K(+)] using kinetic schemes in which the open-conductive state is stabilized by K(+) binding to a site that is not deep within the electric field, with the voltage dependence of inactivation arising from both voltage-dependent K(+) dissociation and transitions between nonconducting (inactivated) states. These results provide a quantitative working hypothesis for voltage-dependent, K(+)-sensitive inactivation gating, a property that may be common to other K(+) channels.  相似文献   

14.
Jiang Y  Pico A  Cadene M  Chait BT  MacKinnon R 《Neuron》2001,29(3):593-601
The intracellular C-terminal domain structure of a six-transmembrane K+ channel from Escherichia coli has been solved by X-ray crystallography at 2.4 A resolution. The structure is representative of a broad class of domains/proteins that regulate the conductance of K+ (here referred to as RCK domains) in prokaryotic K+ transporters and K+ channels. The RCK domain has a Rossmann-fold topology with unique positions, not commonly conserved among Rossmann-fold proteins, composing a well-conserved salt bridge and a hydrophobic dimer interface. Structure-based amino acid sequence alignments and mutational analysis are used to demonstrate that an RCK domain is also present and is an important component of the gating machinery in eukaryotic large-conductance Ca2+ activated K+ channels.  相似文献   

15.
Here, we study microscopic mechanism of complex formation between Ca2+-bound calmodulin (holoCaM) and Orai1 that regulates Ca2+-dependent inactivation process in eukaryotic cells. We compute conformational thermodynamic changes in holoCaM with respect to complex of Orai1 bound to C-terminal domain of holoCaM using histograms of dihedral angles of the proteins over trajectories from molecular dynamics simulations. Our analysis shows that the N-terminal domain residues L4, T5, Q41, N42, T44 and E67 of holoCaM get destabilized and disordered due to Orai1 binding to C-terminal domain of calmodulin affect the N-terminal domain residues. Among these residues, polar T44, having maximum destabilization and disorder via backbone fluctuations, shows the largest change in solvent exposure. This suggests that N-terminal domain is allosterically regulated via T44 by the binding of Orai1 to the C-terminal domain.  相似文献   

16.
Calcium-dependent gating of the large-conductance Ca2+-activated K+ (BKCa) channel is conferred by the large cytosolic carboxyl terminus containing two domains of the regulator of K+ conductance (RCK) and the high-affinity Ca2+-binding site (the Ca2+-bowl). In our previous study, we located the putative second RCK domain (RCK2) and demonstrated that it interacts directly with RCK1 via a hydrophobic “assembly interface”. In this study, we tested the structural model of the other interface, the “flexible interface”, by strategically positioning charge pairs across the putative interface. Several charge mutations on RCK2 affected the voltage-dependent activation of the channel. In particular, the Gly-to-Asp substitution at position 803 profoundly affected channel activation by stabilizing the open conformation of the channel with minimal effects on its Ca2+ affinity and voltage sensitivity. Various mutations at Gly-803 shifted the channel's conductance-voltage curve either left or right over a 145-mV range. Since this residue is predicted to be in the first loop of RCK2 these results strongly suggest that this loop plays a critical role in determining the intrinsic equilibrium constant for channel opening, and they support the hypothesis that this loop is part of an interface that mediates conformational coupling between RCK1 and RCK2.  相似文献   

17.
Slo channels are large conductance K+ channels that display marked differences in their gating by intracellular ions. Among them, the Slo1 and C. elegans SLO-2 channels are gated by calcium (Ca2+), while mammalian Slo2 channels are activated by both sodium (Na+) and chloride (Cl). Here, we report that SLO-2 channels, SLO-2a and a novel N-terminal variant isoform, SLO-2b, are activated by Ca2+ and voltage, but in contrast to previous reports they do not exhibit Cl sensitivity. Most importantly, SLO-2 provides a unique case in the Slo family for sensing Ca2+ with the high-affinity Ca2+ regulatory site in the RCK1 but not the RCK2 domain, formed through interactions with residues E319 and E487 (that correspond to D362 and E535 of Slo1, respectively). The SLO-2 RCK2 domain lacks the Ca2+ bowl structure and shows minimal Ca2+ dependence. In addition, in contrast to SLO-1, SLO-2 loss-of-function mutants confer resistance to hypoxia in C. elegans. Thus, the C. elegans SLO-2 channels possess unique biophysical and functional properties.  相似文献   

18.
We examined the relationship between deactivation and inactivation in Kv4.2 channels. In particular, we were interested in the role of a Kv4.2 N-terminal domain and accessory subunits in controlling macroscopic gating kinetics and asked if the effects of N-terminal deletion and accessory subunit coexpression conform to a kinetic coupling of deactivation and inactivation. We expressed Kv4.2 wild-type channels and N-terminal deletion mutants in the absence and presence of Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-like proteins (DPPs) in human embryonic kidney 293 cells. Kv4.2-mediated A-type currents at positive and deactivation tail currents at negative membrane potentials were recorded under whole-cell voltage-clamp and analyzed by multi-exponential fitting. The observed changes in Kv4.2 macroscopic inactivation kinetics caused by N-terminal deletion, accessory subunit coexpression, or a combination of the two maneuvers were compared with respective changes in deactivation kinetics. Extensive correlation analyses indicated that modulatory effects on deactivation closely parallel respective effects on inactivation, including both onset and recovery kinetics. Searching for the structural determinants, which control deactivation and inactivation, we found that in a Kv4.2Δ2-10 N-terminal deletion mutant both the initial rapid phase of macroscopic inactivation and tail current deactivation were slowed. On the other hand, the intermediate and slow phase of A-type current decay, recovery from inactivation, and tail current decay kinetics were accelerated in Kv4.2Δ2-10 by KChIP2 and DPPX. Thus, a Kv4.2 N-terminal domain, which may control both inactivation and deactivation, is not necessary for active modulation of current kinetics by accessory subunits. Our results further suggest distinct mechanisms for Kv4.2 gating modulation by KChIPs and DPPs.  相似文献   

19.
Big or high conductance potassium (BK) channels are activated by voltage and intracellular calcium (Ca2+). Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous modulator of ion channel activity, has been reported to enhance Ca2+-driven gating of BK channels, but a molecular understanding of this interplay or even of the PIP2 regulation of this channel''s activity remains elusive. Here, we identify structural determinants in the KDRDD loop (which follows the αA helix in the RCK1 domain) to be responsible for the coupling between Ca2+ and PIP2 in regulating BK channel activity. In the absence of Ca2+, RCK1 structural elements limit channel activation through a decrease in the channel''s PIP2 apparent affinity. This inhibitory influence of BK channel activation can be relieved by mutation of residues that (a) connect either the RCK1 Ca2+ coordination site (Asp367 or its flanking basic residues in the KDRDD loop) to the PIP2-interacting residues (Lys392 and Arg393) found in the αB helix or (b) are involved in hydrophobic interactions between the αA and αB helix of the RCK1 domain. In the presence of Ca2+, the RCK1-inhibitory influence of channel-PIP2 interactions and channel activity is relieved by Ca2+ engaging Asp367. Our results demonstrate that, along with Ca2+ and voltage, PIP2 is a third factor critical to the integral control of BK channel activity.  相似文献   

20.
Large conductance voltage- and Ca(2+)-activated K(+) (BK) channels are potent regulators of cellular processes including neuronal firing, synaptic transmission, cochlear hair cell tuning, insulin release, and smooth muscle tone. Their unique activation pathway relies on structurally distinct regulatory domains including one transmembrane voltage-sensing domain (VSD) and two intracellular high affinity Ca(2+)-sensing sites per subunit (located in the RCK1 and RCK2 domains). Four pairs of RCK1 and RCK2 domains form a Ca(2+)-sensing apparatus known as the "gating ring." The allosteric interplay between voltage- and Ca(2+)-sensing apparati is a fundamental mechanism of BK channel function. Using voltage-clamp fluorometry and UV photolysis of intracellular caged Ca(2+), we optically resolved VSD activation prompted by Ca(2+) binding to the gating ring. The sudden increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) induced a hyperpolarizing shift in the voltage dependence of both channel opening and VSD activation, reported by a fluorophore labeling position 202, located in the upper side of the S4 transmembrane segment. The neutralization of the Ca(2+) sensor located in the RCK2 domain abolished the effect of [Ca(2+)](i) increase on the VSD rearrangements. On the other hand, the mutation of RCK1 residues involved in Ca(2+) sensing did not prevent the effect of Ca(2+) release on the VSD, revealing a functionally distinct interaction between RCK1 and RCK2 and the VSD. A statistical-mechanical model quantifies the complex thermodynamics interplay between Ca(2+) association in two distinct sites, voltage sensor activation, and BK channel opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号