首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the plasticity of a delayed stochastic model of a genetic toggle switch as a multipotent differentiation pathway switch, at the single cell and cell population levels, by observing distributions of differentiation pathways choices of genetically homogeneous cell populations. Assuming a model of stochastic pathway determination of cell differentiation that is regulated by the proteins of the switch, we vary the proteins’ expression level and degradation rates, which cells are known to be able to regulate, to vary mean level, noise, and bias of the proteins’ expression levels. It is shown that small changes in each of these dynamical features significantly and distinctively affects the dynamics of the switch at the single cell level and thus, the cell differentiation patterns. The regulation of these features allows cells to regulate their pluripotency and cell populations’ distribution of lineage choice, suggesting that the stochastic switch has high plasticity regarding differentiation pathway choice regulation, thus providing adaptability to environmental stresses and changes.  相似文献   

2.
Xylem cell differentiation involves temporal and spatial regulation of secondary cell wall deposition. The cortical microtubules are known to regulate the spatial pattern of the secondary cell wall by orientating cellulose deposition. However, it is largely unknown how the microtubule arrangement is regulated during secondary wall formation. Recent findings of novel plant microtubule-associated proteins in developing xylem vessels shed new light on the regulation mechanism of the microtubule arrangement leading to secondary wall patterning. In addition, in vitro culture systems allow the dynamics of microtubules and microtubule-associated proteins during secondary cell wall formation to be followed. Therefore, this review focuses on novel aspects of microtubule dynamics leading to secondary cell wall patterning with a focus on microtubule-associated proteins.  相似文献   

3.
4.
5.
G Weisinger  A P Korn  L Sachs 《FEBS letters》1986,200(1):107-110
The growth and differentiation of myeloid hematopoietic cells are regulated by different macrophage and granulocyte inducing proteins, those that induce growth and others that induce differentiation. The proteins that induce differentiation but not those that induce growth bind to double-stranded DNA. We now report that purified myeloid cell differentiation-inducing protein causes single strand breaks (nicks) in double-stranded DNA. This DNA nicking may initiate the changes in gene expression that are required for differentiation.  相似文献   

6.
The mdmx gene was shown to possess high homology to the mdm-2 gene and to encode a protein that can bind p53 and block p53 transactivation. Because Mdm-2 protein blocks the growth-suppressive activity of the p53 tumor-suppressor protein through similar activities, we examined the expression patterns of mdmx to determine how MdmX expression correlates with p53 protein levels. In this study, the expression pattern and protein levels of mdmx were examined in a number of cell culture systems. Like mdm-2, mdmx gene expression was constitutive during serum deprivation/restimulation of murine fibroblasts and differentiation of either murine teratocarcinoma or preadipocyte cells. In contrast, whereas mdm-2 gene expression was induced after cisplatin damage to ovarian carcinoma cells, mdmx expression remained constitutive. Because p53 transactivation is critical following a genotoxic stress, we examined p53:MdmX complexes after in vitro DNA-PK phosphorylation, a posttranslational modification that blocks p53 association with Mdm-2. The DNA-PK phosphorylation of p53 was capable of inhibiting p53:MdmX association. Thus, whereas DNA damage does not regulate mdmx mRNA levels, posttranslational modifications induced during DNA damage may block p53:MdmX association in vivo. These results demonstrate that, in the cell lines examined, mdmx gene expression remains constitutive during cell proliferation and differentiation or following DNA damage. Taken together, the data suggest that cells retain a constant level of MdmX. Thus, in undamaged cells, there exists the potential for an MdmX:p53 reservoir.  相似文献   

7.
Within a multicellular tissue cells may coordinately form a singular or multiple polar axes, but it is unclear whether a common mechanism governs different types of polar axis formation. The phosphorylation status of PIN proteins, which is directly affected by the PINOID (PID) protein kinase and the PP2A protein phosphatase, is known to regulate the apical-basal polarity of PIN localization in bipolar cells of roots and shoot apices. Here, we provide evidence that the phosphorylation status-mediated PIN polarity switch is widely used to modulate cellular processes in Arabidopsis including multipolar pavement cells (PC) with interdigitated lobes and indentations. The degree of PC interdigitation was greatly reduced either when the FYPP1 gene, which encodes a PP2A called phytochrome-associated serine/threonine protein phosphatase, was knocked out or when the PID gene was overexpressed (35S::PID). These genetic modifications caused PIN1 localization to switch from lobe to indentation regions. The PP2A and PID mediated switching of PIN1 localization is strikingly similar to their regulation of the apical-basal polarity switch of PIN proteins in other cells. Our findings suggest a common mechanism for the regulation of PIN1 polarity formation, a fundamental cellular process that is crucial for pattern formation both at the tissue/organ and cellular levels.  相似文献   

8.
Trophoblast cell lineage is established through the first cellular differentiation in mammalian embryogenesis, and its developmental potential is restricted to the extraembryonic tissues contributing solely to the placenta. Several lines of evidence suggest a relative lack of importance of DNA methylation in gene regulation in the extraembryonic tissues when compared with embryonic ones. Here we analyzed the dynamics of epigenetic status in the upstream region of mouse Ddah2 gene, which was found to be specifically repressed in a stem cell population of trophoblast cell lineage. We found a tissue-dependent differentially methylated region in the regulatory region of the Ddah2 gene. This region was hypermethylated in trophoblast stem cells and was hypomethylated in differentiated cells both in vivo and in vitro. This change was well correlated with Ddah2 expression. In addition, in vitro methylation confined to the differentially methylated region was sufficient to repress promoter activity in the reporter assay. Furthermore, a repressive pattern of histone modifications was formed around the differentially methylated region in undifferentiated trophoblast stem cells with repressed Ddah2. Our data suggest that DNA methylation-mediated chromatin remodeling is involved in the regulation of the Ddah2 gene expression and thus is important even in trophoblast cell lineage.  相似文献   

9.
10.
M Han  P W Sternberg 《Cell》1990,63(5):921-931
Genetic analysis previously suggested that the let-60 gene controls the switch between vulval and hypodermal cell fates during C. elegans vulval induction. We have cloned the let-60 gene, and shown that it encodes a gene product identical in 84% of its first 164 amino acids to ras gene products from other vertebrate and invertebrate species. This conservation suggests that the let-60 product contains all the biochemical functions of ras proteins. Extrachromosomal arrays of let-60 ras DNA cause cell-type misspecification (extra vulval fates) phenotypically opposite to that caused by let-60 ras loss-of-function mutations (no vulval fates), and suppress the vulvaless phenotype of mutations in two other genes necessary for vulval induction. Thus, the level and pattern of let-60 ras expression may be under strict regulation; increase in let-60 ras activity bypasses or reduces the need for upstream genes in the vulval induction pathway.  相似文献   

11.
DNA methylation: a promising landscape for immune system-related diseases   总被引:2,自引:0,他引:2  
During hematopoiesis, a unique hematopoietic stem cell (HSC) from the bone marrow gives rise to a subset of mature blood cells that directs all the immune responses. Recent studies have shown that this well-defined, hierarchical process is regulated in part by epigenetic mechanisms. Changes in the DNA methylation profile have a critical role in the division of these stem cells into the myeloid and lymphoid lineages and in the establishment of a specific phenotype and functionality in each terminally differentiated cell type. In this review, we describe how the DNA methylation patterns are modified during hematopoietic differentiation and what their role is in cell plasticity and immune function. An in-depth knowledge of these epigenetic mechanisms will help clarify how cell type-specific gene programs are established, and how they can be leveraged in the development of novel strategies for treating immune system-related pathologies.  相似文献   

12.
Stem cell homeostasis in shoot apical meristems of higher plants is regulated through a dynamic balance between spatial regulation of gene expression, cell growth patterns and patterns of differentiation. Cell-cell communication mediated by both the local factors and long-range signals have been implicated in stem cell homeostasis. Here we have reviewed recent developments on spatio-temporal regulation of cell-cell communication processes with an emphasis on how ubiquitously utilized signals such as plant hormones function with local factors in mediating stem cell homeostasis. We also provide a brief overview of how the activity of ubiquitously utilized epigenetic regulators are modulated locally to orchestrate gene expression.  相似文献   

13.
Dynamic assembly and disassembly of actin proteins play a key role in the cytoskeleton, but the cellular functions of actin are not only restricted to the cytoplasmic compartment. Recent studies have shown that actin spatiotemporally changes its polymerized state in the nucleus as well and such dynamic nature of actin is relevant to key nuclear events including gene expression, DNA damage response and chromatin organization. In this review, we highlight emerging roles of actin in the nuclear compartment especially in the context of embryonic development and cellular differentiation. We first explain how the actin nucleoskeleton can be formed and function in cells. Notably, nuclear actin dynamics are greatly altered when cell fates change, such as after fertilization and T cell differentiation. We discuss how the dynamic actin nucleoskeleton contributes to accomplishing developmental programs.  相似文献   

14.
15.
Embryonic stem (ES) cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to cell-type. Therefore, a potent epigenetic system has evolved to coordinate and maintain tissue-specific patterns of gene expression. Recent advances show that mechanisms that govern epigenetic regulation of gene expression are rooted in the details of chromatin dynamics. As embryonic cells differentiate, certain genes are activated while others are silenced. These activation and silencing events are exquisitely coordinated with the allocation of cell lineages. Remodeling of the chromatin of developmentally-regulated genes occurs in conjunction with lineage commitment. Oocytes, early embryos, and ES cells contain potent chromatin-remodeling activities, an observation that suggests that chromatin dynamics may be especially important for early lineage decisions. Chromatin dynamics are also involved in the differentiation of adult stem cells, where the assembly of specialized chromatin upon tissue-specific genes has been studied in fine detail. The next few years will likely yield striking advances in the understanding of stem cell differentiation and developmental biology from the perspective of chromatin dynamics.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号