首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accurate prediction of T cell epitopes is one of the key aspirations of immunoinformatics. We have developed a partial least squares-based, robust multivariate statistical method for the quantitative prediction of peptide binding to major histocompatibility complexes (MHCs), the principal checkpoint on the antigen presentation pathway. As a service to the immunobiology community, we have made a Perl implementation of the method available as a World Wide Web server.  相似文献   

2.
The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000 rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available.  相似文献   

3.
Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills.  相似文献   

4.
5.
Characterising gene function for the ever-increasing number and diversity of species with annotated genomes relies almost entirely on computational prediction methods. These software are also numerous and diverse, each with different strengths and weaknesses as revealed through community benchmarking efforts. Meta-predictors that assess consensus and conflict from individual algorithms should deliver enhanced functional annotations. To exploit the benefits of meta-approaches, we developed CrowdGO, an open-source consensus-based Gene Ontology (GO) term meta-predictor that employs machine learning models with GO term semantic similarities and information contents. By re-evaluating each gene-term annotation, a consensus dataset is produced with high-scoring confident annotations and low-scoring rejected annotations. Applying CrowdGO to results from a deep learning-based, a sequence similarity-based, and two protein domain-based methods, delivers consensus annotations with improved precision and recall. Furthermore, using standard evaluation measures CrowdGO performance matches that of the community’s best performing individual methods. CrowdGO therefore offers a model-informed approach to leverage strengths of individual predictors and produce comprehensive and accurate gene functional annotations.  相似文献   

6.
Uncertainty and inconsistency of gene structure annotation remain limitations on research in the genome era, frustrating both biologists and bioinformaticians, who have to sort out annotation errors for their genes of interest or to generate trustworthy datasets for algorithmic development. It is unrealistic to hope for better software solutions in the near future that would solve all the problems. The issue is all the more urgent with more species being sequenced and analyzed by comparative genomics - erroneous annotations could easily propagate, whereas correct annotations in one species will greatly facilitate annotation of novel genomes. We propose a dynamic, economically feasible solution to the annotation predicament: broad-based, web-technology-enabled community annotation, a prototype of which is now in use for Arabidopsis.  相似文献   

7.
Your Gene structure Annotation Tool for Eukaryotes (yrGATE) provides an Annotation Tool and Community Utilities for worldwide web-based community genome and gene annotation. Annotators can evaluate gene structure evidence derived from multiple sources to create gene structure annotations. Administrators regulate the acceptance of annotations into published gene sets. yrGATE is designed to facilitate rapid and accurate annotation of emerging genomes as well as to confirm, refine, or correct currently published annotations. yrGATE is highly portable and supports different standard input and output formats. The yrGATE software and usage cases are available at .  相似文献   

8.

Background  

The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST) server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups.  相似文献   

9.
The chicken genome is sequenced and this, together with microarray and other functional genomics technologies, makes post-genomic research possible in the chicken. At this time, however, such research is hindered by a lack of genomic structural and functional annotations. Bio-ontologies have been developed for different annotation requirements, as well as to facilitate data sharing and computational analysis, but these are not yet optimally utilized in the chicken. Here we discuss genomic annotation and bio-ontologies. We focus specifically on the Gene Ontology (GO), chicken GO annotations and how these can facilitate functional genomics in the chicken. The GO is the most developed and widely used bio-ontology. It is the de facto standard for functional annotation. Despite its critical importance in analyzing microarray and other functional genomics data, relatively few chicken gene products have any GO annotation. When these are available, the average quality of chicken gene products annotations (defined using evidence code weight and annotation depth) is much less than in mouse. Moreover, tools allowing chicken researchers to easily and rapidly use the GO are either lacking or hard to use. To address all of these problems we developed ChickGO and AgBase. Chicken GO annotations are provided by complementary work at MSU-AgBase and EBI-GOA. The GO tools pipeline at AgBase uses GO to derive functional and biological significance from microarray and other functional genomics data. Not only will improved genomic annotation and tools to use these annotations benefit the chicken research community but they will also facilitate research in other avian species and comparative genomics.  相似文献   

10.
11.

Background

Centralised resources such as GenBank and UniProt are perfect examples of the major international efforts that have been made to integrate and share biological information. However, additional data that adds value to these resources needs a simple and rapid route to public access. The Distributed Annotation System (DAS) provides an adequate environment to integrate genomic and proteomic information from multiple sources, making this information accessible to the community. DAS offers a way to distribute and access information but it does not provide domain experts with the mechanisms to participate in the curation process of the available biological entities and their annotations.

Results

We designed and developed a Collaborative Annotation System for proteins called DAS Writeback. DAS writeback is a protocol extension of DAS to provide the functionalities of adding, editing and deleting annotations. We implemented this new specification as extensions of both a DAS server and a DAS client. The architecture was designed with the involvement of the DAS community and it was improved after performing usability experiments emulating a real annotation task.

Conclusions

We demonstrate that DAS Writeback is effective, usable and will provide the appropriate environment for the creation and evolution of community protein annotation.  相似文献   

12.
13.
Gene Ontology annotation quality analysis in model eukaryotes   总被引:1,自引:0,他引:1       下载免费PDF全文
Functional analysis using the Gene Ontology (GO) is crucial for array analysis, but it is often difficult for researchers to assess the amount and quality of GO annotations associated with different sets of gene products. In many cases the source of the GO annotations and the date the GO annotations were last updated is not apparent, further complicating a researchers’ ability to assess the quality of the GO data provided. Moreover, GO biocurators need to ensure that the GO quality is maintained and optimal for the functional processes that are most relevant for their research community. We report the GO Annotation Quality (GAQ) score, a quantitative measure of GO quality that includes breadth of GO annotation, the level of detail of annotation and the type of evidence used to make the annotation. As a case study, we apply the GAQ scoring method to a set of diverse eukaryotes and demonstrate how the GAQ score can be used to track changes in GO annotations over time and to assess the quality of GO annotations available for specific biological processes. The GAQ score also allows researchers to quantitatively assess the functional data available for their experimental systems (arrays or databases).  相似文献   

14.
With the current fast accumulation of microbial community samples and related metagenomic sequencing data, data integration and analysis system is urgently needed for in-depth analysis of large number of metagenomic samples (also referred to as “microbial communities”) of interest. Although several existing databases have collected a large number of metagenomic samples, they mostly serve as data repositories with crude annotations, and offer limited functionality for analysis. Moreover, the few available tools for comparative analysis in the literature could only support the comparison of a few pre-defined set of metagenomic samples. To facilitate comprehensive comparative analysis on large amount of diverse microbial community samples, we have designed a Meta-Mesh system for a variety of analyses including quantitative analysis of similarities among microbial communities and computation of the correlation between the meta-information of these samples. We have used Meta-Mesh for systematically and efficiently analyses on diverse sets of human associate-habitat microbial community samples. Results have shown that Meta-Mesh could serve well as an efficient data analysis platform for discovery of clusters, biomarker and other valuable biological information from a large pool of human microbial samples.  相似文献   

15.
16.
Novartis Foundation sponsored a Symposium which brought together a group of experimental immunologists, theoretical immunologists, and bioinformaticians to discuss the new field of immunoinformatics. The discussion focused on immunological databases, antigen processing and presentation, immunogenomics, host-pathogen interactions, and mathematical modelling of the immune system. A main conclusion of the meeting is the critical role played by immunoinformatics in current immunology research. In particular, immunoinformatics provides a foundation for the emerging fields of systems immunology and immunogenomics.  相似文献   

17.
18.
Gene Ontology (GO) has established itself as the undisputed standard for protein function annotation. Most annotations are inferred electronically, i.e. without individual curator supervision, but they are widely considered unreliable. At the same time, we crucially depend on those automated annotations, as most newly sequenced genomes are non-model organisms. Here, we introduce a methodology to systematically and quantitatively evaluate electronic annotations. By exploiting changes in successive releases of the UniProt Gene Ontology Annotation database, we assessed the quality of electronic annotations in terms of specificity, reliability, and coverage. Overall, we not only found that electronic annotations have significantly improved in recent years, but also that their reliability now rivals that of annotations inferred by curators when they use evidence other than experiments from primary literature. This work provides the means to identify the subset of electronic annotations that can be relied upon-an important outcome given that >98% of all annotations are inferred without direct curation.  相似文献   

19.
Vaccination is generally considered to be the most effective method of preventing infectious diseases. All vaccinations work by presenting a foreign antigen to the immune system in order to evoke an immune response. The active agent of a vaccine may be intact but inactivated (‘attenuated’) forms of the causative pathogens (bacteria or viruses), or purified components of the pathogen that have been found to be highly immunogenic. The increased understanding of antigen recognition at molecular level has resulted in the development of rationally designed peptide vaccines. The concept of peptide vaccines is based on identification and chemical synthesis of B-cell and T-cell epitopes which are immunodominant and can induce specific immune responses. The accelerating growth of bioinformatics techniques and applications along with the substantial amount of experimental data has given rise to a new field, called immunoinformatics. Immunoinformatics is a branch of bioinformatics dealing with in silico analysis and modelling of immunological data and problems. Different sequence- and structure-based immunoinformatics methods are reviewed in the paper.  相似文献   

20.

Background

Annotations that describe the function of sequences are enormously important to researchers during laboratory investigations and when making computational inferences. However, there has been little investigation into the data quality of sequence function annotations. Here we have developed a new method of estimating the error rate of curated sequence annotations, and applied this to the Gene Ontology (GO) sequence database (GOSeqLite). This method involved artificially adding errors to sequence annotations at known rates, and used regression to model the impact on the precision of annotations based on BLAST matched sequences.

Results

We estimated the error rate of curated GO sequence annotations in the GOSeqLite database (March 2006) at between 28% and 30%. Annotations made without use of sequence similarity based methods (non-ISS) had an estimated error rate of between 13% and 18%. Annotations made with the use of sequence similarity methodology (ISS) had an estimated error rate of 49%.

Conclusion

While the overall error rate is reasonably low, it would be prudent to treat all ISS annotations with caution. Electronic annotators that use ISS annotations as the basis of predictions are likely to have higher false prediction rates, and for this reason designers of these systems should consider avoiding ISS annotations where possible. Electronic annotators that use ISS annotations to make predictions should be viewed sceptically. We recommend that curators thoroughly review ISS annotations before accepting them as valid. Overall, users of curated sequence annotations from the GO database should feel assured that they are using a comparatively high quality source of information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号