首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA recognition by Tat-derived peptides: interaction in the major groove?   总被引:41,自引:0,他引:41  
K M Weeks  D M Crothers 《Cell》1991,66(3):577-588
Replication of human immunodeficiency virus requires binding of the viral Tat protein to its RNA target sequence TAR; peptides derived from Tat bind to a TAR "contact site" spanning 5 bp and a trinucleotide pyrimidine bulge. We find that high affinity binding requires a U residue in the bulge loop and 2 specific adjacent base pairs. Other bulged RNAs bind in a lower affinity nonspecific manner; sequence-specific binding requires a bulge loop of more than 1 nucleotide. Reaction with diethyl pyrocarbonate indicates that one effect of the bulge is to make the otherwise deep and narrow RNA major groove accessible. A model consistent with these data involves local distortion of A-form geometry at the bulge, which bends the helix and permits protein binding and interactive access in the RNA major groove.  相似文献   

2.
K S Long  D M Crothers 《Biochemistry》1999,38(31):10059-10069
Basic peptides from the carboxy terminus of the HIV-1 Tat protein bind to the apical stem-loop region of TAR RNA with high affinity and moderate specificity. The conformations of the unbound and 24 residue Tat peptide (Tfr24)-bound forms of TAR RNA have been characterized by NMR spectroscopy. The unbound form of TAR exists in major and minor forms having different trinucleotide bulge conformations. A specific TAR RNA conformational change is observed upon complex formation with Tfr24, consisting of coaxial stacking of helical stems and base triple formation. A U23-A27-U38 base triple is proposed based on exchangeable proton NMR data, where U23 forms a base pair with A27 in the major groove. No evidence for base triple formation was found for Tat peptides in which lysine residues are extensively substituted for arginine.  相似文献   

3.
4.
5.
Tat activates human immunodeficiency type 1 gene expression by binding to TAR RNA. TAR comprises a partially base paired stem and hexanucleotide loop with a tripyrimidine bulge in the upper stem. In vitro, Tat binds to the bulge and upper stem, with no requirement for the loop. However, in vivo, loop sequences are critical for activation, implying that a loop binding cellular factor may be involved in the activation pathway. Given that activation appears to be a two-component system comprising a Tat-bulge interaction and a cellular factor-loop interaction, we considered that it might be possible to spatially separate the two components and retain activation. We have constructed a series of double TAR elements comprising various combinations of mutated TAR structures. Defective TARs with nucleotide substitutions in either the bulge or the loop complemented each other to give wild-type activation. However, the complementation was orientation specific, requiring the intact Tat binding site to reside on the 5'-proximal TAR. These data suggest that provided the wild-type orientation of the bulge and loop elements is retained, there is no requirement for them to coexist on the same TAR structure.  相似文献   

6.
7.
8.
J W Harper  N J Logsdon 《Biochemistry》1991,30(32):8060-8066
Substantial evidence indicates that HIV-1 trans-activation by tat protein is mediated through the TAR RNA element. This RNA forms a stem-loop structure containing a three-nucleotide bulge and a six-nucleotide loop. Previous mutagenic analysis of TAR indicates that the bulge residues and a 4 bp segment of the stem constitute, in part, the tat binding site. However, there appears to be no sequence-specific contribution of the six-base loop. We have employed a ribonuclease protection technique to explore the interaction of tat with single-stranded regions of TAR. The results indicate that tat interacts with both the bulge and loop regions of TAR. Treatment of TAR RNA with RNase A results in cleavage at U23 and U31, located in the bulge and loop regions, respectively. High concentrations (approximately 2 microM) of Escherichia coli derived tat protein, prepared by standard procedures, gave complete protection of TAR RNA from RNase A cleavage. However, under these conditions, truncated TAR derivatives in which no stem-loop structure is expected to form were also protected, indicating nonspecific binding. In order to obtain a tat preparation with enhanced specificity toward TAR RNA, methods were developed for refolding the recombinant protein. This treatment enhanced the affinity of tat for TAR by approximately 30-fold [Kd(apparent) less than 25 nM] and markedly increased its specificity for the TAR. Again, tat protected TAR RNA from RNase A cleavage at both U23 and U31. Protection was also observed with RNase T1 which cleaves TAR RNA at three G residues in the six-base loop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The trans-activation response element (TAR) of human immunodeficiency virus type 1 is a structured RNA consisting of the first 60 nucleotides of all human immunodeficiency virus type 1 RNAs. Computer analyses and limited structural analyses indicated that TAR consists of a stem-bulge-loop structure. Mutational analyses showed that sequences in the bulge are required for Tat binding, whereas sequences in both the bulge and the loop are required for trans activation. In this study, we probed the structures of TAR and various mutants of TAR with chemical probes and RNases and used these methods to footprint a Tat peptide on TAR. Our data show that the structure of wild-type TAR is different from previously published models. The bulge, a Tat-binding site, consists of four nucleotides. The loop is structured, rather than simply single stranded, in a fashion reminiscent of the structures of the tetraloop 5'-UUCG-3' and the GNRA loop (C. Cheong, G. Varani, and I. Tinoco, Jr., Nature [London] 346:680-682, 1990; H.A. Heus and A. Pardi, Science 253:191-193, 1991). RNA footprint data indicate that three bases in the bulge are protected and suggest that a conformational change occurs upon Tat binding.  相似文献   

10.
Identification of a novel HIV-1 TAR RNA bulge binding protein.   总被引:6,自引:4,他引:2       下载免费PDF全文
The Tat protein binds to TAR RNA to stimulate the expression of the human immunodeficiency virus type 1 (HIV-1) genome. Tat is an 86 amino acid protein that contains a short region of basic residues (aa49-aa57) that are required for RNA binding and TAR is a 59 nucleotide stem-loop with a tripyrimidine bulge in the upper stem. TAR is located at the 5' end of all viral RNAs. In vitro, Tat specifically interacts with TAR by recognising the sequence of the bulge and upper stem, with no requirement for the loop. However, in vivo the loop sequence is critical for activation, implying a requirement for accessory cellular TAR RNA binding factors. A number of TAR binding cellular factors have been identified in cell extracts and various models for the function of these factors have been suggested, including roles as coactivators and inhibitors. We have now identified a novel 38 kD cellular factor that has little general, single-stranded or double-stranded RNA binding activity, but that specifically recognises the bulge and upper stem region of TAR. The protein, referred to as BBP (bulge binding protein), is conserved in mammalian and amphibian cells and in Schizosaccharomyces pombe but is not found in Saccharomyces cerevisiae. BBP is an effective competitive inhibitor of Tat binding to TAR in vitro. Our data suggest that the bulge-stem recognition motif in TAR is used to mediate cellular factor/RNA interactions and indicates that Tat action might be inhibited by such competing reactions in vivo.  相似文献   

11.
12.
13.
An oligoribonucleotide, corresponding to the Tat-interactive top half of the HIV-1 TAR RNA stem-loop, was synthesized in both the natural D- and the enantiomeric L-configurations. The affinity of Tat for the two RNAs, assessed by competition binding experiments, was found to be identical and is reduced 10-fold for both, upon replacement of the critical bulge residue U23 with cytidine. It is suggested that this interaction of the flexible Tat protein depends strongly upon the tertiary structure of a binding pocket within TAR, but not upon its handedness, and may be described by a 'hand-in-mitten' model.  相似文献   

14.
A series of four biscationic diphenylfuran derivatives was used to investigate drug binding to the transactivation response element (TAR) RNA. The drugs, which are active against the Pneumocystis carinii pathogen (PCP), differ by the nature of the terminal basic side chains. Furimidazoline (DB60) is more potent at inhibiting binding of the Tat protein to TAR than furamidine (DB75) and the amidine-substituted analogues DB244 and DB226. In vivo studies using the fusion-induced gene stimulation (FIGS) assay entirely agree with the in vitro gel mobility shift data. The capacity of the drugs to antagonize Tat binding correlates with their RNA binding properties determined by melting temperature and RNase protection experiments. Footprinting studies indicate that the bulge region of TAR provides the identity element for the diphenylfurans. Access of the drugs to the major groove cavity at the pyrimidine bulge depends on the bulk of the alkylamine substituents. Experiments using TAR mutants show that the bulge of TAR is critical for drug binding but also reveal that the fit of the drugs into the major groove cavity of TAR does not involve specific contacts with the highly conserved residue U23 or the C x G26-39 base pair. The binding essentially involves shape recognition. The results are also discussed with respect to the known activity of the drug against PCP which is the major cause of mortality in AIDS patients. This study provides guidelines for future development of TAR-targeted anti-HIV-1 drugs.  相似文献   

15.
Interaction between the human immunodeficiency virus type 1 (HIV-1) trans-activator Tat and its cis-acting responsive RNA element TAR is necessary for activation of HIV-1 gene expression. We investigated the hypothesis that the essential uridine residue at position 23 in the bulge of TAR RNA is involved in intramolecular hydrogen bonding to stabilize an unique RNA structure required for recognition by Tat. Nucleotide substitutions in the two base pairs of the TAR stem directly above the essential trinucleotide bulge that maintain base pairing but change sequence prevent complex formation with Tat in vitro. Corresponding mutations tested in a trans-activation assay strongly affect the biological activity of TAR in vivo, suggesting an important role for these nucleotides in the Tat-TAR interaction. On the basis of these data, a model is proposed which implicates uridine 23 in a stable tertiary interaction with the GC pair directly above the bulge. This interaction would cause widening of the major groove of the RNA, thereby exposing its hydrogen-bonding surfaces for possible interaction with Tat. The model also predicts a gap between uridine 23 and the first base pair in the stem above, which would require one or more unpaired nucleotides to close, but does not predict any other role for such nucleotides. In accordance with this prediction, synthetic propyl phosphate linkers of equivalent length to 1 or 2 nucleotides, were found to be fully acceptable substitutes in the bulge above uridine 23, demonstrating that neither the bases nor the ribose moieties at these positions are implicated in the recognition of TAR RNA by Tat.  相似文献   

16.
R Tan  A D Frankel 《Biochemistry》1992,31(42):10288-10294
Short basic peptides from the HIV Tat protein bind specifically to a bulge region in TAR RNA, with a single arginine residue providing the only sequence-specific contact. The free amino acid arginine also binds specifically to TAR. Previous circular dichroism (CD) experiments suggested that peptide binding induces a conformational change in TAR. Here we confirm this observation using single arginine-containing peptides and show that arginine or guanidine binding also induces a conformational change in TAR. A peptide containing a single arginine within a stretch of histidines (CYHHHRHHHHHA) shows pH-dependent binding and a corresponding change in TAR conformation, as detected by a decrease in the CD signal at 265 nm. Arginine and guanidine, which bind to TAR with apparent Kd's of approximately 1.5 mM, induce similar CD changes. In contrast, lysine, which does not bind specifically to TAR, has no effect. Mutants of TAR that abolish specific binding (a U-->C substitution in the three-nucleotide bulge, a deletion of the bulge, or an A-U to U-A base pair change above the bulge) show no change in the CD signal upon binding of peptides, arginine, or guanidine. The results suggest that binding of a single guanidinium group to a specific site in TAR induces a change in RNA conformation.  相似文献   

17.
18.
Trans-activation of HIV-1 by the Tat protein is mediated through a cis-acting element (TAR) in the viral RNA. In order to obtain further insight into the molecular interactions for trans-activation, a detailed mutational analysis of TAR RNA was carried out. TAR RNA forms a hairpin structure with important sequence elements in the single-stranded bulge- and loop-domains. We found that the sequence of the base-pairs flanking the bulge is critical for Tat-mediated trans-activation. In addition, Tat-response is reduced when the bulge is forced into a base-paired configuration through the introduction of complementary nucleotides on the opposite side of the stem. Thus, the 3-nucleotide bulge and adjacent base-pairs comprise a recognition domain with both sequence- and structure-elements. Accessibility of the loop sequences is also important for Tat function, since base-pairing through the formation of a pseudoknot-like structure does inhibit Tat action. A third critical parameter that influences the magnitude of Tat response is the number of loop nucleotides. Finally, the relative spacing between the loop and the bulge is also important. We introduced additional base-pairs in the stem connecting the two domains. Such mutations progressively decreased the efficiency of Tat induction. Interestingly, activity of the HIV-2 Tat protein did markedly increase on targets with one or two additional basepairs. These results suggest that Tat interacts with a cellular loop-binding protein(s) to increase HIV gene expression.  相似文献   

19.
The pharmacological disruption of the interaction between the HIV Tat protein and its cognate transactivation response RNA (TAR) would generate novel anti-viral drugs with a low susceptibility to drug resistance, but efforts to discover ligands with sufficient potency to warrant pharmaceutical development have been unsuccessful. We have previously described a family of structurally constrained β-hairpin peptides that potently inhibits viral growth in HIV-infected cells. The nuclear magnetic resonance (NMR) structure of an inhibitory complex revealed that the peptide makes intimate contacts with the 3-nt bulge and the upper helix of the RNA hairpin, but that a single residue contacts the apical loop where recruitment of the essential cellular co-factor cyclin T1 occurs. Attempting to extend the peptide to form more interactions with the RNA loop, we examined a library of longer peptides and achieved >6-fold improvement in affinity. The structure of TAR bound to one of the extended peptides reveals that the peptide slides down the major groove of the RNA, relative to our design, in order to maintain critical interactions with TAR. These conserved contacts involve three amino acid side chains and identify critical interaction points required for potent and specific binding to TAR RNA. They constitute a template of essential interactions required for inhibition of this RNA.  相似文献   

20.
RNA binding by the tat and rev proteins of HIV-1   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号