首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SecA is an essential ATPase in bacterial Sec-dependent protein translocation pathway, and equilibrates between monomers and dimers in solution. The question of whether SecA functions as monomers or dimers in membranes during the protein translocation is controversial. We previously constructed a tail-to-head SecAA tandem dimer, and showed it is fully functional by complementation in vivo and protein translocation in vitro, indicating that SecA can function at least as a dimer in the membrane without dissociating into monomers. In this study, we further constructed genetically a tail-to-head SecAAA trimer, which is functional in complementing a temperature-sensitive secA mutant. The purified SecAAA trimer per protomer is fully active as SecAA tandem dimers in ATPase activity, in protein translocation in vitro and in ion channel activities in the oocytes. With these functional tail-to-head trimer SecAAA and tandem SecAA, we examined their surface topology in the presence of liposomes using AFM. As expected, the soluble SecAAA without lipids are larger than SecAA. However, the ring/pore structures of SecAAA trimers were, surprisingly, almost identical to the SecA 2-monomers and SecAA dimers, raising the intriguing possibility that the SecA may exist and function as hexamer ring-structures in membranes. Cross-linking with formaldehyde showed that SecA, SecAA and SecAAA could form larger oligomers, including the hexamers. The molecular modeling simulation shows that both tail-to-head and tail-to-tail hexamers in the membranes are possible.  相似文献   

2.
The bacterial ATPase SecA functions as a monomer in protein translocation   总被引:1,自引:0,他引:1  
The ATPase SecA drives the post-translational translocation of proteins through the SecY channel in the bacterial inner membrane. SecA is a dimer that can dissociate into monomers under certain conditions. To address the functional importance of the monomeric state, we generated an Escherichia coli SecA mutant that is almost completely monomeric (>99%), consistent with predictions from the crystal structure of Bacillus subtilis SecA. In vitro, the monomeric derivative retained significant activity in various assays, and in vivo, it sustained 85% of the growth rate of wild type cells and reduced the accumulation of precursor proteins in the cytoplasm. Disulfide cross-linking in intact cells showed that mutant SecA is monomeric and that even its parental dimeric form is dissociated. Our results suggest that SecA functions as a monomer during protein translocation in vivo.  相似文献   

3.
Or E  Rapoport T 《FEBS letters》2007,581(14):2616-2620
The ATPase SecA is involved in post-translational protein translocation through the SecY channel across the bacterial inner membrane. SecA is a dimer that can dissociate into monomers with translocation activity. Here, we have addressed whether dissociation of the SecA dimer is required for translocation. We show that a dimer in which the two subunits are cross-linked by disulfide bridges is inactive in protein translocation, translocation ATPase, and binding to a lipid bilayer. In contrast, upon reduction of the disulfide bridges, the resulting monomers regain these activities. These data support the notion that dissociation of SecA dimers into monomers occurs during protein translocation.  相似文献   

4.
Or E  Navon A  Rapoport T 《The EMBO journal》2002,21(17):4470-4479
The ATPase SecA mediates post-translational translocation of precursor proteins through the SecYEG channel of the bacterial inner membrane. We show that SecA, up to now considered to be a stable dimer, is actually in equilibrium with a small fraction of monomers. In the presence of membranes containing acidic phospholipids or in certain detergents, SecA completely dissociates into monomers. A synthetic signal peptide also affects dissociation into monomers. In addition, conversion into the monomeric state can be achieved by mutating a small number of residues in a dimeric and fully functional SecA fragment. This monomeric SecA fragment still maintains strong binding to SecYEG in the membrane as well as significant in vitro translocation activity. Together, the data suggest that the SecA dimer dissociates during protein translocation. Since SecA contains all characteristic motifs of a certain class of monomeric helicases, and since mutations in residues shared with the helicases abolish its translocation activity, SecA may function in a similar manner.  相似文献   

5.
SecA facilitates protein transport across the eubacterial plasma membrane by its association with cargo proteins and the SecYEG translocon, followed by ATP-driven conformational changes that promote protein translocation in a stepwise manner. Whether SecA functions as a monomer or a dimer during this process has been the subject of considerable controversy. Here we utilize cysteine-directed mutagenesis along with the crystal structure of the SecA dimer to create a cross-linked dimer at its subunit interface, which was normally active for in vitro protein translocation.  相似文献   

6.
Doyle SM  Braswell EH  Teschke CM 《Biochemistry》2000,39(38):11667-11676
Though many proteins in the cell are large and multimeric, their folding has not been extensively studied. We have chosen SecA as a folding model because it is a large, homodimeric protein (monomer molecular mass of 102 kDa) with multiple folding domains. SecA is the ATPase for the Sec-dependent preprotein translocase of many bacteria. SecA is a soluble protein that can penetrate into the membrane during preprotein translocation. Because SecA may partially unfold prior to its insertion into the membrane, studies of its stability and folding pathway are important for understanding how it functions in vivo. Kinetic folding transitions in the presence of urea were monitored using circular dichroism and tryptophan fluorescence, while equilibrium folding transitions were monitored using the same techniques as well as a fluorescent ATP analogue. The reversible equilibrium folding transition exhibited a plateau, indicating the presence of an intermediate. Based on the data presented here, we propose a three-state model, N(2) if I(2) if 2U, where the native protein unfolds to a dimeric intermediate which then dissociates into two unfolded monomers. The SecA dimer was determined to have an overall stability (DeltaG) of -22.5 kcal/mol. We also investigated the stability of SecA using analytical ultracentrifugation equilibrium and velocity sedimentation, which again indicated that native or refolded SecA was a stable dimer. The rate-limiting step in the folding pathway was conversion of the dimeric intermediate to the native dimer. Unfolding of native, dimeric SecA was slow with a relaxation time in H(2)O of 3.3 x 10(4) s. Since SecA is a stable dimer, dissociation to monomeric subunits during translocation is unlikely.  相似文献   

7.
Covalently dimerized SecA is functional in protein translocation   总被引:1,自引:0,他引:1  
The ATPase SecA provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. SecA exists as a dimer in solution, but the exact oligomeric state of SecA during membrane binding and preprotein translocation is a topic of debate. To study the requirements of oligomeric changes in SecA during protein translocation, a non-dissociable SecA dimer was formed by oxidation of the carboxyl-terminal cysteines. The cross-linked SecA dimer interacts with the SecYEG complex with a similar stoichiometry as non-cross-linked SecA. Cross-linking reversibly disrupts the SecB binding site on SecA. However, in the absence of SecB, the activity of the disulfide-bonded SecA dimer is indistinguishable from wild-type SecA. Moreover, SecYEG binding stabilizes a cold sodium dodecylsulfate-resistant dimeric state of SecA. The results demonstrate that dissociation of the SecA dimer is not an essential feature of the protein translocation reaction.  相似文献   

8.
The SecA nanomotor promotes protein translocation in eubacteria by binding both protein cargo and the protein-conducting channel and by undergoing ATP-driven conformation cycles that drive this process. There are conflicting reports about whether SecA functions as a monomer or dimer during this dynamic process. Here we reexamined the roles of the amino and carboxyl termini of SecA in promoting its dimerization and functional state by examining three secA mutants and the corresponding proteins: SecAΔ8 lacking residues 2 to 8, SecAΔ11 lacking residues 2 to 11, and SecAΔ11/N95 lacking both residues 2 to 11 and the carboxyl-terminal 70 residues. We demonstrated that whether SecAΔ11 or SecAΔ11/N95 was functional for promoting cell growth depended solely on the vivo level of the protein, which appeared to govern residual dimerization. All three SecA mutant proteins were defective for promoting cell growth unless they were highly overproduced. Cell fractionation revealed that SecAΔ11 and SecAΔ11/N95 were proficient in membrane association, although the formation of integral membrane SecA was reduced. The presence of a modestly higher level of SecAΔ11/N95 in the membrane and the ability of this protein to form dimers, as detected by chemical cross-linking, were consistent with the higher level of secA expression and better growth of the SecAΔ11/N95 mutant than of the SecAΔ11 mutant. Biochemical studies showed that SecAΔ11 and SecAΔ11/N95 had identical dimerization defects, while SecAΔ8 was intermediate between these proteins and wild-type SecA in terms of dimer formation. Furthermore, both SecAΔ11 and SecAΔ11/N95 were equally defective in translocation ATPase specific activity. Our studies showed that the nonessential carboxyl-terminal 70 residues of SecA play no role in its dimerization, while increasing the truncation of the amino-terminal region of SecA from 8 to 11 residues results in increased defects in SecA dimerization and poor in vivo function unless the protein is highly overexpressed. They also clarified a number of conflicting previous reports and support the essential nature of the SecA dimer.  相似文献   

9.
The SecA ATPase drives the processive translocation of the N terminus of secreted proteins through the cytoplasmic membrane in eubacteria via cycles of binding and release from the SecYEG translocon coupled to ATP turnover. SecA forms a physiological dimer with a dissociation constant that has previously been shown to vary with temperature and ionic strength. We now present data showing that the oligomeric state of SecA in solution is altered by ligands that it interacts with during protein translocation. Analytical ultracentrifugation, chemical cross-linking, and fluorescence anisotropy measurements show that the physiological dimer of SecA is monomerized by long-chain phospholipid analogues. Addition of wild-type but not mutant signal sequence peptide to these SecA monomers redimerizes the protein. Physiological dimers of SecA do not change their oligomeric state when they bind signal sequence peptide in the compact, low temperature conformational state but polymerize when they bind the peptide in the domain-dissociated, high-temperature conformational state that interacts with SecYEG. This last result shows that, at least under some conditions, signal peptide interactions drive formation of new intermolecular contacts distinct from those stabilizing the physiological dimer. The observations that signal peptides promote conformationally specific oligomerization of SecA while phospholipids promote subunit dissociation suggest that the oligomeric state of SecA could change dynamically during the protein translocation reaction. Cycles of SecA subunit recruitment and dissociation could potentially be employed to achieve processivity in polypeptide transport.  相似文献   

10.
Ding H  Hunt JF  Mukerji I  Oliver D 《Biochemistry》2003,42(29):8729-8738
SecA ATPase promotes the biogenesis of membrane and secretory proteins into and across the cytoplasmic membrane of Eubacteria. SecA binds to translocon component SecYE and substrate proteins and undergoes ATP-dependent conformational cycles that are coupled to the stepwise translocation of proteins. Our recent crystal structure of B. subtilis SecA [Hunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhofer, J. (2002) Science 297, 2018-2026] showed two different dimer interactions in the lattice which both buried significant solvent-accessible surface area in their interface and could potentially be responsible for formation of the physiological dimer in solution. In this paper, we utilize fluorescence resonance energy transfer methodology with genetically engineered SecA proteins containing unique pairs of tryptophan and fluorophore-labeled cysteine residues to determine the oligomeric structure of SecA protein in solution. Our results show that of the two dimers interactions observed in the crystal structure, SecA forms an antiparallel dimer in solution that maximizes the buried solvent-accessible surface area and intermolecular contacts. At the submicromolar protein concentrations used in the fluorescence experiments, we saw no evidence for the formation of higher-order oligomers of SecA based on either the alternative dimer or the 3(1) helical fiber observed in the crystal lattice. Our studies are consistent with previous ones demonstrating the existence of a dimerization determinant within the C-domain of SecA as well as those documenting the interaction of N- and C-domains of SecA. Our results also provide a valuable starting point for a determination of whether the subunit status of SecA changes during the protein translocation as well as studies designed to elucidate the conformational dynamics of this multidomain protein during its translocation cycle.  相似文献   

11.
SecA ATPase motor protein plays a central role in bacterial protein transport by binding substrate proteins and the SecY channel complex and utilizing its ATPase activity to drive protein translocation across the plasma membrane. SecA has been shown to exist in a dynamic monomer–dimer equilibrium modulated by translocation ligands, and multiple structural forms of the dimer have been crystallized. Since the structural form of the dimer remains a controversial and unresolved question, we addressed this matter by engineering ρ‐benzoylphenylalanine along dimer interfaces corresponding to the five different SecA X‐ray structures and assessing their in vivo photo‐crosslinking pattern. A discrete anti‐parallel 1M6N‐like dimer was the dominant if not exclusive dimer found in vivo, whether SecA was cytosolic or in lipid or SecYEG‐bound states. SecA bound to a stable translocation intermediate was crosslinked in vivo to a second SecA protomer at its 1M6N interface, suggesting that this specific dimer likely promotes active protein translocation. Taken together, our studies strengthen models that posit, at least in part, a SecA dimer‐driven translocation mechanism.  相似文献   

12.
SecYEG protein of bacteria or Sec61αβγ of eukaryotes is a universally conserved heterotrimeric protein channel complex that accommodates the partitioning of membrane proteins into the lipid bilayer as well as the secretion of proteins to the trans side of the plasma or endoplasmic reticular membrane, respectively. SecYEG function is facilitated by cytosolic partners, mainly a nascent chain-ribosome complex or the SecA ATPase motor protein. Extensive efforts utilizing both biochemical and biophysical approaches have been made to determine whether SecYEG functions as a monomer or a dimer, but such approaches have often generated conflicting results. Here we have employed site-specific in vivo photo-cross-linking or cysteine cross-linking, along with co-immunoprecipitation or SecA footprinting techniques to readdress this issue. Our findings show that the SecY dimer to monomer ratio is relatively constant regardless of whether translocons are actively engaged with protein substrate or not. Under the former conditions the SecY dimer can be captured associated with a translocon-jammed substrate, indicative of SecY dimer function. Furthermore, SecA ATPase can be cross-linked to two copies of SecY when the complex contains a translocation intermediate. Collectively, our results suggest that SecYEG dimers are functional units of the translocon.  相似文献   

13.
G Matsumoto  T Yoshihisa    K Ito 《The EMBO journal》1997,16(21):6384-6393
SecA, the preprotein-driving ATPase in Escherichia coli, was shown previously to insert deeply into the plasma membrane in the presence of ATP and a preprotein; this movement of SecA was proposed to be mechanistically coupled with preprotein translocation. We now address the role played by SecY, the central subunit of the membrane-embedded heterotrimeric complex, in the SecA insertion reaction. We identified a secY mutation (secY205), affecting the most carboxyterminal cytoplasmic domain, that did not allow ATP and preprotein-dependent productive SecA insertion, while allowing idling insertion without the preprotein. Thus, the secY205 mutation might affect the SecYEG 'channel' structure in accepting the preprotein-SecA complex or its opening by the complex. We isolated secA mutations that allele-specifically suppressed the secY205 translocation defect in vivo. One mutant protein, SecA36, with an amino acid alteration near the high-affinity ATP-binding site, was purified and suppressed the in vitro translocation defect of the inverted membrane vesicles carrying the SecY205 protein. The SecA36 protein could also insert into the mutant membrane vesicles in vitro. These results provide genetic evidence that SecA and SecY specifically interact, and show that SecY plays an essential role in insertion of SecA in response to a preprotein and ATP and suggest that SecA drives protein translocation by inserting into the membrane in vivo.  相似文献   

14.
Tyr-326 plays a critical role in controlling SecA-preprotein interaction   总被引:1,自引:0,他引:1  
SecA is an essential ATP-dependent motor protein that interacts with the preprotein and translocon to drive protein translocation across the eubacterial plasma membrane. A region containing residues 267-340 has been proposed to comprise the preprotein binding site of Escherichia coli SecA. To elucidate the function of this region further, we isolated mutants using a combination of region-specific polymerase chain reaction (PCR) mutagenesis and a genetic and biochemical screening procedure. Although this region displayed considerable plasticity based on phylogenetic and genetic analysis, Tyr-326 was found to be critical for SecA function. secA mutants with non-conservative substitutions at Tyr-326 showed strong protein secretion defects in vivo and were completely defective for SecA-dependent translocation ATPase activity in vitro. The SecA-Y326 mutant proteins were normal in their membrane, SecYE and nucleotide-binding properties. However, they exhibited a reduced affinity for preprotein and were defective in preprotein release, as assessed by several biochemical assays. Our results indicate that the region containing Tyr-326 functions as a conformational response element to regulate the preprotein binding and release cycle of SecA.  相似文献   

15.
Kato Y  Nishiyama K  Tokuda H 《FEBS letters》2003,550(1-3):114-118
SecA and an apparatus comprising SecYEG and SecDF-YajC complexes catalyze protein translocation across the Escherichia coli membrane. SecDF-YajC and SecG facilitate membrane insertion of SecA, which is the driving force for protein translocation. Here we report that SecDF-YajC depletion together with SecG depletion nearly completely inhibits protein translocation both in vivo and in vitro, although SecDF-YajC had been thought to be unnecessary for in vitro translocation. The level of SecG in membranes decreased to about half upon SecDF-YajC depletion and recovered to a normal level when SecDF-YajC was expressed. SecDF-YajC inhibited disulfide bond formation between two SecG molecules possessing a single cysteine residue. These results suggest functional interaction between SecDF-YajC and SecG.  相似文献   

16.
SecG, a membrane component of the protein translocation apparatus of Escherichia coli, undergoes membrane topology inversion, which is coupled to the membrane insertion and deinsertion cycle of SecA. Eighteen SecG derivatives possessing a single cysteine residue at various positions were constructed and expressed in a secG null mutant. All the SecG-Cys derivatives retained the SecG function, and stimulated protein translocation both in vivo and in vitro. Inverted membrane vesicles containing a SecG-Cys derivative were labeled with a membrane-permeable or -impermeable sulfhydryl reagent before or after solubilization with a detergent. The accessibility of these reagents to the cysteine residue of each derivative determined the topological arrangement of SecG in the membrane. Derivatives having the cysteine residue in the periplasmic region each existed as a homodimer crosslinked through disulfide bonds, indicating that two SecG molecules closely co-exist in a single translocation machinery. The crosslinking did not abolish the SecG function and the crosslinked SecG dimer underwent topology inversion upon protein translocation.  相似文献   

17.
Bacterial protein export requires two forms of energy input, ATP and the membrane electrochemical potential. Using an in vitro reaction reconstituted with purified soluble and peripheral membrane components, we can now directly measure the translocation-coupled hydrolysis of ATP. This translocation ATPase requires inner membrane vesicles, SecA protein and translocation-competent proOmpA. The stimulatory activity of membrane vesicles can be blocked by either antibody to the SecY protein or by preparing the membranes from a secY-thermosensitive strain which had been incubated at the non-permissive temperature in vivo. The SecA protein itself has more than one ATP binding site. 8-azido-ATP inactivates SecA for proOmpA translocation and for translocation ATPase, yet does not inhibit a low level of ATP hydrolysis inherent in the isolated SecA protein. These data show that the SecA protein has a central role in coupling the hydrolysis of ATP to the transfer of pre-secretory proteins across the membrane.  相似文献   

18.
In bacteria, the Sec-protein transport complex facilitates the passage of most secretory and membrane proteins across and into the plasma membrane. The core complex SecYEG forms the protein channel and engages either ribosomes or the ATPase SecA, which drive translocation of unfolded polypeptide chains through the complex and into the periplasmic space. Escherichia coli SecYEG forms dimers in membranes, but in detergent solution the population of these dimers is low. However, we find that stable dimers can be assembled by the addition of a monoclonal antibody. Normally, a stable SecYEG-SecA complex can only form on isolated membranes or on reconstituted proteo-liposomes. The antibody-stabilised SecYEG dimer binds one SecA molecule in detergent solution. In the presence of AMPPNP, a non-hydrolysable analogue of ATP, a complex forms containing one antibody and two each of SecYEG and SecA. SecYEG monomers or tetramers do not associate to a significant degree with SecA. The observed variability in the stoichiometry of SecYEG and SecA association and its nucleotide modulation may be important and necessary for the protein translocation reaction.  相似文献   

19.
A cold-sensitive secY mutant (secY125) with an amino acid substitution in the first periplasmic domain causes in vivo retardation of protein export. Inverted membrane vesicles prepared from this mutant were as active as the wild-type membrane vesicles in translocation of a minute amount of radioactive preprotein. The mutant membrane also allowed enhanced insertion of SecA, and this SecA insertion was dependent on the SecD and SecF functions. These and other observations suggested that the early events in translocation, such as SecA-dependent insertion of the signal sequence region, is actually enhanced by the SecY125 alteration. In contrast, since the mutant membrane vesicles had decreased capacity to translocate chemical quantity of pro-OmpA and since they were readily inactivated by pretreatment of the vesicles under the conditions in which a pro-OmpA translocation intermediate once accumulated, the late translocation functions appear to be impaired. We conclude that this periplasmic secY mutation causes unbalanced early and late functions in translocation, compromising the translocase's ability to catalyze multiple rounds of reactions.  相似文献   

20.
The secY205 mutant is cold-sensitive for protein export, with an in vitro defect in supporting ATP- and preprotein-dependent insertion of SecA into the membrane. We characterized SecA81 with a Gly516 to Asp substitution near the minor ATP-binding region, which suppresses the secY205 defect at low temperature and exhibits an allele-specific synthetic defect with the same SecY alteration at 42 degrees C. The overproduced SecA81 aggregated in vivo at temperatures above 37 degrees C. Purified SecA81 exhibited markedly enhanced intrinsic and membrane ATPase activities at 30 degrees C, while it was totally inactive at 42 degrees C. The trypsin digestion patterns indicated that SecA81 has some disorder in the central region of SecA, which encompasses residues 421-575. This conformational abnormality may result in unregulated ATPase at low temperature as well as the thermosensitivity of the mutant protein. In the presence of both proOmpA and the wild-type membrane vesicles, however, the thermosensitivity was alleviated, and SecA81 was able to catalyze significant levels of proOmpA-stimulated ATP hydrolysis as well as proOmpA translocation at 42 degrees C. While SecA81 was able to overcome the SecY205 defect at low temperature, the SecY205 membrane vesicles could not significantly support the translocation ATPase or the proOmpA translocation activity of SecA81 at 42 degrees C. The inactivated SecA81 molecules seemed to jam the translocase since it interfered with translocase functions at 42 degrees C. Based on these results, we propose that under preprotein-translocating conditions, the SecYEG channel can stabilize and activate SecA, and that this aspect is defective for the SecA81-SecY205 combination. The data also suggest that the conformation of the central region of SecA is important for the regulation of ATP hydrolysis and for the productive interaction of SecA with SecY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号