首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Sensitive to apoptosis gene (SAG) protein, a novel zinc RING finger protein that protects mammalian cells from apoptosis by redox reagents, is a metal chelator and a potential reactive oxygen species (ROS) scavenger, but its antioxidant properties have not been completely defined. Nitric oxide (NO), a radical species produced by many types of cells, is known to play a critical role in many regulatory processes, yet it may also participate in collateral reactions at higher concentrations, leading to cellular oxidative stress. In this report, we demonstrate that modulation of SAG expression in U937 cells regulates NO-induced apoptosis. When we examined the protective role of SAG against NO-induced apoptosis with U937 cells transfected with the cDNA for SAG, a clear inverse relationship was observed between the amount of SAG expressed in target cells and their susceptibility to apoptosis. We also observed the significant decrease in the endogenous production of ROS and oxidative DNA damage in SAG-overexpressed cells compared to control cells upon exposure to NO. These results suggest that SAG plays an important protective role in NO-induced apoptosis, presumably, through regulating the cellular redox status.  相似文献   

2.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Therefore, compounds that scavenge reactive oxygen species may regulate heat shock-induced cell death. Recently, it has been shown that the decomposition product of the spin-trapping agent alpha-phenyl-N-t-butylnitrone, N-t-butyl hydroxylamine (NtBHA), mimics alpha-phenyl-N-t-butylnitrone and is much more potent in delaying reactive oxygen species-associated senescence. We investigated the protective role of NtBHA against heat shock-induced apoptosis in U937 cells. Upon exposure to heat shock, there was a distinct difference between the untreated cells and the cells pre-treated with 0.1 mM NtBHA for 2 h in regard to apoptotic parameters, cellular redox status, and mitochondrial function. Upon exposure to heat shock, NtBHA pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax, and down-regulation of Bcl-2 compared to untreated cells. This study indicates that NtBHA may play an important role in regulating the apoptosis induced by heat shock, presumably through scavenging of reactive oxygen species.  相似文献   

3.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) by supplying NADPH for antioxidant systems. The protective role of ICDH against heat shock-induced apoptosis in U937 cells was investigated in the control and the cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to heat shock, there was a distinct difference between the control cells and the cells pre-treated with 3mM oxalomalate for 3h in regard to apoptotic parameters, cellular redox status, and mitochondrial function. The oxalomalate pre-treated cells showed significant enhancement of apoptotic features such as activation of caspase-3, up-regulation of Bax, and down-regulation of Bcl-2 compared to the control cells upon exposure to heat shock. This study indicates that ICDH may play an important role in regulating the apoptosis induced by heat shock presumably through maintaining the cellular redox status.  相似文献   

4.
Kim SY  Yang ES  Lee YS  Lee J  Park JW 《Biochimie》2011,93(2):269-276
Organisms exposed to ionizing radiation (IR) undergo increases in the production of reactive oxygen species (ROS), which are determinant components in the induction of apoptosis. Sensitive to apoptosis gene (SAG) encodes a redox-inducible and apoptosis-protective antioxidant protein. This report demonstrates that the modulation of SAG expression in cultured cells regulates IR-induced apoptosis. A protective role for SAG against IR-induced apoptosis was found in U937 cells transfected with SAG cDNA. A significant decrease in the endogenous production of ROS was also observed in SAG over-expressing cells, compared to control cells, exposed to 2 Gy γ-irradiation. These results suggest that SAG plays an important role in regulating IR-induced apoptosis, presumably by maintaining the cellular redox status. Because SAG is over-expressed in many human cancers, targeting SAG expression may have therapeutic value in cancer treatment. Transfection of the pancreatic cancer cell line PC3 with SAG small interfering RNA markedly attenuated the expression of SAG, augmenting their susceptibility to IR-induced apoptosis. The knockdown of SAG expression by RNA interference combined with radiotherapy may be a potential method for radiosensitization.  相似文献   

5.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDPm) produces NADPH, an essential reducing equivalent for the antioxidant system. In this report, we demonstrate that silencing of IDPm expression in HeLa cells greatly enhances apoptosis induced by heat shock. Transfection of HeLa cells with an IDPm small interfering RNA (siRNA) markedly decreased activity of IDPm, enhancing the susceptibility of heat shock-induced apoptosis reflected by morphological evidence of apoptosis, DNA fragmentation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. These results indicate that IDPm may play an important role in regulating the apoptosis induced by heat shock and the sensitizing effect of IDPm siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer therapy.  相似文献   

6.
《Free radical research》2013,47(8):864-870
Abstract

Actinomycin D and etoposide induce the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Sensitive to apoptosis gene (SAG) protein, a redox inducible zinc RING finger protein that protects mammalian cells from apoptosis by redox reagents, is a metal chelator and a potential reactive oxygen species scavenger. The present report show that knockdown of SAG expression in PC3 cells greatly enhances apoptosis induced by actinomycin D and etoposide. Transfection of human prostate cancer PC3 cells with SAG small interfering RNA (siRNA) markedly decreased the expression of SAG, enhancing the susceptibility of actinomycin D- and etoposide-induced apoptosis reflected by DNA fragmentation, cellular redox status and the modulation of apoptotic marker proteins. These results indicate that SAG may play an important role in regulating the apoptosis induced by actinomycin D and etoposide and the sensitizing effect of SAG siRNA on the apoptotic cell death of PC3 cells offers the possibility of developing a modifier of cancer chemotherapy.  相似文献   

7.
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. By supplying NADPH for antioxidant systems, we recently demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are some of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm). In this study, we demonstrate that modulation of IDPm activity in U937 cells regulates ionizing radiation-induced apoptosis. When we examined the regulatory role of IDPm against ionizing radiation-induced apoptosis in U937 cells transfected with the cDNA for mouse IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPm expressed in target cells and their susceptibility to apoptosis. Upon exposure to 2 gray gamma-irradiation, there was a distinct difference between the IDPm transfectant cells in regard to the morphological evidence of apoptosis, DNA fragmentation, cellular redox status, oxidative damage to cells, mitochondrial function, and the modulation of apoptotic marker proteins. In addition, transfection of HeLa cells with an IDPm small interfering RNA decreased the activity of IDPm, enhancing the susceptibility of radiation-induced apoptosis. Taken together, these results indicate that IDPm may play an important role in regulating the apoptosis induced by ionizing radiation, and the effect of IDPm small interfering RNA on HeLa cells offers the possibility of developing a modifier of radiation therapy.  相似文献   

8.
Choi IY  Park JW 《Free radical research》2003,37(10):1099-1105
Heat shock may increase oxidative stress due to increased production of reactive oxygen species (ROS) and/or the promotion of cellular oxidation events. Cytosolic NADP
+
-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against heat shock in U937 cells was investigated in control and cells treated with oxlalomalate, a competitive inhibitor of ICDH. Upon exposure to heat shock, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of ROS, as measured by the oxidation of 2'7'-dichlorodihydrofluorescin in U937 cells treated with oxalomalate. These results suggest that ICDH plays an important role as an antioxidant defense enzyme in cellular defense against heat shock through the removal of ROS.  相似文献   

9.
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. We investigated the effects of the manganese (III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 5 microM MnTMPyP for 2 h with regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. MnTMPyP effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP(+)+NADPH] ratio was lower in control cells compared to MnTMPyP-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to MnTMPyP-treated cells. MnTMPyP pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that MnTMPyP may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.  相似文献   

10.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of IDPm against heat shock in HEK293 cells, an embryonic kidney cell line, was investigated in control and cells transfected with the cDNA for IDPm, where IDPm activity was 6-7 fold higher than that in the control cells carrying the vector alone. Upon exposure to heat shock, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage were higher in control cells as compared to HEK293 cells in which IDPm was over-expressed. We also observed the significant difference in the cellular redox status reflected by the endogenous production of reactive oxygen species, NADPH pool and GSH recycling between two cells. The results suggest that IDPm plays an important role as an antioxidant defense enzyme in cellular defense against heat shock through the removal of reactive oxygen species.  相似文献   

11.
A high concentration of glucose has been implicated as a causal factor in initiation and progression of diabetic complications and there is evidence to suggest that hyperglycemia increases the production of free radicals and oxidative stress. Therefore, compounds that scavenge reactive oxygen species (ROS) may confer regulatory effects on high glucose-induced apoptosis. Ursolic acid (UA), a pentacyclic triterpene, is reported to have an antioxidant activity. We investigated the effect of UA on high glucose-induced apoptosis in U937 cells. Upon exposure to 35 mM glucose for two days, there was a distinct difference between untreated cells and cells pre-treated with 50 nM UA for 2 h in regard to cellular redox status and oxidative DNA damage to cells. UA pre-treated cells showed significant suppression of apoptotic features such as DNA fragmentation, damage to mitochondrial function and modulation of apoptotic marker proteins upon exposure to high glucose. This study indicates that UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS.  相似文献   

12.
《Free radical research》2013,47(8):962-972
Abstract

Oxidative stress, associated with the accumulation of reactive oxygen species (ROS), results in numerous and detrimental effects on the myocardium such as the induction of apoptotic cell death, hypertrophy, fibrosis, dysfunction, and dilatation. The product of sensitive to apoptosis gene (SAG) is a RING finger protein that has been shown to have a protective effect against apoptosis induced by oxidative stress in various cell types. The major reactive aldehydic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), is believed to be largely responsible for cytopathological effects observed during oxidative stress. In the present study, we showed that the transfection of H9c2 clonal myoblastic cells with small interfering RNA (siRNA) specific for SAG markedly attenuated SAG expression and exacerbates HNE-induced apoptosis and hypertrophy. The knockdown of SAG expression resulted in the modulation of cellular redox status, mitochondrial function, and cellular oxidative damage. Taken together, our results showed that the suppression of SAG expression by siRNA enhanced HNE-induced apoptosis and hypertrophy of cultured cardiomyocytes via the disruption of the cellular redox balance. Given the importance of the SAG protein in the regulation of the redox status of cardiomyocytes, we conclude that this protein may be a potential new target in the development of therapeutic agents for the prevention of cardiovascular diseases.  相似文献   

13.
A high concentration of glucose has been implicated as a causal factor in initiation and progression of diabetic complications and there is evidence to suggest that hyperglycemia increases the production of free radicals and oxidative stress. Therefore, compounds that scavenge reactive oxygen species (ROS) may confer regulatory effects on high glucose-induced apoptosis. Ursolic acid (UA), a pentacyclic triterpene, is reported to have an antioxidant activity. We investigated the effect of UA on high glucose-induced apoptosis in U937 cells. Upon exposure to 35 mM glucose for two days, there was a distinct difference between untreated cells and cells pre-treated with 50 nM UA for 2 h in regard to cellular redox status and oxidative DNA damage to cells. UA pre-treated cells showed significant suppression of apoptotic features such as DNA fragmentation, damage to mitochondrial function and modulation of apoptotic marker proteins upon exposure to high glucose. This study indicates that UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS.  相似文献   

14.
Yang ES  Park JW 《Biochimie》2006,88(7):869-878
Nitric oxide (NO), a radical species produced by many types of cells, is known to play a critical role in many regulatory processes, yet it may also participate in collateral reactions at higher concentrations, leading to cellular oxidative damage. The protective role of antioxidant enzymes against NO-induced oxidative damage in U937 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole, and oxlalomalate, specific inhibitors of superoxide dismutase, catalase, and NADP(+)-dependent isocitrate dehydrogenase, respectively. Upon exposure to 1 mM S-nitroso-N-acetylpenicillamine (SNAP), the nitric oxide donor, to U937 cells, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in inhibitor-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2'7'-dichlorodihydrofluorescin as well as the significant decrease in the intracellular GSH level in inhibitor-treated U937 cells upon exposure to NO. Upon exposure to 0.2 mM SNAP, which induced apoptotic cell death, a clear inverse relationship was observed between the control and inhibitor-treated U937 cells in their susceptibility to apoptosis. These results suggest that antioxidant enzymes play an important role in cellular defense against NO-induced cell death including necrosis and apoptosis.  相似文献   

15.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDPm) produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of IDPm against heat shock in HEK293 cells, an embryonic kidney cell line, was investigated in control and cells transfected with the cDNA for IDPm, where IDPm activity was 6–7 fold higher than that in the control cells carrying the vector alone. Upon exposure to heat shock, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage were higher in control cells as compared to HEK293 cells in which IDPm was over-expressed. We also observed the significant difference in the cellular redox status reflected by the endogenous production of reactive oxygen species, NADPH pool and GSH recycling between two cells. The results suggest that IDPm plays an important role as an antioxidant defense enzyme in cellular defense against heat shock through the removal of reactive oxygen species.  相似文献   

16.
Lee JH  Tak JK  Park KM  Park JW 《Biochimie》2007,89(12):1509-1516
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Recently, it has been shown that the decomposition product of the spin-trapping agent α-phenyl-N-t-butylnitrone, N-t-butyl hydroxylamine (NtBHA), mimics α-phenyl-N-t-butylnitrone and is much more potent in delaying reactive oxygen species-associated senescence. We investigated the effects of NtBHA on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of γ-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 0.1 mM NtBHA for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. NtBHA effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The generation of intracellular reactive oxygen species was higher and the GSH level was lower in control cells compared to NtBHA-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to NtBHA-treated cells. NtBHA pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that NtBHA may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.  相似文献   

17.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.  相似文献   

18.
In yeast, as in higher eukaryotes, reactive oxygen species are produced as normal by-products of cellular metabolism. Under physiological conditions, the cell defence mechanisms are able to avoid molecular damages. This balance is disturbed when yeast cells are exposed to diverse environmental stress conditions, such as the presence of oxidants, heat shock, ethanol and metal ions. The increased production of reactive oxygen species is sensed by the cell, leading to the induction of defence mechanisms - the oxidative stress response. The present review discusses the mechanisms by which reactive oxygen species are sensed and the signalling pathways that are coupled with changes in genomic expression programs. Yeast has been used as an eukaryotic cell system to characterise the molecular mechanisms underlying the oxidative stress response. Furthermore, yeast has been utilised to elucidate the role of oxidative stress in ageing, apoptosis, and diseases, such as familial amyotrophic lateral sclerosis and Friedreich's ataxia.  相似文献   

19.
20.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号