首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor tyrosine kinases (RTKs) play distinct roles in multiple biological systems. Many RTKs transmit similar signals, raising questions about how specificity is achieved. One potential mechanism for RTK specificity is control of the magnitude and kinetics of activation of downstream pathways. We have found that the protein tyrosine phosphatase Shp2 regulates the strength and duration of phosphatidylinositol 3'-kinase (PI3K) activation in the epidermal growth factor (EGF) receptor signaling pathway. Shp2 mutant fibroblasts exhibit increased association of the p85 subunit of PI3K with the scaffolding adapter Gab1 compared to that for wild-type (WT) fibroblasts or Shp2 mutant cells reconstituted with WT Shp2. Far-Western analysis suggests increased phosphorylation of p85 binding sites on Gab1. Gab1-associated PI3K activity is increased and PI3K-dependent downstream signals are enhanced in Shp2 mutant cells following EGF stimulation. Analogous results are obtained in fibroblasts inducibly expressing dominant-negative Shp2. Our results suggest that, in addition to its role as a positive component of the Ras-Erk pathway, Shp2 negatively regulates EGF-dependent PI3K activation by dephosphorylating Gab1 p85 binding sites, thereby terminating a previously proposed Gab1-PI3K positive feedback loop. Activation of PI3K-dependent pathways following stimulation by other growth factors is unaffected or decreased in Shp2 mutant cells. Thus, Shp2 regulates the kinetics and magnitude of RTK signaling in a receptor-specific manner.  相似文献   

2.
3.
IL-10 is well known to be a potent inhibitor of the synthesis of proinflammatory cytokines, but noninflammatory hemopoietic cells also express IL-10Rs. Here we show that IL-10 directly affects progenitor myeloid cells by protecting them from death following the removal of growth factors. Murine factor-dependent cell progenitors cultured in the absence of growth factors were 43 +/- 1% apoptotic after 12 h. Addition of IL-10 at a concentration as low as 100 pg/ml significantly reduced the apoptotic population to 32 +/- 3%. At 10 ng/ml, IL-10 caused a 4-fold reduction in the apoptotic population (11 +/- 1%). The anti-apoptotic activity of IL-10 was significantly inhibited with a neutralizing IL-10R Ab. Factor-dependent cell progenitor promyeloid cells expressed functional IL-10Rs, as assessed by precipitation of a 110-kDa protein with an Ab to the IL-10R and by the ability of IL-10 to activate Jak1 and Tyk2 and to phosphorylate tyrosine 705 on Stat-3. IL-10 increased tyrosyl phosphorylation of insulin receptor substrate-2 and stimulated the enzymatic activity of both phosphatidylinositol 3'-kinase and Akt. The anti-apoptotic activity of IL-10 was blocked by inhibition of phosphatidylinositol 3'-kinase. Wortmannin and LY294002 also totally inhibited activation of extracellular signal-related kinase (ERK)1/2 by IL-10. Direct inhibition of ERK1/2 with the mitogen-activated protein kinase/ERK kinase inhibitor PD98059 partially, but significantly, impaired the anti-apoptotic activity of IL-10. These data establish that activation of the IL-10R promotes survival of progenitor myeloid cells. This survival-promoting activity is totally due to IL-10 stimulating the insulin receptor substrate-2/PI 3-kinase/Akt pathway, which increases the anti-apoptotic activity of ERK1/2.  相似文献   

4.
Interleukin-2 (IL-2) stimulates proliferation of T lymphocytes and is involved in the activation of both natural killer and lymphokine-activated killer precursor cells. The intracellular messengers which mediate IL-2-dependent events have not yet been identified. IL-2 receptor is not a protein-tyrosine kinase. Activation of a cellular protein-tyrosine kinase and direct association of a protein-tyrosine kinase activity with the IL-2 receptor occurs within minutes of IL-2 stimulation. We investigated the activation of phosphatidylinositol 3-kinase (PI 3-kinase) in IL-2-mediated signal transduction using the IL-2-dependent murine T-cell line, CTLL-2, and human phytohemagglutinin-stimulated peripheral blood lymphocytes (phytohemagglutinin blasts). Within a minute following stimulation of these cells with IL-2, PI 3-kinase activity could be detected in antiphosphotyrosine (anti-P-Tyr) antibody immunoprecipitates. IL-2 triggered a direct association of PI 3-kinase with the IL-2 receptor as detected in immunoprecipitates using anti-IL-2 receptor beta chain antibody. In vivo labeled CTLL-2 cells have a time-dependent increase in D-3-phosphorylated polyphosphoinositides following stimulation with IL-2. This is the first group of second messengers identified in IL-2-mediated signal transduction.  相似文献   

5.
AIMS: Thiazolidinediones increase circulating adiponectin. We have previously demonstrated the involvement of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in insulin-stimulated adiponectin secretion. We therefore investigated the effects of the thiazolidinedione pioglitazone on acute adiponectin secretion, and the involvement of the PI3K signaling pathway in this action. MAIN METHODS: We treated murine 3T3-L1 and human primary adipocytes with 1-10 uM pioglitazone for 2 h, +/-PI3K inhibition by Wortmannin (WT). Secreted adiponectin was measured by Western blot. PI3K activity following 15-minute treatments with 1-10 uM pioglitazone was measured by thin layer chromatography. Pioglitazone's effect on adiponectin synthesis and on secretion of newly synthesized adiponectin was studied in 3T3-L1 adipocytes using a pulse-chase technique. KEY FINDINGS: Pioglitazone was found to increase adiponectin secretion and PI3K activity in a dose-dependent manner from 3T3-L1 and human adipocytes. In 3T3-L1 adipocytes, 10 uM pioglitazone increased adiponectin secretion by 84+/-14% (p<0.0001) at 2 h. Similarly, in human adipocytes there was a 56+/-18% (p<0.02) increase in secretion. WT blocked the pioglitazone effect and decreased adiponectin secretion at 2 h (47% of pioglitazone treated, p<0.006). Pioglitazone increased PI3K activity in a dose-dependent manner in both 3T3-L1 (1.7 vs. 2.7-fold increase over control at 2 uM vs. 10 uM dose, p=0.02) and human adipocytes. SIGNIFICANCE: Our data show that pioglitazone acutely stimulates adiponectin secretion from both 3T3-L1 and human adipocytes. This acute effect of pioglitazone is PI3K-dependent.  相似文献   

6.
We have examined the characteristics of the adenylate cyclase system from control and butyrate-treated cells. Butyrate treatment results in both an increased number of catecholamine receptors and an induction of a response to the hormone, as reported previously (Tallman, J.F., Smith, C.C., and Henneberry, R.C. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 873-877); in addition, we found that the same treatment reduces the degree of activation of adenylate cyclase by GTP. We have demonstrated in two cell types that this decrease in GTP activation is inversely related to the degree of induction of the hormone response. Furthermore, in plasma membranes isolated from butyrate-treated cells, the hormone receptor is sensitive to GTP; i.e. GTP reduces the affinity of isoproterenol for the receptor. We propose that these changes reflect an interaction between the beta-adrenergic receptor and the nucleotide regulatory component and that this interaction represents, at least in part, the process of coupling. Several possible mechanisms which can account for the change in GTP activation are discussed in terms of our current understanding of the regulation of the adenylate cyclase system.  相似文献   

7.
We previously demonstrated that erbB-2-overexpressing human mammary epithelial (HME) cells exhibit several transformed phenotypes including growth factor independence, anchorage-independent growth, motility, and invasiveness. Because phosphatidylinositol 3'-kinase (PI3K) is a major target of erbB-2 activation, we tested the contribution that PI3K and its downstream signaling pathways make to these phenotypes. Utilizing a constitutively active form of PI3K, p110CAAX, we show that PI3K can mediate most phenotypes observed in erbB-2-overexpressing cells. To identify pathways leading from PI3K to specific phenotypes, we expressed constitutively active AKT or PTEN in erbB-2-overexpressing cells or in HME cells. HME cells expressing constitutively active AKT were growth factor independent, anchorage independent and motile, but not invasive. PTEN expression blocked erbB-2-mediated invasion but none of the other phenotypes. Rottlerin blocked invasion induced by p110CAAX and erbB-2, suggesting that protein kinase C delta (PKC-delta) is the downstream effector of PI3K responsible for the invasive capacity of the cells. Consistent with these observations, phospho-AKT remained detectable in erbB-2 cells treated with LY294002 or expressing exogenous PTEN, but was abolished by treatment with the p38MAP kinase inhibitor SB202190. Thus, both PI3K-dependent and p38MAP kinase-dependent pathways lead to activation of AKT, and activation of PKC-delta, via PI3K, mediates invasion.  相似文献   

8.
We have developed a polyclonal antibody that activates the heterodimeric p85-p110 phosphatidylinositol (PI) 3'-kinase in vitro and in microinjected cells. Affinity purification revealed that the activating antibody recognized the N-terminal SH2 (NSH2) domain of p85, and the antibody increased the catalytic activity of recombinant p85-p110 dimers threefold in vitro. To study the role of endogenous PI 3'-kinase in intact cells, the activating anti-NSH2 antibody was microinjected into GRC + LR73 cells, a CHO cell derivative selected for tight quiescence during serum withdrawal. Microinjection of anti-NSH2 antibodies increased bromodeoxyuridine (BrdU) incorporation fivefold in quiescent cells and enhanced the response to serum. These data reflect a specific activation of PI 3'-kinase, as the effect was blocked by coinjection of the appropriate antigen (glutathione S-transferase-NSH2 domains from p85 alpha), coinjection of inhibitory anti-p110 antibodies, or treatment of cells with wortmannin. We used the activating antibodies to study signals downstream from PI 3'-kinase. Although treatment of cells with 50 nM rapamycin only partially decreased anti-NSH2-stimulated BrdU incorporation, coinjection with an anti-p70 S6 kinase antibody effectively blocked anti-NSH2-stimulated DNA synthesis. We also found that coinjection of inhibitory anti-ras antibodies blocked both serum- and anti-NSH2-stimulated BrdU incorporation by approximately 60%, and treatment of cells with a specific inhibitor of MEK abolished antibody-stimulated BrdU incorporation. We conclude that selective activation of physiological levels of PI 3'-kinase is sufficient to stimulate DNA synthesis in quiescent cells. PI 3'-kinase-mediated DNA synthesis requires both p70 S6 kinase and the P21ras/MEK pathway.  相似文献   

9.
The Src homology 2 (SH2) domains of the p85 subunit of phosphatidylinositol 3'-kinase have been shown to bind to the tyrosine-phosphorylated platelet-derived growth factor receptor (PDGFR). Previously, we have demonstrated that p85 SH2 domains can also bind to the serine/threonine kinase A-Raf via a unique phosphorylation-independent interaction. In this report, we describe a new phosphotyrosine-independent p85 SH2-binding protein, ankyrin 3 (Ank3). In general, ankyrins serve a structural role by binding to both integral membrane proteins at the plasma membrane and spectrin/fodrin proteins of the cytoskeleton. However, smaller isoforms of Ank3 lack the membrane domain and are localized to late endosomes and lysosomes. We found that p85 binds directly to these smaller 120- and 105-kDa Ank3 isoforms. Both the spectrin domain and the regulatory domain of Ank3 are involved in binding to p85. At least two domains of p85 can bind to Ank3, and the interaction involving the p85 C-SH2 domain was found to be phosphotyrosine-independent. Overexpression of the 120- or 105-kDa Ank3 proteins resulted in significantly enhanced PDGFR degradation and a reduced ability to proliferate in response to PDGF. Ank3 overexpression also differentially regulated signaling pathways downstream from the PDGFR. Chloroquine, an inhibitor of lysosomal-mediated degradation pathways, blocked the ability of Ank3 to enhance PDGFR degradation. Immunofluorescence experiments demonstrated that both small Ank3 isoforms colocalized with the lysosomal-associated membrane protein and with p85 and the PDGFR. These results suggest that Ank3 plays an important role in lysosomal-mediated receptor down-regulation, likely through a p85-Ank3 interaction.  相似文献   

10.
The major cytosolic substrate of the insulin receptor is a 185-kDa phosphoprotein (IRS-1) that contains multiple putative attachment sites for the p85 alpha regulatory subunit of phosphatidylinositol 3'-kinase (PI3K). To examine the possible interaction of pp185 with p85 alpha in vivo, we injected insulin or insulinomimetic agents (a combination of H2O2 and vanadate (H/V)) into the portal vein of anesthetized rats. IN this model system, H/V treatment and, to a lesser extent, injection of insulin resulted in rapid and sustained tyrosine phosphorylation of multiple cellular proteins, including pp185/IRS-1. The latter was found to undergo specific association with the p85 alpha regulatory subunit of PI3K but not with two other proteins that contain src homology domains. As p85 alpha was not detectably phosphorylated on tyrosine residues and did not appear to interact directly with the insulin receptor, we conclude that tyrosine phosphorylation of pp185 promotes its association with p85 alpha and the catalytic subunit of PI3K. The recruitment of the holoenzyme may also involve its enzymatic activation and thus constitute an important step in the transduction of insulin signals.  相似文献   

11.
T-cell receptor (TCR) cross-linking increases tyrosine phosphorylation of multiple proteins, only a few of which have been identified. One of the most rapidly tyrosine-phosphorylated polypeptides is the 120-kDa product of the proto-oncogene c-cbl, a cytosolic and cytoskeletal protein containing multiple proline-rich motifs that are potential binding sites for proteins containing Src homology 3 (SH3) domains. We report here that in cultured Jurkat T cells, Cbl is coprecipitated with antibody against the adapter protein Grb2. Upon activation of Jurkat T cells via the TCR-CD3 complex, we find that high-affinity binding of Cbl requires the N-terminal SH3 domain of GST-Grb2 fusion protein but after cross-linking of the TCR-CD3 and CD4 receptors, Cbl binds equally to its SH2 domain. Grb2 antisera also precipitated p85 from serum-starved cells, while TCR activation increased p85 and tyrosine-phosphorylated Cbl but not Cbl protein in Grb2 immunocomplexes. Phosphatidylinositol (PI) 3-kinase activity was immunoprecipitated from serum-starved cells with Cbl and to a lesser extent with Grb2 antisera, and TCR cross-linking increased this activity severalfold. The PI 3-kinase activity associated with Cbl amounted to 5 to 10% of the total cellular activity that could be precipitated by p85 antisera. The Ras exchange factor Son-of-sevenless 1 (Sos-1) was not found in anti-Cbl immunoprecipitates from activated cells, and Cbl was not detectable in anti-Sos-1 precipitates, supporting the likelihood that Sos-Grb2 and Cbl-Grb2 are present as distinct complexes. Taken together, these data suggest that Cbl function in Jurkat T cells involves its constitutive association with Grb2 and its recruitment of PI 3-kinase in response to TCR activation.  相似文献   

12.
CHO/IRF960/T962 cells express a mutant human insulin receptor in which Tyr960 and Ser962 in the juxtamembrane region of the receptor's beta-subunit are replaced by Phe and Thr, respectively. The mutant insulin receptor undergoes autophosphorylation normally in response to insulin; however, insulin fails to stimulate thymidine incorporation into DNA, glycogen synthesis, and tyrosyl phosphorylation of an endogenous substrate pp185 in these cells. Another putative substrate of the insulin receptor tyrosine kinase is phosphatidylinositol 3-kinase (Ptdlns 3-kinase). We have previously shown that Ptdlns 3-kinase activity in Chinese hamster ovary cells expressing the wild-type human insulin receptor (CHO/IR) increases in both antiphosphotyrosine [anti-Tyr(P)] immunoprecipitates and intact cells in response to insulin. In the present study a new technique (detection of the 85-kDa subunit of Ptdlns 3-kinase using [32P]phosphorylated polyoma virus middle T-antigen as probe) is used to monitor the Ptdlns 3-kinase protein. The 85-kDa subunit of Ptdlns 3-kinase is precipitated by anti-Tyr(P) antibodies from insulin-stimulated CHO/IR cells, but markedly less protein is precipitated from CHO/IRF960/T962 cells. The amount of Ptdlns 3-kinase activity in the immunoprecipitates was also reduced in the CHO/IRF960/T962 cells compared to CHO/IR cells. In intact CHO/IRF960/T962 cells, insulin failed to stimulate phosphate incorporation into one of the products of activated Ptdlns 3-kinase, phosphatidylinositol-3,4-bisphosphate [Ptdlns(3,4)P2], whereas it caused a 12-fold increase in CHO/IR cells. In contrast, phosphate incorporation into another product, phosphatidylinositol trisphosphate [PtdlnsP3], was only partially depressed in the CHO/IRF960/T962 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
15.
Cellular changes associated with oncogenic transformation are generally caused by deregulation of signal transduction pathways. We show that, in cells transformed by the v-crk oncogene, the adapter protein Cas forms a stable complex with the p85 regulatory subunit of phosphatidylinositol 3'-kinase (PI3K) coincident with the appearance of Cas-associated PI3K activity. The interaction between Cas and p85 PI3K appears to be driven primarily by Src-dependent tyrosine phosphorylation of Cas, and mapping studies indicate that the carboxyl terminus of Cas is necessary and sufficient for binding to p85 PI3K. One of the cellular effects of v-Crk expression is to promote DNA synthesis in the presence of low serum. This effect is potentiated in Cas-null fibroblasts when wild-type Cas is expressed, but not when a Cas variant is expressed that lacks the carboxyl-terminal p85 PI3K binding region. This suggests that the association of Cas with p85 PI3K may play a role in uncoupling growth regulatory pathways through v-Crk.  相似文献   

16.
Muscarinic receptors in the rat cerebral cortex, cardiac atria and vas deferens were identified, quantitated, and characterized relative to phosphatidylinositol (PI) turnover as the functional response to stimulation of specific receptor subtypes. Receptor densities as determined by 3H-QNB binding were ranked: cerebral cortex greater than vas deferens greater than heart. Using displacement of 3H-QNB binding by the selective M1 and M2 muscarinic receptor antagonists pirenzepine and 11[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro- 6H-pyrido [2,3-b] [1,4] benzodiazepine-6-one (AF-DX 116) respectively, heterogeneous populations were found in the cerebral cortex and vas deferens. The M1 receptor subtype predominated in the former and the M2 predominated in the latter. An homogeneous M2 receptor population was present in the heart. Methacholine-stimulated accumulation of 3H inositol-1-phosphate was greater in the vas deferens than in the cerebral cortex, whereas PI turnover was not enhanced in cardiac atria. Reserpine treatment of rats (0.5 mg kg-1 day-1 for 7 days) increased muscarinic receptor density in the vas deferens coincident with a shift in the low affinity pKi for AF-DX 116 to a value comparable to high affinity binding, and abolished the enhanced PI hydrolysis. In the cerebral cortex, reserpine treatment shifted only the early portion of the methacholine dose-response curve to the right. These results are judged to be supportive of preferential coupling between the M3 muscarinic receptor subtype and PI turnover.  相似文献   

17.
A soybean phospholipid mixture produced a concentration-dependent enhancement of beta subunit autophosphorylation of the detergent-soluble, purified human placental insulin receptor. Although phosphatidylcholine, phosphatidylethanolamine, or phosphatidylserine also increased insulin receptor autophosphorylation, only phosphatidylinositol (PtdIns) stimulated to a similar extent as the phospholipid mixture. The effect of PtdIns was biphasic, stimulating at low concentrations (75 microM), but having no stimulatory effect at high concentrations (1.0 mM). Phospholipids also stimulated the exogenous protein kinase activity of the insulin receptor toward histone H2B. Phosphorylation of PtdIns occurred with these purified insulin receptor preparations, but this activity was insulin-independent, and the turnover number for PtdIns phosphorylation in the presence of soybean phospholipid was 1/220th as small as the turnover number for the autophosphorylating activity. These results suggest that although PtdIns can modulate the activity of the insulin receptor kinase, PtdIns phosphorylation itself is not directly involved in this regulation.  相似文献   

18.
In this report we have studied the role of phosphatidylinositol 3'-kinase (PI3-K) and tyrosine phosphatase activation on platelet activation by Convulxin (Cvx). Wortmannin, a specific PI3-K inhibitor, and phenylarsine oxide (PAO), a sulfhydryl reagent that inhibits tyrosine phosphatase (PTPase), block Cvx-induced platelet aggregation, granule secretion, inositol phosphate production, and increase in [Ca2+]i. However, PAO does not inhibit Cvx-induced tyrosine phosphorylation of platelet proteins, including Syk and PLCgamma2, but blocked collagen-induced platelet aggregation as well as tyrosine phosphorylation of PLCgamma2. In contrast, Cvx-induced PLCgamma2 tyrosyl phosphorylation was partially inhibited by wortmannin. We conclude that (i) although Cvx and collagen activate platelets by a similar mechanism, different regulatory processes are specific to each agonist; (ii) mechanisms other than tyrosine phosphorylation regulate PLCgamma2 activity; and (iii) besides protein tyrosine kinases, PI3-K (and PTPase) positively modulate platelet activation by both Cvx and collagen, and this enzyme is required for effective transmission of GPVI-Fc receptor gamma chain signal to result in full activation and tyrosine phosphorylation of PLCgamma2 in Cvx-stimulated platelets.  相似文献   

19.
Intracellular signaling mediated by phosphatidylinositol 3-kinase (PI3K) is important for a number of cellular processes and is stimulated by a variety of hormones, including insulin and leptin. A histochemical method for assessment of PI3K signaling would be an important advance in identifying specific cells in histologically complex organs that are regulated by growth factors and peptide hormones. However, current methods for detecting PI3K activity require either homogenization of the tissue or cells or the ability to transfect probes that bind to phosphatidylinositol 3,4,5 trisphosphate (PIP3), the reaction product of PI3K catalysis. Here we report the validation of an immunocytochemical method to detect changes in PI3K activity, using a recently developed monoclonal antibody to PIP3, in paraformaldehyde-fixed bovine aortic endothelial cells (BAECs) in culture and in hepatocytes of intact rat liver. Treatment with either insulin or leptin increased BAEC PIP3 immunoreactivity, and these effects were blocked by pretreatment with PI3K inhibitors. Furthermore, infusion of insulin into the hepatic portal vein of fasted rats caused an increase of PIP3 immunostaining in hepatocytes that was associated with increased serine phosphorylation of the downstream signaling molecule protein kinase B/Akt (PKB/Akt). We conclude that immunocytochemical PIP3 staining can detect changes in PI3K activation induced by insulin and leptin in cell culture and intact liver.  相似文献   

20.
Smith SO  Smith C  Shekar S  Peersen O  Ziliox M  Aimoto S 《Biochemistry》2002,41(30):9321-9332
The Neu receptor tyrosine kinase is constitutively activated by a single amino acid change in the transmembrane domain of the receptor. The mutation of Val664 to glutamate or glutamine induces receptor dimerization and autophosphorylation of the receptor's intracellular kinase domain. The ability of this single mutation to activate the receptor is sequence-dependent, suggesting that specific helix-helix interactions stabilize the transmembrane dimer. We have determined the local secondary structure and interhelical contacts in the region of position 664 in peptide models of the activated receptor using solid-state rotational resonance and rotational echo double-resonance (REDOR) NMR methods. Intrahelical (13)C rotational resonance distance measurements were made between 1-(13)C-Thr662 and 2-(13)C-Gly665 on peptides corresponding to the wild-type Neu and activated Neu transmembrane sequences containing valine and glutamate at position 664, respectively. We observed similar internuclear distances (4.5 +/- 0.2 A) in both Neu and Neu*, indicating that the region near residue 664 is helical and is not influenced by mutation. Interhelical (15)N...(13)C REDOR measurements between Gln664 side chains on opposing helices were not consistent with hydrogen bonding between the side chain functional groups. However, interhelical rotational resonance measurements between 1-(13)C-Glu664 and 2-(13)C-Gly665 and between 1-(13)C-Gly665 and 2-(13)C-Gly665 demonstrated close contacts (4.3-4.5 A) consistent with the packing of Gly665 in the Neu* dimer interface. These measurements provide structural constraints for modeling the transmembrane dimer and define the rotational orientation of the transmembrane helices in the activated receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号