首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unidentified product. In contrast, 2-chlorobenzoate was not a good substrate. The BopXYZ dioxygenase was homologous to the chromosomally encoded benzoate dioxygenase (BenABC) and the plasmid-encoded toluate dioxygenase (XylXYZ) of gram-negative acinetobacters and pseudomonads. Pulsed-field gel electrophoresis failed to identify any plasmid in Rhodococcus sp. strain 19070. Catechol 1,2- and 2,3-dioxygenase activity indicated that strain 19070 possesses both meta- and ortho-cleavage degradative pathways, which are associated in pseudomonads with the xyl and ben genes, respectively. Open reading frames downstream of bopXYZ, designated bopL and bopK, resembled genes encoding cis-diol dehydrogenases and benzoate transporters, respectively. The bop genes were in the same order as the chromosomal ben genes of P. putida PRS2000. The deduced sequences of BopXY were 50 to 60% identical to the corresponding proteins of benzoate and toluate dioxygenases. The reductase components of these latter dioxygenases, BenC and XylZ, are 201 residues shorter than the deduced BopZ sequence. As predicted from the sequence, expression of BopZ in E. coli yielded an approximately 60-kDa protein whose presence corresponded to increased cytochrome c reductase activity. While the N-terminal region of BopZ was approximately 50% identical in sequence to the entire BenC or XylZ reductases, the C terminus was unlike other known protein sequences.  相似文献   

2.
The combined analysis of peptide mass fingerprinting and 2-DE/MS using the induced and selected protein spots following growth of Pseudomonas sp. DU102 on benzoate or p-hydroxybenzoate revealed not only alpha- and beta-subunits of protocatechuate 3,4-dioxygenase but also catechol 1,2-dioxygenase responsible for ortho-pathway through ring-cleavage of aromatic compounds. Toluate 1,2-dioxygenase and p-hydroxybenzoate hydroxylase were also identified. Purification of intradiol dioxygenases such as catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase from the benzoate or p-hydroxybenzoate culture makes it possible to trace the biodegradation pathway of strain DU102 for monocyclic aromatic hydrocarbons. Interestingly, vanillin-induced protocatechuate 3,4-dioxygenase was identical in amino acid sequences with protocatechuate 3,4-dioxygenase from p-hydroxybenzoate.  相似文献   

3.
The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unidentified product. In contrast, 2-chlorobenzoate was not a good substrate. The BopXYZ dioxygenase was homologous to the chromosomally encoded benzoate dioxygenase (BenABC) and the plasmid-encoded toluate dioxygenase (XylXYZ) of gram-negative acinetobacters and pseudomonads. Pulsed-field gel electrophoresis failed to identify any plasmid in Rhodococcus sp. strain 19070. Catechol 1,2- and 2,3-dioxygenase activity indicated that strain 19070 possesses both meta- and ortho-cleavage degradative pathways, which are associated in pseudomonads with the xyl and ben genes, respectively. Open reading frames downstream of bopXYZ, designated bopL and bopK, resembled genes encoding cis-diol dehydrogenases and benzoate transporters, respectively. The bop genes were in the same order as the chromosomal ben genes of P. putida PRS2000. The deduced sequences of BopXY were 50 to 60% identical to the corresponding proteins of benzoate and toluate dioxygenases. The reductase components of these latter dioxygenases, BenC and XylZ, are 201 residues shorter than the deduced BopZ sequence. As predicted from the sequence, expression of BopZ in E. coli yielded an approximately 60-kDa protein whose presence corresponded to increased cytochrome c reductase activity. While the N-terminal region of BopZ was approximately 50% identical in sequence to the entire BenC or XylZ reductases, the C terminus was unlike other known protein sequences.  相似文献   

4.
The two-component nonheme iron dioxygenase system 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS catalyzes the double hydroxylation of 2-halobenzoates with concomitant release of halogenide and carbon dioxide, yielding catechol. The gene cluster encoding this enzyme, cbdABC, was localized on a 70-kbp conjugative plasmid designated pBAH1. The nucleotide sequences of cbdABC and flanking regions were determined. In the deduced amino acid sequence of the large subunit of the terminal oxygenase component (CbdA), a conserved motif proposed to bind the Rieske-type [2Fe-2S] cluster was identified. In the NADH:acceptor reductase component (CbdC), a putative binding site for a chloroplast-type [2Fe-2S] center and possible flavin adenine dinucleotide- and NAD-binding domains were identified. The cbdABC sequences show significant homology to benABC, which encode benzoate 1,2-dioxygenase from Acinetobacter calcoaceticus (52% identity at the deduced amino acid level), and to xylXYZ, which encode toluate 1,2-dioxygenase from Pseudomonas putida mt-2 (51% amino acid identity). Recombinant pkT231 harboring cbdABC and flanking regions complemented a plasmid-free mutant of wild-type P. cepacia 2CBS for growth on 2-chlorobenzoate, and it also allowed recombinant P. putida KT2440 to metabolize 2-chlorobenzoate. Functional NADH:acceptor reductase and oxygenase components of 2-halobenzoate 1,2-dioxygenase were enriched from recombinant Pseudomonas clones.  相似文献   

5.
【目的】分析倭蜂猴粪便微生物中苯酚羟化酶(Phenol hydroxylase,PH)和邻苯二酚1,2-双加氧酶(Catechol 1,2-dioxygenase,C12O)的基因多样性。【方法】利用简并引物,以倭蜂猴粪便微生物宏基因组DNA为模板,通过PCR扩增,分别构建PH和C12O基因克隆文库,并对克隆进行测序分析。【结果】倭蜂猴粪便微生物来源的PH和C12O基因序列经BLAST比对分析,与GenBank中相应酶的序列一致性分别介于92%?100%和87%?100%。系统进化树分析表明PH基因序列与Neisseria、Burkholderia、Alcaligenes、Acinetobacter 4个属来源的PH序列相关;C12O基因序列全部与Acinetobacter来源的C12O序列相关。序列比对结果表明PH序列具有LmPH (Largest subunit of multicomponent PH)中高保守的两个DEXRH结构域;C12O序列具有能被Ag+和Hg2+抑制的位点(半胱氨酸)。【结论】倭蜂猴粪便微生物来源的PH为多组分PH,其降解苯酚的中间产物邻苯二酚可以被C12O通过邻位开环途径裂解。  相似文献   

6.
The terminal oxygenase component of benzene dioxygenase from Pseudomonas putida strain ML2 was shown to contain two subunits, of Mr 54,500 and 23,500, by SDS/polyacrylamide-gel electrophoresis. The native Mr of the terminal oxygenase was estimated to be 168,000 +/- 4000. Polyclonal antibodies raised against each of the subunits cross-reacted with two polypeptides in cell-free extracts from toluene-grown Pseudomonas putida strain N.C.I.B. 11767. The Mr values of these polypeptides were similar to those reported for the subunits from the terminal dioxygenase component of toluene dioxygenase. These polypeptides were present only when this strain was grown on toluene. No cross-reactivity was observed with subunits of the naphthalene dioxygenase or benzoate dioxygenase systems.  相似文献   

7.
Eighteen 4-t-octylphenol-degrading bacteria were isolated and screened for the presence of degradative genes by polymerase chain reaction method using four designed primer sets. The primer sets were designed to amplify specific fragments from multicomponent phenol hydroxylase, single component monooxygenase, catechol 1,2-dioxygenase and catechol 2,3-dioxygenase genes. Seventeen of the 18 isolates exhibited the presence of a 232 bp amplicon that shared 61-92% identity to known multicomponent phenol hydroxylase gene sequences from short and/or medium-chain alkylphenol-degrading strains. Twelve of the 18 isolates were positive for a 324 bp region that exhibited 78-95% identity to the closest published catechol 1,2-dioxygenase gene sequences. The two strains, Pseudomonas putida TX2 and Pseudomonas sp. TX1, contained catechol 1,2-dioxygenase genes also have catechol 2,3-dioxygenase genes. Our result revealed that most of the isolated bacteria are able to degrade long-chain alkylphenols via multicomponent phenol hydroxylase and the ortho-cleavage pathway.  相似文献   

8.
恶臭假单胞菌ND6菌株的萘降解质粒pND6-1中编码儿茶酚1,2-双加氧酶的catA基因在大肠杆菌中进行了克隆和表达,并研究表达产物的酶学性质。结果表明:酶的Km为0.019μmol/L,Vmax为1.434μmol/(min.mg);具有很好的耐热性,在50℃保温45min后仍能够保留酶活力的93.7%;Fe2+对酶活性有显著的促进作用,其比活力是对照反应的292%;酶对4-氯儿茶酚的催化活性非常低,属于Ⅰ型儿茶酚1,2-双加氧酶。以萘为底物生长时,ND6菌株的细胞提取液中既存在催化邻位裂解途径的儿茶酚1,2-双加氧酶活性,也存在催化间位裂解途径的儿茶酚2,3-双加氧酶活性。以苯甲酸、对羟基苯甲酸和苯乙酸为唯一碳源生长时,ND6菌株细胞提取液的儿茶酚1,2-双加氧酶活性远远大于儿茶酚2,3-双加氧酶活性。表明ND6菌株既能通过儿茶酚间位裂解途径降解萘,也能通过儿茶酚邻位裂解途径降解萘,而以苯甲酸、对羟基苯甲酸和苯乙酸为诱导物时只利用儿茶酚邻位裂解途径。  相似文献   

9.
The nucleotide sequence of the todC1C2BADE genes which encode the first three enzymes in the catabolism of toluene by Pseudomonas putida F1 was determined. The genes encode the three components of the toluene dioxygenase enzyme system: reductaseTOL (todA), ferredoxinTOL (todB), and the two subunits of the terminal dioxygenase (todC1C2); (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase (todD); and 3-methylcatechol 2,3-dioxygenase (todE). Knowledge of the nucleotide sequence of the tod genes was used to construct clones of Escherichia coli JM109 that overproduce toluene dioxygenase (JM109(pDT-601]; toluene dioxygenase and (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase (JM109(pDTG602]; and toluene dioxygenase, (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase, and 3-methylcatechol 2,3-dioxygenase (JM109(pDTG603]. The overexpression of the tod-C1C2BADE gene products was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The three E. coli JM109 strains harboring the plasmids pDTG601, pDTG602, and pDTG603, after induction with isopropyl-beta-D-thiogalactopyranoside, oxidized toluene to (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene, 3-methylcatechol, and 2-hydroxy-6-oxo-2,4-heptadienoate, respectively. The tod-C1C2BAD genes show significant homology to the reported nucleotide sequence for benzene dioxygenase and cis-1,2-dihydroxycyclohexa-3,5-diene dehydrogenase from P. putida 136R-3 (Irie, S., Doi, S., Yorifuji, T., Takagi, M., and Yano, K. (1987) J. Bacteriol. 169, 5174-5179). In addition, significant homology was observed between the nucleotide sequences for the todDE genes and the sequences reported for cis-1,2-dihydroxy-6-phenylcyclohexa-3,5-diene dehydrogenase and 2,3-dihydroxybiphenyl-1,2-dioxygenase from Pseudomonas pseudoalcaligenes KF707 (Furukawa, K., Arimura, N., and Miyazaki, T. (1987) J. Bacteriol. 169, 427-429).  相似文献   

10.
Benzene dioxygenase and toluene dioxygenase from Pseudomonas putida have similar catalytic properties, structures, and gene organizations, but they differ in substrate specificity, with toluene dioxygenase having higher activity toward alkylbenzenes. The catalytic iron-sulfur proteins of these enzymes consist of two dissimilar subunits, alpha and beta; the alpha subunit contains a [2Fe-2S] cluster involved in electron transfer, the catalytic nonheme iron center, and is also responsible for substrate specificity. The amino acid sequences of the alpha subunits of benzene and toluene dioxygenases differ at only 33 of 450 amino acids. Chimeric proteins and mutants of the benzene dioxygenase alpha subunit were constructed to determine which of these residues were primarily responsible for the change in specificity. The protein containing toluene dioxygenase C-terminal region residues 281 to 363 showed greater substrate preference for alkyl benzenes. In addition, we identified four amino acid substitutions in this region, I301V, T305S, I307L, and L309V, that particularly enhanced the preference for ethylbenzene. The positions of these amino acids in the alpha subunit structure were modeled by comparison with the crystal structure of naphthalene dioxygenase. They were not in the substrate-binding pocket but were adjacent to residues that lined the channel through which substrates were predicted to enter the active site. However, the quadruple mutant also showed a high uncoupled rate of electron transfer without product formation. Finally, the modified proteins showed altered patterns of products formed from toluene and ethylbenzene, including monohydroxylated side chains. We propose that these properties can be explained by a more facile diffusion of the substrate in and out of the substrate cavity.  相似文献   

11.
Summary Toluate 1,2-dioxygenase is the first enzyme of a meta-cleavage pathway for the oxidative catabolism of benzoate and substituted benzoates to Krebs cycle intermediates that is specified by TOL plasmid pWW0 of Pseudomonas putida. A collection of derivatives harbouring Tn1000 insertions and defective in toluate dioxygenase have been isolated from pPL392, a pBR322-based hybrid plasmid carrying the TOL plasmid meta-cleavage pathway operon. In parallel, a series of N-methyl-N-nitro-N-nitrosoguanidine-induced mutant plasmids defective in this enzyme activity were isolated from pNM72, a pKT231-based hybrid plasmid carrying the same operon. Pairs of mutant plasmids, consisting of one Tn1000 derivative and one nitrosoguanidine-induced derivative, were used for complementation analysis of toluate dioxygenase in Escherichia coli recA bacteria, in which the formation of 2-hydroxymuconic semialdehyde from benzoate was examined. Four cistrons for toluate 1,2-dioxygenase were thus identified. DNA fragments containing nitrosoguanidine-induced mutant cistrons plus the other meta-cleavage operon genes were cloned into pOT5, an R388-based vector, and complementation tests between different nitrosoguanidine-induced mutant cistrons were carried out in Pseudomonas putida cells, this time scoring for growth on p-toluate. This analysis also identified four cistrons. Examination of the products of these cistrons, by means of E. coli minicells containing pPL392 or its Tn1000 insertion derivatives, indicated that the first two cistrons of the operon comprise a single gene, xylX, which encodes a 57 kilodalton protein, and that the third cistron, xy/Y, encodes a 20 kilodalton protein.  相似文献   

12.
Genes for catechol 1,2- and 2,3-dioxygenases were cloned. These enzymes hold important positions in the ortho and meta pathways of the metabolism of aromatic carbons by microbial associations that consume the following volatile organic compounds in pilot minireactors: toluene, styrene, ethyl benzene, o-xylene, m-xylene, and naphthalene. Genes of both pathways were found in an association consuming m-xylene; only genes of the ortho pathway were found in associations consuming o-xylene, styrene, and ethyl benzene, and only genes of the meta pathway were found in associations consuming naphthalene and toluene. Genes of the ortho pathway (C120) cloned from associations consuming o-xylene and ethyl benzene were similar to corresponding genes located on the pND6 plasmid of Pseudomonas putida. Genes of the ortho pathway from associations consuming o-xylene and m-xylene were similar to chromosomal genes of P. putida. Genes of the meta pathway (C230) from associations consuming toluene and naphthalene were similar to corresponding genes formerly found in plasmids pWWO and pTOL.  相似文献   

13.
Benzene dioxygenase and toluene dioxygenase from Pseudomonas putida have similar catalytic properties, structures, and gene organizations, but they differ in substrate specificity, with toluene dioxygenase having higher activity toward alkylbenzenes. The catalytic iron-sulfur proteins of these enzymes consist of two dissimilar subunits, α and β; the α subunit contains a [2Fe-2S] cluster involved in electron transfer, the catalytic nonheme iron center, and is also responsible for substrate specificity. The amino acid sequences of the α subunits of benzene and toluene dioxygenases differ at only 33 of 450 amino acids. Chimeric proteins and mutants of the benzene dioxygenase α subunit were constructed to determine which of these residues were primarily responsible for the change in specificity. The protein containing toluene dioxygenase C-terminal region residues 281 to 363 showed greater substrate preference for alkyl benzenes. In addition, we identified four amino acid substitutions in this region, I301V, T305S, I307L, and L309V, that particularly enhanced the preference for ethylbenzene. The positions of these amino acids in the α subunit structure were modeled by comparison with the crystal structure of naphthalene dioxygenase. They were not in the substrate-binding pocket but were adjacent to residues that lined the channel through which substrates were predicted to enter the active site. However, the quadruple mutant also showed a high uncoupled rate of electron transfer without product formation. Finally, the modified proteins showed altered patterns of products formed from toluene and ethylbenzene, including monohydroxylated side chains. We propose that these properties can be explained by a more facile diffusion of the substrate in and out of the substrate cavity.  相似文献   

14.
Pseudomonas sp. strain JS150 was isolated as a nonencapsulated variant of Pseudomonas sp. strain JS1 that contains the genes for the degradative pathways of a wide range of substituted aromatic compounds. Pseudomonas sp. strain JS150 grew on phenol, ethylbenzene, toluene, benzene, naphthalene, benzoate, p-hydroxybenzoate, salicylate, chlorobenzene, and several 1,4-dihalogenated benzenes. We designed experiments to determine the conditions required for induction of the individual pathways and to determine whether multiple substrates could be biodegraded simultaneously. Oxygen consumption studies with whole cells and enzyme assays with cell extracts showed that the enzymes of the meta, ortho, and modified ortho cleavage pathways can be induced in strain JS150. Strain JS150 contains a nonspecific toluene dioxygenase with a substrate range similar to that found in strains of Pseudomonas putida. The presence of the dioxygenase along with multiple pathways for metabolism of substituted catechols allows facile extension of the growth range by spontaneous mutation and degradation of mixtures of substituted benzenes and phenols. Chlorobenzene-grown cells of strain JS150 degraded mixtures of chlorobenzene, benzene, toluene, naphthalene, trichloroethylene, and 1,2- and 1,4-dichlorobenzenes in continuous culture. Under similar conditions, phenol-grown cells degraded a mixture of phenol, 2-chloro-, 3-chloro, and 2,5-dichlorophenol and 2-methyl- and 3-methylphenol. These results indicate that induction of appropriate biodegradative pathways in strain JS150 permits the biodegradation of complex mixtures of aromatic compounds.  相似文献   

15.
Abstract Naphthalene 1,2-dioxygenase from Pseudomonas sp. NCIB 9816-4 and biphenyl dioxygenase from Beijerinckia sp. B8/36 oxidized the aromatic N-heterocycle carbazole to 3-hydroxycarbazole. Toluene dioxygenase from Pseudomonas putida F39/D did not oxidize carbazole. Transformations were carried out by mutant strains which oxidize naphthalene and biphenyl to cis -dihydrodiols, and with a recombinant E. coli strain expressing the structural genes of naphthalene 1,2-dioxygenase from Pseudomonas sp. NCIB 9816-4. 3-Hydroxycarbazole is presumed to result from the dehydration of an unstable cis -dihydrodiol.  相似文献   

16.
Batie et al. [Chemistry and Biochemistry of Flavoenzymes, 3, 543-556 (1991)] proposed a classification system for ring-hydroxylating oxygenases in which the oxygenases are grouped into three classes in terms of the number of constituent components and the nature of the redox centers. But in recent years, many ring-hydroxylating oxygenases have been newly identified and characterized, and found difficult to classify into these three classes. Typical examples are carbazole 1,9a-dioxygenase and 2-oxo-1,2-dihydroquinoline 8-monooxygenase, which have been classified into class III and class IB, respectively, from biochemical characteristics. However, a phylogenetic study showed that the terminal oxygenases of both are closely related to class IA. Because this discrepancy derived from counting all the components together, here we proposed a new scheme based on the homology of the amino acid sequences of the alpha subunits of the terminal oxygenase components. This new scheme strongly reflects the actual phylogenetic affiliation of the terminal oxygenase component. By comparing their sequences pairwise using the CLUSTAL W program, 54 oxygenase components were classified into 4 groups (groups I, II, III, and IV). While group I contains broad-range oxygenases sharing low homology, groups II, III, and IV contain some typical oxygenases: benzoate/toluate dioxygenases for group II, naphthalene/polycyclic aromatic hydrocarbon dioxygenases for group III, and benzene/toluene/biphenyl dioxygenases for group IV. Our new scheme is simple and powerful, since an oxygenase component can be nearly automatically grouped when the DNA sequence is available, and it fits very well with the phylogenetic affiliation.  相似文献   

17.
Pseudomonas sp. strain JS150 was isolated as a nonencapsulated variant of Pseudomonas sp. strain JS1 that contains the genes for the degradative pathways of a wide range of substituted aromatic compounds. Pseudomonas sp. strain JS150 grew on phenol, ethylbenzene, toluene, benzene, naphthalene, benzoate, p-hydroxybenzoate, salicylate, chlorobenzene, and several 1,4-dihalogenated benzenes. We designed experiments to determine the conditions required for induction of the individual pathways and to determine whether multiple substrates could be biodegraded simultaneously. Oxygen consumption studies with whole cells and enzyme assays with cell extracts showed that the enzymes of the meta, ortho, and modified ortho cleavage pathways can be induced in strain JS150. Strain JS150 contains a nonspecific toluene dioxygenase with a substrate range similar to that found in strains of Pseudomonas putida. The presence of the dioxygenase along with multiple pathways for metabolism of substituted catechols allows facile extension of the growth range by spontaneous mutation and degradation of mixtures of substituted benzenes and phenols. Chlorobenzene-grown cells of strain JS150 degraded mixtures of chlorobenzene, benzene, toluene, naphthalene, trichloroethylene, and 1,2- and 1,4-dichlorobenzenes in continuous culture. Under similar conditions, phenol-grown cells degraded a mixture of phenol, 2-chloro-, 3-chloro, and 2,5-dichlorophenol and 2-methyl- and 3-methylphenol. These results indicate that induction of appropriate biodegradative pathways in strain JS150 permits the biodegradation of complex mixtures of aromatic compounds.  相似文献   

18.
萘降解细菌的分离及其降解基因的分子检测   总被引:1,自引:0,他引:1  
从污水处理厂的活性污泥和石油工业废水中各分离到24个降解萘的细菌分离株,提取这些分离株的总DNA,然后与各种萘降解基因杂交。结果表明,这2个来源的分离株在萘降解基因的种类上有明显不同。来自工业废水的分离株含有萘双加氧酶的铁硫蛋白大亚基基因nahAc,水杨醛脱氢酶基因nahF及其重复基因nahV,水杨酸羟化酶基因nahG及其重复基因nahU,儿茶酚2,3-双加氧酶基因nahH和儿茶酚1,2-双加氧酶基因catA,以及萘趋化蛋白基因nahY。来自活性污泥的分离株只含有nahAc、nahF、nahG和catA,不含有nahY、nahV、nahU和nahH。  相似文献   

19.
The Rieske dioxygenase, anthranilate 1,2-dioxygenase, catalyzes the 1,2-dihydroxylation of anthranilate (2-aminobenzoate). As in all characterized Rieske dioxygenases, the catalytic conversion to the diol occurs within the dioxygenase component, AntAB, at a mononuclear iron site which accepts electrons from a proximal Rieske [2Fe-2S] center. In the related naphthalene dioxygenase (NDO), a conserved aspartate residue lies between the mononuclear and Rieske iron centers, and is hydrogen-bonded to a histidine ligand of the Rieske center. Engineered substitutions of this aspartate residue led to complete inactivation, which was proposed to arise from elimination of a productive intersite electron transfer pathway [Parales, R. E., Parales, J. V., and Gibson, D. T. (1999) J. Bacteriol. 181, 1831-1837]. Substitutions of the corresponding aspartate, D218, in AntAB with alanine, asparagine, or glutamate also resulted in enzymes that were completely inactive over a wide pH range despite retention of the hexameric quaternary structure and iron center occupancy. The Rieske center reduction potential of this variant was measured to be approximately 100 mV more negative than that for the wild-type enzyme at neutral pH. The wild-type AntAB became completely inactive at pH 9 and exhibited an altered Rieske center absorption spectrum which resembled that of the D218 variants at neutral pH. These results support a role for this aspartate in maintaining the protonated state and reduction potential of the Rieske center. Both the wild-type and D218A variant AntABs exhibited substrate-dependent rapid phases of Rieske center oxidations in stopped-flow time courses. This observation does not support a role for this aspartate in a facile intersite electron transfer pathway or in productive substrate gating of the Rieske center reduction potential. However, since the single turnovers resulted in anthranilate dihydroxylation by the wild-type enzyme but not by the D218A variant, this aspartate must also play a crucial role in substrate dihydroxylation at or near the mononuclear iron site.  相似文献   

20.
Cell extracts of Pseudomonas aeruginosa 142, which was previously isolated from a polychlorinated biphenyl-degrading consortium, were shown to degrade 2,4-dichlorobenzoate, 2-chlorobenzoate, and a variety of other substituted ortho-halobenzoates by a reaction that requires oxygen, NADH, Fe(II), and flavin adenine dinucleotide. By using extracts that were chromatographically depleted of chlorocatechol and catechol 1,2-dioxygenase activities, products of the initial reaction with 2,4- or 2,5-dichlorobenzoate and 2-chlorobenzoate were identified by mass spectrometry as 4-chlorocatechol and catechol. In contrast to the well-characterized benzoate dioxygenases or the recently described 2-halobenzoate 1,2-dioxygenase from P. cepacia 2CBS (S. Fetzner, R. Müller, and F. Lingens, J. Bacteriol. 174:279-290, 1992) that possess two protein components, the P. aeruginosa enzyme was resolved by ion-exchange chromatography into three components, each of which is required for activity. To verify the distinct nature of this enzyme, we purified, characterized, and identified one component as a ferredoxin (M(r), approximately 13,000) containing a single [2Fe-2S] Rieske-type cluster (electron paramagnetic resonance spectroscopic values of gx = 1.82, gy = 1.905, and gz = 2.02 in the reduced state) that is related in sequence to ferredoxins found in the naphthalene and biphenyl three-component dioxygenase systems. By analogy to these enzymes, we propose that the P. aeruginosa ferredoxin serves as an electron carrier between an NADH-dependent ferredoxin reductase and the terminal component of the ortho-halobenzoate 1,2-dioxygenase. The broad specificity and high regiospecificity of the enzyme make it a promising candidate for use in the degradation of mixtures of chlorobenzoates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号