首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Folding and assembling of newly synthesized proteins is directed and effected by a group of relatively recently discovered proteins called molecular chaperones. These proteins not only control the assembling of native structures; they also remodel protein molecules that have wrong conformations. All molecular chaperones perform the same function, but structurally they are divided into groups of chaperones and chaperonins. These proteins are highly conserved in evolution and display an ATPase activity. Certain known chaperones and chaperonins are shown in the table, and their structures and mechanisms of action are described.  相似文献   

2.
The folding of proteins from their initial unstructured state to their mature form has long been known to be promoted by other proteins known as chaperones and chaperonins. Recent biochemical and structural discoveries have provided dramatic insight into how these folding proteins work. This review will discuss these findings and suggest future experimental directions.  相似文献   

3.
The "triplet repeat" neurodegenerative diseases are linked by a common mode of pathogenicity, wherein a polyglutamine expansion within the relevant disease-causing protein induces toxicity. Although details underlying pathogenesis are largely unknown, protein chaperones appear to be effective suppressors of toxicity in various experimental models. Understanding the protective role of chaperones might not only help us to understand the biology of polyglutamine toxicity, but also, and perhaps more importantly, inspire the design of novel therapeutic strategies.  相似文献   

4.
Over the last 20 years, it has emerged that many molecular chaperones and protein-folding catalysts are secreted from cells and function, somewhat in the manner of cytokines, as pleiotropic signals for a variety of cells, with much attention being focused on the macrophage. During the last decade, it has become clear that macrophages respond to bacterial, protozoal, parasitic and host signals to generate phenotypically distinct states of activation. These activation states have been termed ‘classical’ and ‘alternative’ and represent not a simple bifurcation in response to external signals but a range of cellular phenotypes. From an examination of the literature, the hypothesis is propounded that mammalian molecular chaperones are able to induce a wide variety of alternative macrophage activation states, and this may be a system for relating cellular or tissue stress to appropriate macrophage responses to restore homeostatic equilibrium.  相似文献   

5.
The 11th International Calreticulin workshop was held May 15–18, 2015 at New York University School of Medicine-Langone Medical Center, New York. The meeting highlighted many of the new discoveries in the past 2 years involving the important role of molecular chaperones in physiological and pathological processes. Crucial to the understanding of these disease processes was the role of chaperones in maintaining quality control of protein processing in the endoplasmic reticulum, the importance of Ca2 regulation acting through its action in stress-related diseases, and the trafficking of glycoproteins to the cell surface. Central to maintaining healthy cell physiology is the correct ER-associated protein degradation of specific misfolded proteins. Information on different mechanisms involved in the degradation of misfolded proteins was revealed. This was a landmark meeting for the chaperone field in terms of new insights into their roles in physiology. These insights included the unfolded protein response, innate/adaptive immunity, tissue repair, the functions of calreticulin/chaperones from the cell surface, and extracellular environment. Diseases included neurodegenerative disorders, prion disease, autoimmunity, fibrosis-related disease, the host immune response to cancer, and hematologic diseases associated with calreticulin mutations. The 12th calreticulin workshop is planned for the spring of 2017 in Delphi, Greece.  相似文献   

6.
The role of molecular chaperones in human misfolding diseases   总被引:1,自引:0,他引:1  
Sarah A. Broadley 《FEBS letters》2009,583(16):2647-144
Human misfolding diseases arise when proteins adopt non-native conformations that endow them with a tendency to aggregate and form intra- and/or extra-cellular deposits. Molecular chaperones, such as Hsp70 and TCP-1 Ring Complex (TRiC)/chaperonin containing TCP-1 (CCT), have been implicated as potent modulators of misfolding disease. These chaperones suppress toxicity of disease proteins and modify early events in the aggregation process in a cooperative and sequential manner reminiscent of their functions in de novo protein folding. Further understanding of the role of Hsp70, TRiC, and other chaperones in misfolding disease is likely to provide important insight into basic pathomechanistic principles that could potentially be exploited for therapeutic purposes.  相似文献   

7.
Biological processes in living cells are compartmentalized between lipid membranes. Integral membrane proteins often confer specific functions to these compartments and as such have a critical role in cellular metabolism and function. Cytochrome c oxidase is a macromolecular metalloprotein complex essential for the respiratory function of the cell. Elucidating the mechanisms of assembly of cytochrome c oxidase within the inner mitochondrial membrane represents a unique challenge for understanding metalloprotein biosynthesis. Elegant genetic experiments in yeast have defined several proteins required for copper delivery to cytochrome c oxidase. While the precise role of each of these proteins in copper incorporation remains unclear, recent studies have revealed that inherited mutations in two of these proteins can result in severe pathology in human infants in association with cytochrome c oxidase deficiency. Characterization of the molecular pathogenesis of these disorders offers new insights into the mechanisms of cellular copper metabolism and the role of these cytochrome c oxidase copper chaperones in human disease.  相似文献   

8.
9.
10.
Autophagy is considered an indispensable process that scavenges toxins, recycles complex macromolecules, and sustains the essential cellular functions. In addition to its housekeeping role, autophagy plays a substantial role in many pathophysiological processes such as cancer. Certainly, it adapts cancer cells to thrive in the stress conditions such as hypoxia and starvation. Cancer cells indeed have also evolved by exploiting the autophagy process to fulfill energy requirements through the production of metabolic fuel sources and fundamentally altered metabolic pathways. Occasionally autophagy as a foe impedes tumorigenesis and promotes cell death. The complex role of autophagy in cancer makes it a potent therapeutic target and has been actively tested in clinical trials. Moreover, the versatility of autophagy has opened new avenues of effective combinatorial therapeutic strategies. Thereby, it is imperative to comprehend the specificity of autophagy in cancer-metabolism. This review summarizes the recent research and conceptual framework on the regulation of autophagy by various metabolic pathways, enzymes, and their cross-talk in the cancer milieu, including the implementation of altered metabolism and autophagy in clinically approved and experimental therapeutics.  相似文献   

11.
12.
13.
Histone chaperones, a supporting role in the limelight   总被引:12,自引:0,他引:12  
In eukaryotic cells, highly basic histone proteins are associated with the DNA to form the nucleosome, the fundamental unit of chromatin. Histones are closely escorted by histone chaperones from their point of synthesis up to their delivery site. We will present an overview of the histone chaperones identified to date with their various roles, in an attempt to highlight their importance in cellular metabolism. Nucleoplasmin will illustrate a role in histone storage and Nap-1, a histone translocator. CAF-1 and Hira will provide examples of distinct histone deposition factors coupled to and uncoupled from DNA synthesis, respectively, while Asf1 could act as a histone donor. We then will illustrate with two examples how histone chaperones can be associated with chromatin remodeling activities. Finally, we will discuss how the RbAp46/48 proteins, as escort factors, are part of multiple complexes with various functions. Based on these examples, we will propose a scheme in which the diverse roles of histone chaperones are integrated within an assembly line for chromatin formation and regulation. Finally, we discuss how these chaperones may have more than a supporting role in a histone metabolic pathway.  相似文献   

14.
Intracellular copper routing: the role of copper chaperones   总被引:9,自引:0,他引:9  
Copper is required by all living systems. Cells have a variety of mechanisms to deal with this essential, yet toxic trace element. A recently discovered facet of homeostatic mechanisms is the protein-mediated, intracellular delivery of copper to target proteins. This routing is accomplished by a novel class of proteins, the 'copper chaperones'. They are a family of conserved proteins present in prokaryotes and eukaryotes, which suggests that copper chaperones are used throughout nature for intracellular copper routing.  相似文献   

15.
We have investigated the in vitro refolding process of human proinsulin (HPI) and an artificial mini-C derivative of HPI (porcine insulin precursor, PIP), and found that they have significantly different disulfide-formation pathways. HPI and PIP differ in their amino acid sequences due to the presence of the C-peptide linker found in HPI, therefore suggesting that the C-peptide linker may be responsible for the observed difference in folding behaviour. However, the manner in which the C-peptide contributes to this difference is still unknown. We have used both the disulfide scrambling method and a redox-equilibrium assay to assess the stability of the disulfide bridges. The results show that disulfide reshuffling is easier to induce in HPI than in PIP by the addition of thiol reagent. Thus, the C-peptide may affect the unique folding pathway of HPI by allowing the disulfide bonds of HPI to be easily accessible. The detailed processes of HPI unfolding by reduction of its disulfide bonds and by disulfide scrambling methods were also investigated. In the reductive unfolding process no accumulation of intermediates was detected. In the process of unfolding by disulfide scrambling, HPI gradually rearranged its disulfide bonds to form three major isomers G1, G2 and G3. The most abundant isomer, G1, contains the B7-B19 disulfide bridge. Based on far-UV CD spectra, native gel analysis and cleavage by endoproteinase V8, the G1 isomer has been shown to resemble the intermediate P4 found in the refolding process of HPI. Finally, the major isomer G1 is allowed to refold to native protein HPI by disulfide rearrangement, which indicates that a similar molecular mechanism may exist for the unfolding and refolding process of HPI.  相似文献   

16.
ER chaperones in mammalian development and human diseases   总被引:14,自引:0,他引:14  
Ni M  Lee AS 《FEBS letters》2007,581(19):3641-3651
The field of endoplasmic reticulum (ER) stress in mammalian cells has expanded rapidly during the past decade, contributing to understanding of the molecular pathways that allow cells to adapt to perturbations in ER homeostasis. One major mechanism is mediated by molecular ER chaperones which are critical not only for quality control of proteins processed in the ER, but also for regulation of ER signaling in response to ER stress. Here, we summarized the properties and functions of GRP78/BiP, GRP94/gp96, GRP170/ORP150, GRP58/ERp57, PDI, ERp72, calnexin, calreticulin, EDEM, Herp and co-chaperones SIL1 and P58(IPK) and their role in development and diseases. Many of the new insights are derived from recently constructed mouse models where the genes encoding the chaperones are genetically altered, providing invaluable tools for examining the physiological involvement of the ER chaperones in vivo.  相似文献   

17.
Cells require a protein quality control (PQC) system to obtain a correct balance between folding and the degradation of incorrectly folded or misfolded proteins. This system maintains protein homeostasis and is essential for life. Key components of the PQC are molecular chaperones, which compose a ubiquitous class of proteins that mediate protein quality control by aiding in both the correct folding of proteins and the elimination of proteins that are misfolded due to cellular stress or mutation. Recent studies showed that protein homeostasis has an important role in nutrition and aging, increasing the relevance of the heat shock response to human health. This review summarizes our current knowledge of the molecular chaperone system and its role in protein homeostasis.  相似文献   

18.
Because over expression of Hsp70 molecular chaperones suppresses the toxicity of aberrantly folded proteins that occur in Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis, and various polyQ‐diseases (Huntington's disease and ataxias), Hsp70 is garnering attention as a possible therapeutic agent for these various diseases. Here, I review progress in this fascinating field of molecular chaperones and neurodegeneration and describe our current understanding of the mechanisms by which Hsp70 protects cells from the PD‐related protein called alpha‐synuclein (α‐syn). © 2009 Wiley Periodicals, Inc. Biopolymers 93: 218–228, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

19.
A greater understanding of the causes of human disease can come from identifying characteristics that are specific to disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes. Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be ignored as candidates for causing diverse human diseases.  相似文献   

20.
Misfolded proteins have enhanced formation of toxic oligomers and nonfunctional protein copies lead to recruiting wild-type protein types. Heat shock protein 90 (HSP90) is a molecular chaperone generated by cells that are involved in many cellular functions through regulation of folding and/or localization of large multi-protein complexes as well as client proteins. HSP90 can regulate a number of different cellular processes including cell proliferation, motility, angiogenesis, signal transduction, and adaptation to stress. HSP90 makes the mutated oncoproteins able to avoid misfolding and degradation and permits the malignant transformation. As a result, HSP90 is an important factor in several signaling pathways associated with tumorigenicity, therapy resistance, and inhibiting apoptosis. Clinically, the upregulation of HSP90 expression in hepatocellular carcinoma (HCC) is linked with advanced stages and inappropriate survival in cases suffering from this kind of cancer. The present review comprehensively assesses HSP90 functions and its possible usefulness as a potential diagnostic biomarker and therapeutic option for HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号