首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Commensal symbionts, thought to be intermediary amid obligate mutualists and facultative parasites, offer insight into forces driving the evolutionary transition into mutualism. Using macroarrays developed for a close relative, Escherichia coli, we utilized a heterologous array hybridization approach to infer the genomic compositions of a clade of bacteria that have recently established symbiotic associations: Sodalis glossinidius with the tsetse fly (Diptera, Glossina spp.) and Sitophilus oryzae primary endosymbiont (SOPE) with the rice weevil (Coleoptera, Sitophilus oryzae). Functional biologies within their hosts currently reflect different forms of symbiotic associations. Their hosts, members of distant insect taxa, occupy distinct ecological niches and have evolved to survive on restricted diets of blood for tsetse and cereal for the rice weevil. Comparison of genome contents between the two microbes indicates statistically significant differences in the retention of genes involved in carbon compound catabolism, energy metabolism, fatty acid metabolism, and transport. The greatest reductions have occurred in carbon catabolism, membrane proteins, and cell structure-related genes for Sodalis and in genes involved in cellular processes (i.e., adaptations towards cellular conditions) for SOPE. Modifications in metabolic pathways, in the form of functional losses complementing particularities in host physiology and ecology, may have occurred upon initial entry from a free-living to a symbiotic state. It is possible that these adaptations, streamlining genomes, act to make a free-living state no longer feasible for the harnessed microbe.  相似文献   

2.
The principal intracellular symbiotic bacteria of the cereal weevil Sitophilus oryzae were characterized using the sequence of the 16S rDNA gene (rrs gene) and G + C content analysis. Polymerase chain reaction amplification with universal eubacterial primers of the rrs gene showed a single expected sequence of 1,501 bp. Comparison of this sequence with the available database sequences placed the intracellular bacteria of S. oryzae as members of the Enterobacteriaceae family, closely related to the free-living bacteria, Erwinia herbicola and Escherichia coli, and the endocytobiotic bacteria of the tsetse fly and aphids. Moreover, by high-performance liquid chromatography, we measured the genomic G + C content of the S. oryzae principal endocytobiotes (SOPE) as 54%, while the known genomic G + C content of most intracellular bacteria is about 39.5%. Furthermore, based on the third codon position G + C content and the rrs gene G + C content, we demonstrated that most intracellular bacteria except SOPE are A + T biased irrespective of their phylogenetic position. Finally, using the hsp60 gene sequence, the codon usage of SOPE was compared with that of two phylogenetically closely related bacteria: E. coli, a free-living bacterium, and Buchnera aphidicola, the intracellular symbiotic bacteria of aphids. Taken together, these results show a peculiar and distinctly different DNA composition of SOPE with respect to the other obligate intracellular bacteria, and, combined with biological and biochemical data, they elucidate the evolution of symbiosis in S. oryzae. Received: 8 September 1997 / Accepted: 24 October 1997  相似文献   

3.
4.
Developmental times of symbiotic and aposymbiotic strains of the rice weevil Sitophilus oryzae were compared, in response to changes in concentration of phenylalanine or tyrosine in whole wheat flour pellets. Aposymbiotic insects were shown to require more aromatic amino acids than symbiotic insects, since a very low supply (0.1%) resulted in faster growth (11%). Incorporation results of [3H]-tyrosine during the larval and pupal stages indicated that total tyrosine intake was lower in aposymbiotic insects, but the incorporation into the cuticle of both strains did not significantly differ. It is suggested that the slower growth rate of weevils without symbiotes is due, in part, to a less efficient utilization of exogenous tyrosine (in the food) and to a lack of endogenous tyrosine (supplied by the symbiotes).  相似文献   

5.
《Journal of Asia》2007,10(3):263-267
This study examined the repellent efficacy of six essential oils extracted from caraway, clary sage, grapefruit, strawberry, thyme white, ylangylang, and their related volatile constituents against the adult rice weevil, Sitophilus oryzae using an olfactometer. The caraway and grapefruit oil showed the highest repellent efficacy against the rice weevil at a dose of 10μl. Gas Chromatography-Mass Spectrophotometer analysis revealed caraway oil to be rich in carvone and limonene, and grapefruit oil to be rich in limonene, β-myrcene and α-pinene. When the monoterpene was mixed in equal parts with the caraway and grapefruit essential oils, carvone with limonene in caraway oil demonstrated the highest repellent efficacy (96.7%). Limonene with α-pinene and β-myrcene in grapefruit showed strong repellent efficacy (86.4%) with synergistic effects on the S. oryzae.A mixture of caraway and grapefruit oils, as well as carvone and limonene, can be potent repellents that may be useful for controlling S. oryzae.  相似文献   

6.
《Journal of Asia》2014,17(2):119-121
Basil oil, Ocimum basilicum L., is a volatile plant essential oil that is known to have insecticidal activity against stored product pests such as rice weevil, Sitophilus oryzae (L.). Basil oil was diluted in acetone and applied to a sponge held inside a tea strainer for fumigations in containers with and without rice. Basil oil fumigation (3 ml, 10% concentration) caused high mortality in adult rice weevils when weevils were exposed in air in a sealed 1 L plastic container. However, when basil oil was placed in packaged rice, weevil mortality was low and reproduction was not affected. Effectiveness of plant essential oil fumigation should be conducted under realistic conditions to avoid experimental artifacts and misleading results.  相似文献   

7.
A pectin methylesterase was purified to apparent homogeneity from the adult rice weevil, Sitophilus oryzae (L.), by Q-Sepharose and S-Sepharose chromatographies followed by high-performance anion-exchange chromatography. The resulting preparation is the first pectin methylesterase which has been purified from any animal species, although at this point we cannot rule out the possibility that the enzyme is produced by a symbiotic microorganism. The molecular mass of the enzyme was estimated as 38 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This mass is similar to those of pectin methylesterases previously isolated from bacteria, fungi, and plants. The purified enzyme had a broad pH optimum between 6 and 7, which appears consistent with the enzyme's probable site of action, the gut.  相似文献   

8.
The paper presents the results of experimental assessment of the quality parameters of wheat grain infested with the rice weevil Sitophilus oryzae and of flour and bread produced from this grain. The most important and the least stable parameters were the flour yield, ash content, whiteness, and fat acidity value. The infested grain had higher densities of micrococci, yeast, Aspergillus glaucus, and A. candidus.  相似文献   

9.
Using fluorescence in situ hybridization (FISH) techniques and PCR-based rDNA sequencing, gut microflora in the larvae of bark- and wood-inhabiting cerambycid beetles (Rhagium inquisitor, Tetropium castaneum, Plagionotus arcuatus and Leptura rubra [Coleoptera: Cerambycidae]) was investigated. A total of 12 novel ascomycetous yeast strains were isolated from the gut content. Panfungal and strain-specific oligonucleotide probes identified two yeast strains as Candida rhagii and Candida shehatae, which were colonizing specialized organs (mycetomes) adhering to the gut of R. inquisitor and L. rubra larvae, respectively. Fragments containing these organisms were constantly being released from the mycetomes into the gut lumen. Whereas the mycetome symbiont of T. castaneum could not be identified, all larvae of this species harbored an additional bacterial endocytobiont in their gut epithelium. This novel gammaproteobacterium belonged to the Sodalis clade of insect symbionts, which includes the secondary endosymbiont of tsetse flies (Sodalis glossinidius) and the Sitophilus oryzae primary endosymbiont (SOPE).  相似文献   

10.
Microbial symbionts can be instrumental to the evolutionary success of their hosts. Here, we discuss medically significant tsetse flies (Diptera: Glossinidae), a group comprised of over 30 species, and their use as a valuable model system to study the evolution of the holobiont (i.e., the host and associated microbes). We first describe the tsetse microbiota, which, despite its simplicity, harbors a diverse range of associations. The maternally transmitted microbes consistently include two Gammaproteobacteria, the obligate mutualists Wigglesworthia spp. and the commensal Sodalis glossinidius, along with the parasitic Alphaproteobacteria Wolbachia. These associations differ in their establishment times, making them unique and distinct from previously characterized symbioses, where multiple microbial partners have associated with their host for a significant portion of its evolution. We then expand into discussing the functional roles and intracommunity dynamics within this holobiont, which enhances our understanding of tsetse biology to encompass the vital functions and interactions of the microbial community. Potential disturbances influencing the tsetse microbiome, including salivary gland hypertrophy virus and trypanosome infections, are highlighted. While previous studies have described evolutionary consequences of host association for symbionts, the initial steps facilitating their incorporation into a holobiont and integration of partner biology have only begun to be explored. Research on the tsetse holobiont will contribute to the understanding of how microbial metabolic integration and interdependency initially may develop within hosts, elucidating mechanisms driving adaptations leading to cooperation and coresidence within the microbial community. Lastly, increased knowledge of the tsetse holobiont may also contribute to generating novel African trypanosomiasis disease control strategies.  相似文献   

11.
A documentation and review of weevil rostrum growth is made through examination of the developmental life stages in the rice weevil Sitophilus oryzae (Linnaeus). Histological and morphological examinations are made utilizing light, fluorescent, and electron microscopy. In S. oryzae, rostral tissue begins proliferating in the late 4th instar larva and continues through to the pupal stage, with the majority of rostrum growth taking place in the prepupa. Adult cranial and rostral morphology is also reviewed, focusing on structures that may be pertinent to phylogeny reconstruction. The weevil rostrum is essentially an extension of various head sclerites that are basal to the mouthparts. Therefore, while the mouthparts are fairly similar to other Coleoptera in basic form, the head is markedly different due to its anterior extension. By understanding the more noticeable details of rostrum growth and structure, this study may serve as a foundation for comparative studies of a similar nature and as a basis for beginning research on the genetic nature of rostrum formation and evolution throughout the weevil clade.  相似文献   

12.
Belda E  Silva FJ  Peretó J  Moya A 《PloS one》2012,7(1):e30652

Background

Genome reduction is a common evolutionary process affecting bacterial lineages that establish symbiotic or pathogenic associations with eukaryotic hosts. Such associations yield highly reduced genomes with greatly streamlined metabolic abilities shaped by the type of ecological association with the host. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, represents one of the few complete genomes available of a bacterium at the initial stages of this process. In the present study, genome reduction is studied from a systems biology perspective through the reconstruction and functional analysis of genome-scale metabolic networks of S. glossinidius.

Results

The functional profile of ancestral and extant metabolic networks sheds light on the evolutionary events underlying transition to a host-dependent lifestyle. Meanwhile, reductive evolution simulations on the extant metabolic network can predict possible future evolution of S. glossinidius in the context of genome reduction. Finally, knockout simulations in different metabolic systems reveal a gradual decrease in network robustness to different mutational events for bacterial endosymbionts at different stages of the symbiotic association.

Conclusions

Stoichiometric analysis reveals few gene inactivation events whose effects on the functionality of S. glossinidius metabolic systems are drastic enough to account for the ecological transition from a free-living to host-dependent lifestyle. The decrease in network robustness across different metabolic systems may be associated with the progressive integration in the more stable environment provided by the insect host. Finally, reductive evolution simulations reveal the strong influence that external conditions exert on the evolvability of metabolic systems.  相似文献   

13.
We evaluated the insecticidal and acetylcholinesterase (AChE) inhibition activities of the essential oils and their constituents of 10 Apiaceae on the adult rice weevil, Sitophilus oryzae. Of the 10 species tested, dill (Anethum graveolens), caraway (Carum carvi), and cumin (Cuminum cyminum) essential oils showed strong fumigant toxicity against adult S. oryzae. LC50 values of caraway, dill, and cumin essential oils were 2.45, 3.29, and 4.75 mg/L air, respectively. Among the test compounds, (+)-carvone, (?)-carvone, cuminaldehyde, dihydrocarvone, linalool oxide, carveol, trans-anethole, and neral demonstrated strong fumigant toxicity against adult S. oryzae with LC50 values of 0.61, 0.84, 1.12, 2.92, 3.76, 4.29, 5.02, and 6.60 mg/L air, respectively. α-Pinene showed the strongest AChE inhibition activity followed by β-pinene and limonene. The measured toxicity of the artificial blends of the constituents identified in dill and cumin oils indicated that (+)-carvone and cuminaldehyde were major contributors to the fumigant toxicity of the artificial blend.  相似文献   

14.
高燕  张中润  许再福 《昆虫学报》2006,49(4):636-642
本文通过研究雅脊金小蜂Theocolax elegans在6个不同温度梯度下对米象Sitophilus oryzae幼虫的寄生和取食能力,评价了雅脊金小蜂对米象的控制效果。雅脊金小蜂寄生米象的功能反应结果表明,在17℃~29℃的温度范围内,寄生蜂的寄主处理时间与温度成反比,从0.333天(17℃)到0.063天(29℃)。寄主搜索率也随温度变化而变化,17℃时最低(0.083头/天),26℃时最高(1.521头/天);当温度升高到29℃,寄主搜索率略有下降;但当温度升高到32℃,寄主搜索率明显下降。温度调节的功能反应模型表明,在26℃~29℃的温度范围内,寄生率较高。所以,在26℃~29℃时,雅脊金小蜂对米象有较好的控制效果。  相似文献   

15.
Individual traits vary among and within populations, and the co-occurrence of different endosymbiont species within a host may take place under varying endosymbiont loads in each individual host. This makes the recognition of the potential impact of such endosymbiont associations in insect species difficult, particularly in insect pest species. The maize weevil, Sitophilus zeamais Motsch. (Coleoptera: Curculionidae), a key pest species of stored cereal grains, exhibits associations with two endosymbiotic bacteria: the obligatory endosymbiont SZPE (“Sitophilus zeamais Primary Endosymbiont”) and the facultative endosymbiont Wolbachia. The impact of the lack of SZPE in maize weevil physiology is the impairment of nutrient acquisition and energy metabolism, while Wolbachia is an important factor in reproductive incompatibility. However, the role of endosymbiont load and co-occurrence in insect behavior, grain consumption, body mass and subsequent reproductive factors has not yet been explored. Here we report on the impacts of co-occurrence and varying endosymbiont loads achieved via thermal treatment and antibiotic provision via ingested water in the maize weevil. SZPE exhibited strong effects on respiration rate, grain consumption and weevil body mass, with observed effects on weevil behavior, particularly flight activity, and potential consequences for the management of this pest species. Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect. SZPE suppression delayed weevil emergence, which reduced the insect population growth rate, and the thermal inactivation of both symbionts prevented insect reproduction. Such findings are likely important for strain divergences reported in the maize weevil and their control, aspects still deserving future attention.  相似文献   

16.
Many obligate intracellular pathogens and symbionts undergo genome degeneration during long-term association with eukaryotic hosts; however, very little is known about genome changes that occur in the initial stages of such intracellular associations. By focusing on a clade of bacteria that have recently established symbiotic associations with insect hosts, we have identified events that may contribute to the reduction and degeneration of symbiont genomes. Unlike virtually all other bacteria, the obligate symbionts of maize and rice weevils each display substantial sequence divergence between multiple copies of their rDNA genes, resulting from a reduction in the efficacy of recombinational gene conversion, coincident with the inactivation of the recombinational repair gene recF in the common ancestor of both symbionts. The maize weevil endosymbiont also lacks a functional recA, resulting in further reduction in the efficacy of gene conversion between paralogous rDNAs and in a novel IS-mediated deletion in a 23S rDNA gene. Similar events may be pervasive during the evolution of symbiosis because symbiont genomes typically lack recombinational repair genes and have reduced numbers of ribosomal operons.  相似文献   

17.
The paper describes laboratory tests in which the behavior response of adult rice weevils Sitophilus oryzae L. to the presence of seven species of micromycetes of the genus Fusarium (F. graminearum, F. culmorum, F. cerealis, F. poae, F. sporotrichioides, F. langsethiae, and F. sibiricum; 3 strains for each species) infecting cereals was characterized. The chemicals of unkown structure, released by the fungi, can have both attractive and repellent effects on the weevils; in some cases a neutral response was observed. The strains of Fusarium species characterized as weak pathogens (F. langsethiae, F. poae, and F. sibiricum) in most cases stimulated attractive and neutral responses. Relatively strong pathogens (F. cerealis, F. culmorum, F. graminearum, and F. sporotrichioides) generally had a repellent effect. The results obtained are discussed in the context of possible relationships between Fusarium fungi and the rice weevil during their utilization of cereals as a shared food substrate.  相似文献   

18.
The tsetse fly (Glossina genus) is the main vector of African trypanosomes, which are protozoan parasites that cause human and animal African trypanosomiases in Sub-Saharan Africa. In the frame of the IAEA/FAO program ‘Enhancing Vector Refractoriness to Trypanosome Infection’, in addition to the tsetse, the cereal weevil Sitophilus has been introduced as a comparative system with regards to immune interactions with endosymbionts. The cereal weevil is an agricultural pest that destroys a significant proportion of cereal stocks worldwide. Tsetse flies are associated with three symbiotic bacteria, the multifunctional obligate Wigglesworthia glossinidia, the facultative commensal Sodalis glossinidius and the parasitic Wolbachia. Cereal weevils house an obligatory nutritional symbiosis with the bacterium Sodalis pierantonius, and occasionally Wolbachia. Studying insect host-symbiont interactions is highly relevant both for understanding the evolution of symbiosis and for envisioning novel pest control strategies. In both insects, the long co-evolution between host and endosymbiont has led to a stringent integration of the host-bacteria partnership. These associations were facilitated by the development of specialized host traits, including symbiont-housing cells called bacteriocytes and specific immune features that enable both tolerance and control of the bacteria. In this review, we compare the tsetse and weevil model systems and compile the latest research findings regarding their biological and ecological similarities, how the immune system controls endosymbiont load and location, and how host-symbiont interactions impact developmental features including cuticle synthesis and immune system maturation. We focus mainly on the interactions between the obligate symbionts and their host’s immune systems, a central theme in both model systems. Finally, we highlight how parallel studies on cereal weevils and tsetse flies led to mutual discoveries and stimulated research on each model, creating a pivotal example of scientific improvement through comparison between relatively distant models.  相似文献   

19.
Insects face several (environmental) abiotic stressors, including low temperature, which cause the failure of neuromuscular function. Such exposure leads insects toa reversible comatose state termed chill-coma, but the consequences of this state for the organism biology were little explored. Here, the consequences of the chill-coma phase were investigated in two of the main stored product pest species – the red flour beetle Tribolium castaneum (larvae and adults) and the rice weevil Sitophilus oryzae (adults). For this purpose, a series of low-temperature shocks were used to estimate the chill-coma recovery time (CCRT), survival, nutrition and weight gain/growth of T. castaneum (larvae and adults) and S. oryzae, as well as the development of T. castaneum life stages. The relatively long CCRT was characteristic of beetle larvae, at different low-temperature shocks, and CCRT increased with decreasing temperatures and increasing exposure intervals for both pest species. The survival was little affected by the low-temperature shocks applied, but such shocks affected insect feeding and growth. Tribolium castaneum larvae was more sensitive than adults of both insect species. Moreover, the relative consumption and weight gain of S. oryzae adults were lower than those of T. castaneum adults and mainly larvae, while feeding deterrence was not affected by low temperature shocks, unlike food conversion efficiency. Low-temperature shocks, even under short duration at some temperatures, significantly delayed development. The lower the temperature and the higher the exposure period, the more delayed the development. Thus, the physiological costs of chill-coma are translated into life-history consequences, with potential implications for the management of this insect pest species in stored products and even more so on red flour beetles and rice weevils.  相似文献   

20.
《Insect Biochemistry》1987,17(1):17-20
Sarcosine and methionine sulfoxide were investigated in several wild or laboratory-reared symbiotic and aposymbiotic strains of Sitophilus oryzae and S. zeamais. The amino acid composition of fourth-instar larvae indicated that a high level in sarcosine found together with a low level of methionine sulfoxide were biochemical characteristics of the aposymbiotic state in this genus. Nutritional experiments demonstrated that the synthesis of these two amino acids depended on dietary precursors. Since sarcosine and methionine sulfoxide are both methionine derivatives, it is therefore suggested that methionine metabolism in Sitophilus larvae might differ according to the presence or the absence of the symbiotic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号